BROOKHAVEN NATIONAL LABORATORY MEMORANDUM

DATE: July 17, 1980

TO:

Hugh Pratt

E. T. Lessard ETL

SUBJECT: Chronic Dosimetry

We have enclosed a recently assembled draft of "Reconstruction of Chronic Dosimetry for Respents of Roygelap and Utirik Atolls" for your consideration. The information in this report makes use of data collected by yourself and members of your medical team. Your comments would be greatly appreciated.

During the next few weaks, rembers of the MIRSP team will be travelling to the Marshall Islands, and to Seattle, Washington to the Annual Mealth Physics Society Meeting. Thus, your timely review will afford is the opportunity to incorporate changes in the final draft.

Thank you in all rance for any suggestions you make.

ETL: js Encl:

cc. N. A. Greenhouse

R. P. Miltenberger

BEST COPY AVAILABLE

1. Mariant

Distribution:

R. A. Conard

A. P. Hull

T. F. McCraw

C. B. Meinhold

J. Naidu

w. Robison

B. Wachholz

13/Cs. Four persons visited Argonne from Rongelap and, in addition, pooled urine samples from both atolls were analyzed radiochemically for 137Cs and 90 sr. Subsequent Brookhaven National Laboratory expeditions by the Medical Department and Safety and Environmental Protection Division utilized whole body counting and radiochemical analysis of urine and blood samples to identify and quantify the radionuclides that were present in the body. The results of these radiological measurements are given in terms of body burden in tables 1 and 2.

The aforementioned body burden tables illustrate adult mean values for Rongelap and Utirik. An adult, as classified here, was a person over 16 years of age. The mean body mass in this age interval was 60 kilograms. The observed body mass versus age distribution is shown in figure 1 for Rongelap residents. The same body mass versus age distribution was observed at Utirik.

Due to the paucity of measurements at Utirik, information on ⁶⁰Co, ⁶⁵Zn and ⁵⁵Fe was in some instances derived from the ratio of adult mean body burdens between Rongelap and Utirik. A mean ratio of 2.6 was observed in body burdens for ⁶⁵Zn, ⁹⁰Sr and ¹³⁷Cs after they reached their maximum values. The standard deviation of this ratio was 15%.

In the following analysis, personal body burden histories and residence intervals, in conjunction with contemporary dosimetric models, are used to estimate internal dose. Dosimetric distributions were constructed from the results and a summary of the derived activity ingestion rates and dose equivalents was provided for various subgroups of the population. Additionally, exposure rate history curves were constructed for each atoll for the period following the BRAVO test. These data, together with appropriate conversion factors and living pattern models, provided an estimate of external dose equivalent.

