Figure 11 compiled the individual data calculated for 1!37¢s for all Rongelap :esidents and was referenced to June 1, 1957. The individual maximum 13705 daily activity ingestion rate was approximately 4 times the population mean value. The standard deviation observed for the adult activity ingestion rate distiibution was 41% of the mean value, adults, 48% for adolescents, 39% of the mean value for young 38% for children and 54% for infants. Adolescents and infants exhibited a broader distribution than adults while children showed a fractional variation in activity ingestion rate similar to adults. Breast feeding versus coconut sap supplements would have contributed to the greater varia.‘on observed in infants. Adolescents and young adults were the population subgr “ips which have been observed to move frequently between atolls. This mo- bility would lead to greater variations in the daily activity ingestion rates relat‘ ve to those observed in the more stationary population subgroups. Figure 12 also exhibited a wave pattern; however, a distinct difference between males and females was indicated. This difference arose from the use of di- etary rate constants Listed in Table 3 which were derived from urine data for maie and female residents at Rongelap Atoll. Its major impact was on the dose equivalent rate, not on the total dose equivalent; and its effect was to cause the dose equivalent rate for males to rise and decline more rapidly than for females. Figures 13a and 136 summarize the individual data for 905, for all Rongelap residents and were referenced to June 1, 1957. A bimodal shape was observed for the distributions which contained both sexes thus reflecting the difference in the 904, dietary rate constants. indicated that Data from urine bioassay the observed difference between the male and female value for Ke was ~>t significant. A t-test was peformed between consecutive urine measure13