A population of 550 was assumed for the one that might move back permanently to Bikini Atoll. Values for other initial populations were obtained by ratios of the results. The total population at the end of 30 years is given by the compounding equation: Pay = 850 (1 + 0.038)°° = 1684 The number of births in 30 years aregiven by: 30 B = 0.042 x 550 f0.038)" dx 0 where x is the time between 0 and 30. B = 07 042 ; x 550I - Th 1.038 [1.038 30 This gives - 1] = 1277 Similarly, the number of deaths in the 30 year period would be: Deaths 30 0.0054 x 550 0.038)" dx 0 _ 0.0054 x 550 Deaths = Talo [1.038 30 - 1] = 164 One other datum needed is the reduction in 30 year dose to those born after the return because of the decrease in radiation levels and the smaller amount of time in the 30 year period that is spent on the island. For this, the total population dose for those born after returning assuming an initia’ dose rate of 1 rad/year is given by: P = 550 D, J 0 730 e* (7.038%) dx A is the half-life of decrease of the radiation dose, taken here as 30 years. Because this integral cannot be solved analytical, an approximate solu-~ tion was obtained by calculating this function for each of 30 years and