Rongelap Body Burdens

	¥	lult Males	Adult Females	emales	Adults		
	Body	Number	Body	Number	Body	Number	Day's Post
	Burden	ο ί	Burden	jo	Burden	01	Return
	EC.	Persons	иСi	Persons	пСı	Persons	Days
0 9	2.9×10-5	ş	1.7×10-5	¥	2.3x10 ⁻⁵	\$	-
	1.0×10^{-2}	37	7.8x10-3	37	9.0×10-3	74	1370
	2.5×10^{-3}	45	$2.0x10^{-3}$	45	2.2x10-3	06	2831
65 _{2n}	4.3x10-2	¥X	3.8×10-2	4%	6 1-10-2	72	-
	4.3x10-1	30	3.8×10-1	2	4 1×10-1	L.7	107
	6.2×10 ⁻¹	32	5.0x10 ⁻¹	27	5.6x10-1	1 0	100
	9.5x10-2	38	8.5×10-2	23	9.0x10-2	61	1370
55	1-01-6-5	œ.	7 0-10-1	33	1-10-7	9	3037
יי	7. 28.16	07	4.0110	75	- 01XI - 5	2	9795
$^{90}_{ m Sr}$	1.9x10-4	¥	1.4×10-4	¥	1.7×10-4	¥	-
	3.7×10^{-3}	=	2.8x10-3	4	3.4×10^{-3}	. 15	304
	5.7×10^{-3}	24	3.5x10 ⁻³	16	4.8x10 ⁻³	9	639
	3.7×10^{-3}	6	1.6×10^{-3}	7	3.0×10^{-3}	13	1370
	8.8×10-3	12	$7.9x10^{-3}$	13	8.4x10-3	25	2100
	7. 9x 10 ⁻³	=	7.4x10-3	^	7.7x10-3	18	2466
	2.8×10^{-3}	12	4.6x10 ⁻³	12	3.7×10 ⁻³	7,7	3561
	3.9×10 ⁻³	=	3, lx10-3	=	3.5x10-3	22	3927
	4.1×10 ⁻³	17	3.3x10 ⁻³	=======================================	3.6×10^{-3}	24	7627
	1.3×10^{-3}	∞	3.3x10-3	=	2.5×10^{-3}	61	7597
	$3.1x10^{-3}$	œ	2.8x10-3	7	3.0×10^{-3}	15	5022
	2.0×10^{-3}	\$	1.4×10 ⁻³	7	1.6×10^{-3}	12	5388
	6.6×10 ⁻³	7	$4.2x10^{-3}$	7	$4.3x10^{-3}$. 13	5753
	3. 3x 10 ⁻³	01	1,7x10 ⁻³	7	2.8x10 ⁻³	71	6118
	4 4 10°3	13	Ž	0	NA.	NA	1519.
	o. Jx Io	57	4.01×9.7	61	5.5×10 ⁻⁴	43	8097
1376,	1.4×10-2	\$	8.4x10-3	\$	1.1×10-2	\$	~.
	8.7×10 ⁻¹	¥	5.2x10-1	≨	6.8×10^{-1}	¥	304
	7.9×10-1	17	4.1x10 ⁻¹	67	5.7x10-1	3 6	639
	9.5×10 ⁻¹	37	4.7×10-1	37	$6.7x10^{-1}$	7.4	1370
	9.4×10-1	77	4.9×10-1	45	6.8x10 ⁻¹	68	2831
	4.8×10-1	22	3.0×10^{-1}	24	3.9x10-1	94	6118
	3.0x10-1	20	1.9x10-1	21	2.5x10-1	5.1	7213
	1.8x10~1	61	1.5x10 ⁻¹	18.	1.7x10-1	37	8097

NA = Not analyzed

Utirik Body Burdens

	Adult	Males	Adult Females	enales	Adults	lts	
	Body Number Burden of	Number of Persons	Body Burden PCi	Number of Persons	Body Burden HCi	Number of Persons	Days Post Return Days
9	4.0x10-3		3.1x10-3		3.5x10-3		2464
c	9.7×10 ⁻⁴		7.6x10-4		8.7x10-4		3924
6520	3.5x10-1*	2	ı		,		
i	2.7×10 ⁻¹	7!	1.6x10-1	15	2.1x10-1	29	1734
a	$3.7x10^{-2}$		3.3×10^{-2}		3.5x10-Z)	2464
55							
0	1.7x10-1		1.6x10-1		1.6x10-1		6114
96 Sr							
\$	1.4×10^{-3}	\$	2.4×10^{-3}	2	1.7x10 ⁻³	1	1734
	1.2x10 ⁻³	~	1.3x10 ⁻³	9	1.3x10 ⁻³	=	7213
	¥.	17	N.	12	**************************************	4 2	8669
	1.5x10	3	l.oxid	.	1.5x10 -	37	9225
137 _{Cs}							
	1-01x:-+	¥	2.7x10-1	S.	3.3x10-1	Ş	1004
	2.9×10 ⁻¹	15	2.0x10-1	15	2.5x10-1	90	1734
	2.6×10-1	6	1.3x10-1	13	1.8x10-1	22	7213
	1.2×10^{-1}	2.7	7.8x10-2	21	1.0x10-1	87	8309
	$6.2x10^{-2}$	19	4.3x10-2	17	5.3x10-2	36	9225

D = Ratio derived body burden
NA = Not analyzed

* * Measured at Argonne National Laboratory

METHODS

DOSI SETRIC EQUATIONS

Declining continuous uptake of radioactive dietary items was mathematicall modeled for each nuclide of concern. The following general equations were
used

$$\lambda P^{\circ} = \frac{U U_{s}/f_{u} - q^{\circ} (\sum_{i}^{\Sigma} K_{i} \chi_{i}' e^{-(\lambda + K_{i})t})}{f_{1} \left(\sum_{i}^{\Sigma} \frac{\chi_{i}K_{i}}{K_{i} - K_{E}} \left(e^{-(\lambda + K_{E})t} - e^{-(\lambda + K_{i})t}\right)\right)}, \text{or}$$
(1)

$$\lambda P^{\circ} = \frac{q - q^{\circ} \left(\sum_{i}^{\Sigma} \chi_{i}^{'} e^{-(\lambda + K_{i})t}\right)}{f_{1} \left(\sum_{i}^{\Sigma} \frac{\chi_{i}^{'}}{K_{i}^{-K_{E}}} \left(e^{-(\lambda + K_{E})t} - e^{-(\lambda + K_{i})t}\right)\right)}, \text{ and}$$
(2)

$$D = f_1 \lambda P^{\circ} \sum_{i} \frac{\chi_i}{K_i^{-K_E}} \left(\frac{K_i^{-K_E} - (\lambda + K_i) e^{-(\lambda + K_E)t} + (\lambda + K_E) e^{-(K_i^{+}\lambda)t}}{(K_E^{+}\lambda) (K_i^{+}\lambda)} \right)$$

+
$$q^{\circ} \sum_{i} \frac{\chi_{i}^{\prime}}{\lambda + K_{i}} \left(1 - e^{-(\lambda + K_{i})t}\right),$$
 (3)

where

t = time post onset of uptake, days,

 λ = instantaneous fraction of atoms decaying per unit time, day⁻¹

 P° = initial atom ingestion rate, atoms day⁻¹,

 $K_i = instantaneous$ fraction of atoms removed from compartment i by physiological mechanisms, day^{-1} ,

 $\chi_i \equiv compartment i deposition fraction,$

 χ_i^{\prime} = the number of atoms in compartment i relative to the number in all compartments at the onset of uptake (t=0),

U \equiv instantaneous urine activity concentration, B_q ℓ^{-1} ,

 $U_s = \text{subject urine excretion rate}, \ \ell \text{ day}^{-1},$

- 1, E traction from GI tract to blood,
- $f_{ij} \equiv fraction$ excreted by the urine pathway,
- $K_E \equiv instantaneous$ fraction of atoms removed or added to the atom uptake per unit time, day⁻¹,
- q ≡ instantaneous body burden, Bq,
- q° = body burden at the onset of uptake, Bq,
- D = the number of disintegrations in all compartments occurring during the uptake interval, Bq days.

Equations 1 and 2 were used to determine the dietary removal rate constant K_E and then the initial daily activity ingestion rate required to produce the measured or derived body burden. Equation 3 was used to determine the number of disintegrations that occurred in the body during the residence interval of an individual living on Rongelap or Utirik Atoll.

DETERMINATION OF KE

If the mean residence time in the diet is much much longer than the residence interval, then constant continuous uptake is achieved. Equations 1 and 2 can be converted to the constant continuous equations by replacing K_E with $-\lambda$. Single uptake expressions are obtained by setting P^{\bullet} equal to zero. In some cases only radioactive decay may remove the nuclide from dietary items; for these cases K_E would equal zero. In the case of the former Bikini residents, the maturing of coconut trees during residence on Bikini Atoll caused a continuously increasing dietary uptake of ^{137}Cs . Thus, K_E was found to have a negative value. In the case of Rongelap and Utirik, K_E was found to have a positive value for ^{137}Cs , ^{65}Zn , ^{60}Co and ^{90}Sr . This indicated that in addition to radioactive decay, some other removal mechanism decreased the radioactivity in

decay items during the residence interval. For the nuclide 55 Fe, only one measurement in blood was published by the BNL Medical Program (Be72); thus an estimate of $K_{\rm F}$ was not possible.

 K_E was determined by using equation 1 or 2 and the population subgroup near, body burdens or urine activity concentrations. A portion of these bioassay duta are illustrated for adult males and females in Figures 2, 3, 4, 5 and 6. Two consecutive urine or body burden data points were used to eliminate the unknown ingestion rate from the equation. This method yields n-1 estimates of K_E where n was the number of data points. An average value of K_E was assigned for each nuclide and the results for the Rongelap and Utirik populations are given in Table 3. For the evaluation of K_E from equations 1 and 2, radiological and physiological parameters were obtained from the open literature (ICRP59, ICRP68 ICRP69, ICRP79, Ki78). A representative sample of these parameters is presented in Table 4.

Table 3

	60 _{Co}	90 _{Sr}	65 _{Zn}	137 _{Cs}
ngelap Adults				
Males	1.5×10^{-3}	1.8×10^{-4}	3.1×10^{-3}	1.4x10 ⁻⁴
Females	1.6x10 ⁻³	4.1×10^{-4}	3.5×10^{-3}	1.4×10 ⁻⁴
Adults	1.5x10 ⁻³	1.9x10 ⁻⁴	3.1x10 ⁻³	1.4x10 ⁻⁴
rik Adults				
Males	N.D.	4.6×10^{-4}	N.D.	1.4x10 ⁻⁴
Females	N.D.	4.0×10^{-4}	N.D.	1.4×10 ⁻⁴
Adults	N.D.	4.2x10 ⁻⁴	N.D.	1.4x10 ⁻⁴

Table 4

Total Body Dosimetric and Physiologic Data

	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4	4					١
fuc l i de	Deposition Fraction	Compartment Removal Rate Constant	to Blood Transfer	Fraction Excreted in Urine	Decay Constant	Significant Progeny	Branching Ratio	
X _Z	x,	κ _i d⁻1	f	f,	۸ 4-1	××z		
137cs 55 ^{cs}	0.13	0.50 0.0051	1.0	0.90	6.3x10 ⁻⁵	137m8a 56 Ba	0.946	1
65 30 ^{Հո}	0.25 0.75	0.058 0.0022	0.35	0.25	2.8x10 ⁻³	65* 29 ^C u	0.49	
90 38 Sr	0.89 0.059 0.051	0.21 7.1x10 ⁻⁴ 1.0x10 ⁻⁴	0.20	0.85	6.5x10 ⁻⁵	90 39 ^T 90* 4 0 - 2r	1.0	
60 27 20	0.5 0.3 0.1	1.4 0.12 0.012 8.7x10 ⁻⁴	0.03	0.70	3.6x10-4	60 th 28 N3	0.1	
55 76.Fe	1.0	3.5x10 ⁻⁴	0.1	0.0	7.0x10-3			

The values of K_E were similar for males and females and for residents of Rongelap and Utirik. For 90 Sr on Rongelap a factor of 2 difference between K_E values was observed for males and females. The female parameter for Rongelap Atoll compares with that obtained from the Utirik data. A paired t-test of the Rongelap male and female data indicates that the male/female difference was highly probable and therefore not significant. This difference leads to a bimodal activity ingestion rate distribution for 90 Sr in the Rongelap population.

Data for ⁶⁰Co and ⁶⁵Zn was not sufficient for analysis for the Utirik

Atoll residents. Values for K_E observed at Rongelap were assigned to Utirik

males and females and body burden histories for population subgroups were

reconstructed using equation 1 or 2. Figures 7 and 8 illustrate the derived

mean adult body burdens for all significant nuclides studied on Rongelap and

Utirik. This method provides a best fit of the data shown in figures 2 through

6, and provides a body burden history during the early years post return at

Utirik, a time when body burden measurements were not made. Actual data points

are also plotted to demonstrate the fit.

The curves shown for 55 Fe in figures 7 and 8 were obtained by setting K_E equal to zero. This underestimated the initial body burdens and overestimated future ones. Since 55 Fe contributed less than 1.0% to the total dose equivalent an arbitrary assignment of K_E based on observed values for the other nuclides was not attempted. During 1974, another series of blood samples was obtained from Rongelap and Utirik (Co75). Analysis for 55 Fe was to be performed; however, no records have been located. Once these records are found, a reanalysis of 55 Fe and its impact on early dose equivalent rates will be conducted. A substantial change in dose equivalent is not to be expected.

Figure 4 and figure 6 illustrate the observed adult histories of ⁹⁰Sr and ¹³⁷Cs mean urine activity concentrations. Mean values for adult males or all adults were plotted. Measured values for ¹³⁷Cs body burdens were also shown in figure 7. A much smoother curve was plotted in figure 7 and it was determined that the collection and analysis technique for urine samples introduced the additional variations. Based on this observation for ¹³⁷Cs, a smooth body burden curve for ⁹⁰Sr, reconstructed from raw data and equation 1, was considered a more accurate history. A detailed presentation of the greater variation in urine bioassay measurements versus direct body burden measurements can be found in Mi81.

Figure 9 illustrates the variation exhibited in the body burden of 5 randomly chosen subjects over the 25 year monitoring period. These individual variations may have had a dramatic impact on the mean data. In figure 2, which illustrates the adult male, adult female and adult population mean 137Cs body burden for the 25 year exposure period, a decrease followed by an increase was seen during the years 1958 through 1963. Although the Castle BRAVO test initially contaminated Rongelap, it had been proprosed that the Hardtack Phase I series added to this an amount of contamination equal to that responsible for the figure 2 body burden pattern (Co63). Figure 9 suggests that most individuals counted in those years had maintained or declined in body burden; however, one individual's burden (#881 M) rose and fell quite differently from the others. Several factors could have contributed to this variation from the mean such as departure and return to the atoll, sickness, the dietary contribution of imported foods, etc.. Since the mean values are based on small numbers of persons who were chosen at random, it is conceivable that individuals like 881 M

influenced the mean body burdens to a greater degree than recontamination of the inhabited atolls. This conclusion is most since the body burden of an individual was not monitored consistently throughout the residence interval except in the few cases exhibited in figure 9.

RESULTS AND DISCUSSION

DAILY ACTIVITY INGESTION RATES

Daily activity ingestion rates were calculated for dosimetrically significant nuclides post return. An exponential decline was proposed for the ingestion rate within a population subgroup and initial reference values are given in figures 10, 11, 12, 13 and 14 (June 1, 1957 was assigned as a return date to Rongelap). Figure 10 demonstrates the difference in ingestion of ¹³⁷Cs for various population subgroups. This undulating pattern was exhibited by ¹³⁷Cs, ⁹⁰Sr and ⁶⁵Zn, nuclides for which sufficient data existed for analysis.

Differences in ingestion rates of the stable element at the same geographic location have been shown to occur among members of a population (ICRP 23). Age dependent diet studies for ingestion of Cs for urban Japan have values varying from 11 μ g d⁻¹ for adults to 8.6 μ g d⁻¹ for children. Sr in a westerntype diet rose from 600 $\mu g d^{-1}$ for infants to 690 $\mu g d^{-1}$ for 5 year olds to 3,600 μ g d⁻¹ for 13 year olds and fell to a mean of 1,900 μ g d⁻¹ for adults. Zn in the United Kingdom rose from 2 to 40 mg d-1, the higher value of Zn being observed in adult tea drinkers. Fe ingestion in a western-type diet has a minimum at age 3 and maximums at ages 1 and 20 years. Co is ingested at a rate of 20 µg d for Japanese adults and half this amount for children. The Marshallese population also exhibits dietary changes as a function of age. authors of the Marshall Islands Diet and Living Pattern Study (Na80) observed coconut sap being used as a major food supplement for infants, and later in adult life as a major source of daily fluid intake. Since coconuts and coconut tree sap provided the major source of Cs on Bikini Atoll (Le80, Mi80), the shape of Figure 10 was in agreement with the observed diet pattern.

Rongelap residents and was referenced to June 1, 1957. The individual maximum 137 Cs daily activity ingestion rate was approximately 4 times the population mean value. The standard deviation observed for the adult activity ingestion rate distribution was 41% of the mean value, 39% of the mean value for young adults, 48% for adolescents, 38% for children and 54% for infants. Adolescents and infants exhibited a broader distribution than adults while children showed a fractional variation in activity ingestion rate similar to adults. Breast feeding versus coconut sap supplements would have contributed to the greater variation observed in infants. Adolescents and young adults were the population subgroups which have been observed to move frequently between atolls. This mobility would lead to greater variations in the daily activity ingestion rates relative to those observed in the more stationary population subgroups.

Figure 12 also exhibited a wave pattern; however, a distinct difference between males and females was indicated. This difference arose from the use of dietary rate constants listed in Table 3 which were derived from urine data for male and female residents at Rongelap Atoll. Its major impact was on the dose equivalent rate, not on the total dose equivalent; and its effect was to cause the dose equivalent rate for males to rise and decline more rapidly than for females.

Figures 13a and 136 summarize the individual data for ⁹⁰Sr for all Rongelap residents and were referenced to June 1, 1957. A bimodal shape was observed for the distributions which contained both sexes thus reflecting the difference in the ⁹⁰Sr dietary rate constants. Data from urine bioassay indicated that the observed difference between the male and female value for K_E was not significant. A totest was peformed between consecutive urine measure-

ment data during the twenty-three year residence interval. The results indicate that because of urine activity concentration variability, a probability of 6 out of 10 existed such that the male value for K_E would be different from the female value by the factor observed. Thus differences in the derived activity ingestion rates and dose equivalents were not significant.

Figure 14 shows a semi-log plot of the 65 Zn and 137 Cs activity ingestion rate histories for adults on Rongelap. A smooth curve was drawn between points and the appearance of an increasing 137Cs ingestion rate during the 1960's indicates the possibility of another contaminating event. The Hardtack Phase I series was conducted just prior to the observed increase in the curve and fallout from the Cactus, Yellow Wood and Hickory experiments detonated at Bikini and Enewetak would have reached Rongelap. However, several observations fail to support the conclusion that recontamination was significant. These are as follows: 1) the increase in 137 Cs ingestion rate was not in conjunction with an increase of ⁶⁵Zn; however, since ⁶⁵Zn is an activation product it may have not been produced in the same proportions 2) the peak 137Cs body burden at Utirik occurred nearly three years after the initiating event, Castle BRAVO, while the peak body burden at Rongelap followed six years after the potentially contaminating experiments of the Hardtack series in 1958 3) the activity ingestion rate at Utirik demonstrated a continuously declining pattern versus the humped pattern observed at Rongelap. This occurred even though there was an equal external exposure rate history following the Hardtack series as measured by the U.S. Public Health Service on both Rongelap and Utirik (Un 59). These facts suggest that the Hardtack series was not a major factor influencing the Rongelap body burden patterns. Thus it is assumed that persons who had body burdens significantly different from the mean body burden for the population

caused the content of variation reported. Based on these observations a smooth description of the body burden and activity ingestion rate was adopted and a declining continuous uptake model was used to generate the curves in figures 7 and 8.

INTERNAL DOSE EQUIVALENT RATES

The approximate instantaneous dose equivalent rates for the total body were determined from the body burden data illustrated in figures 7 and 8 and from the following equation

$$H = q I,$$
 (4)

where

H = the total body dose equivalent rate, mRem y^{-1} ,

I = equilibrium dose equivalent rate to the total body per unit body burden, $mRem \ y^{-1} \ \mu Ci^{-1},$

q Ξ instanteous body burden, μCi.

The approximate nature of the estimate was due to the assumption that the radioactive atoms were distributed among the body tissues as they would be following constant continuous uptake for periods of time much greater than the mean residence time for the total body. In the case of 90 Sr, 86% of equilibrium was assumed. These assumptions were not used in the estimate of the total dose equivalent. In addition, since mean adult body burdens were computed, a factor of 1.2 was needed to adjust for differences in body mass relative to a 70 kg adult. Table 5 lists values of I which were determined from information given in ICRP59 and corrected for body mass differences.

Figure 15 illustrates the relative contribution to the composite dose equivalent rate for each dosimetrically significant internally deposited nuclide. For the average Rongelap adult, the residence interval begins June 1, 1957; however, many adults were reported to have resettled during the next 3-6 months (Co80b). The composite dose equivalent rate indicated that a broad

Table 5

A ZX	Total Body Equilibrium Dose Equivalent Rate per Unit Total Body Burden,
	mRem y ⁻¹ μCi ⁻¹
⁵⁵ Fe 26	2 x 10 ⁰
60 _C o	6 x 10 ²
65 30	1 x 10 ²
90 _{Sr} 38	3×10^2
137 Cs 55	2 x 10 ²

maximum of approximately several hundred millirem per year persisted for several hundred days. The majority of the dose rate is attributable to the ¹³⁷Cs component. Cesium dominated over the entire post return period and would be of prime concern for populations returning to a contaminated environment years after a fission-type initiating event.

during the first three years post return. The higher body burden resulted from use of the two measured ⁶⁵Zn body burden means for adults on Utirik and the observed duetary rate constant from Rongelap. It was observed on Rongelap that .031% of ⁶ Zn was removed from the diet pathway each day in addition to radioactive decay. Additionally, reduction in dietary radioactivity on Rongelap had been observed for ¹³⁷Cs, ⁹⁰Sr and ⁶⁰Co to be greater than that predicted by radioactive decay alone. Instantaneous reduction fractions very similar to

Rongelap were observed at Utirik for the 90Sr and 137Cs nuclides. The lower curve on Figure 16 reflects the dose equivalent, dose equivalent rate and body burden which would have occurred had radioactive decay alone accounted for the removal of 65Zn from the Utirik environment. Since additional mechanisms could be measured for other nuclides at Utirik and for the 65Zn nuclide on a nearby atoll, the upper curve was chosen as the most likely body burden history for adults post return to Utirik Atoll.

Figure 17 indicates the Utirik adult mean total body dose equivalent rate for each nuclide. An obvious difference relative to the Rongelap history exists, $^{65}{\rm Zn}$ not $^{137}{\rm ds}$ was the major nuclide contributing to the dose equivalent rate. This was due to the Utirik population returning 4 months after the initial contaminating event, and the Rongelap population returning after 3 years. The age of the fallout had a dramatic influence on the importance of each nuclide contributing to the internal dose equivalent. In fact 60Co and 65Zn played major roles during the first 3 years, a time interval that corresponded to the period during which field whole body counting facilities were being developed at Brookhaven National Laboratory and when medical examinations for people on Utirik Atoll were not done. Additionally, pooled and/or individual radiochemical analysis of urine was not performed during this period. The impact of 65 Zn and 60 Co was such that even if the least conservative dietary rate constant $(K_F=0)$ was used for Zn, the dose equivalent rate for the average adult was in excess of Federal Radiation Council Guidelines for the first 2 years following the return to Utirik.

INTERNAL DOSE EQUIVALENTS

Disintegrations occurring in the total body of an individual during residence following repatriation were determined by several methods. Equation 3, together with personal body burden histories and atoll-specific dietary rate constants from table 3, provided an initial estimate of disintegrations between consecutive body burden measurements. The second method used was a log-log plot of the subject's body burden history and an algebraic determination of area between two consecutive measured points. The third method used a linear plot of the subject's body burden history. The area under the curve was cut and weighed and compared to a standard weight of known area. Quality control procedures required that all three methods agree within ±10% before a subject was assigned his or her total body disintegrations during residence post return. In general, the methods compared to within ±5%.

After the total number of disintegrations occurring in a subjects body were assigned, they were apportioned among the body organs according to the following equation

$$\mathbf{F} = \frac{\mathbf{f_2'} \stackrel{\Sigma}{\mathbf{i}} \mathbf{A_i} \mathbf{B_i} \stackrel{(\stackrel{\Sigma}{\mathbf{i}} \mathbf{C_i} \mathbf{D_i} + \ln 2/\lambda)}{\stackrel{\Sigma}{\mathbf{c_i} \mathbf{D_i}} \stackrel{(\stackrel{\Sigma}{\mathbf{i}} \mathbf{A_i} \mathbf{B_i} + \ln 2/\lambda)}{}}$$
(5)

where

F = the fraction of total body disintegrations occurring in the organ of interest,

 $A_i \equiv \text{organ compartment deposition fraction for the element,}$

 $B_i \equiv \text{organ compartment biological half time for the element,}$

- C; E total body compartment deposition fraction for the element,
- D, E total body compartment biological half time for the element,
- f₂ = fraction of the element from blood to organ of reference.

Equation 5 applied where significant decay occurred at the deposition site, and not during transit or re-transit to the organ of interest. Values for compartment deposition fractions and compartment half times were obtained from Ki78. Values for the remaining quantities were from ICRP59.

The dose equivalents to a specific organ or the total body were determined by using the source to target dose equivalent per unit cumulated activity parameters from Ki78. The total target dose equivalent was obtained by summation of the dosimetric contributions from all source organs. Several important modifications to the general procedure were made in order to compute individual dosimetric results. For each person, the source-to-target dose equivalent per unit cumulated activity was weighted by the ratio of a standard man's body mass relative to the actual mean body mass during the interval for which the dose equivalent was determined. In the case of ¹³⁷Cs, the long term biological removal rate constant for the Marshallese population was highly dependent upon body mass (Mi81). Appropriate modifications to equations 2, 3 and 5 were made to reflect this dependency. Finally, for ⁹⁰Sr deposition in bone, 28% of the source to target dose equivalent per unit cumulated activity was assumed from cancellous bone and 72% from cortical bone.

Figure 18 demonstrates the mean dose equivalent from ¹³⁷Cs for various age and sex groupings. The residence interval was from 1957 to 1980 for this population. The adolescents and persons above 50 years of age in 1957 maintained the lowest dose equivalent. Persons who died during this period were not included

in the rigure nor were they included in any dosimetric distributions for any of the nuclides. Thus all persons considered, regardless of initial age in 1957, experienced a 23 year exposure interval.

Figure 19 shows dose equivalent distributions according to age and sex for 137°C; among the Rongelapese. The shape or the population distribution was Poisson with a mean of 1.7 Rem and a maximum of 9.0 Rem. Thus the maximum was 5.3 times the mean value for 137°Cs on Rongelap. An examination of the subgroup distributions reveals that persons who were infants at the time of rehabitation at Rongelap also were the recipients of the higher doses. This was due to the combined effects of lower average body mass, a higher average ingestion rate and more rapid turnover of 137°Cs than that for adults or even children. The parameter having the greatest impact on the infant dose equivalent was body mass. The standard deviation for the adult males distribution was 49% of the mean dose equivalent, for adult females 43% of the mean dose equivalent, and for adolescents 47%. Within a subgroup, the maximum observed dose equivalent was approximately twice the mean value for all distributions considered here.

Figure 20 evinces mean dose equivalents as a function of returning age groups for ⁶⁵Zn on Rongelap. Adolescents, young adults and adults 50 and up were the groups receiving lower total dose equivalents, while children and middle aged persons received higher dose equivalents during the residence interval. Measured ⁶⁵Zn data for persons who were infants at the return date were not reported in the publications by Conard, et al.

Figure 21 shows the dosimetric distributions observed for members of the Rongelap population for ⁶⁵Zn. Again the population overall exhibited a Poisson distribution of dose with a maximum value nearly three times the mean. Children demonstrated higher doses than persons who were adults during the entire 23 year

period. The standard deviation was in general 30% of the mean value for all age and sex subgroup distributions. This less pronounced variation may be due to the fact that 65 Zn measurements took place over a three year interval while 90 Sr and 137 Cs occurred over a 23 year interval and thus was contained in a more homogeneous population than were the longer lived nuclides.

Figures 22 and 23a and 23b summarize the ⁹⁰Sr dose equivalent results for individuals at Rongelap.

In this analysis only the ingestion pathway was considered important. Although some radioactivity would enter the body via resuspension and direct inhalation pathways, it is known that the ratios of food and fluid intake to blood relative to airborne intake to blood, for the stable naturally occurring analogs to the radionuclides considered here, are as follows:

Co >	3000	Zn >	130
Fe	550	Sr >	10,000
Cs	400		

EXTERNAL EXPOSURE

A value of .73 Rads in tissue of interest per Roentgen measured in air at one meter above the surface was used to convert exposure in air to absorbed dose in tissue. The source was assumed to be an exponential distribution of ¹³⁷Cs activity with depth in soil, typical of aged fallout (Be70). Because of the multidirectional nature of the source, variation of absorbed dose with depth of organ was minimal. Additionally, external doses were adjusted for living pattern variations since the atolls present a heterogeneous exposure rate environment (Gr77).

External exposure calculations are based on figures 24, 25 and 26 which were derived from data listed in Cr56, Sh57, Un59, and Gr77. The area under straight line portions of the curve was determined by

$$x = \frac{R_2 t_2 - R_1 t_1}{n+1} , \qquad (6)$$

where

X = external exposure during straight line interval, mR,

 $R_2 \equiv exposure rate at the end of the interval, mRh⁻¹,$

 $R_1 = \exp(\sin \theta)$ rate at the beginning of the interval, mRh⁻¹,

 $t_2 \equiv time_{10.80}$ detonation at the end of interval, hours,

 $t_1^{-}\equiv$ time most detonation at the beginning of interval, hours,

n = slope of a straight line.

Data from 11 detonations during May, June and July of 1958 (Sh57) indicated a mean (a) out deposition exponent of 18.8. This mean value was observed at Utirile, Rong Jap, Parry and Wotho and applied to early time post detonation of

BRAVO to obtain the initial increasing exposure rate history evinced on figures 24 and 26. This method yielded a fallout deposition period of 5.5 hours on Rongelap and 12 hours on Utirik. This time compares well with the original observations reported by the Marshallese and by U.S. Navy personnel stationed in the area (SI 57). Initial dose equivalents on "acute doses" are developed in greater detail in another report.

Figure 25 demonstrates the external exposure following the 1958 testing series. Since return to Rongelap followed 3 years after the BRAVO contamination, this series contributed in large part to the external exposure post return.

SUMMARY

The Castle BRAVO shot of March 1954 caused the contamination of the inhabited atolls Rongelap and Utirik. Evacuation from Rongelap commenced 50 hours after detonation and from Utirik 55 hours after detonation. During June of 1954 and June of 1957 the return of the Utirikese and Rongelapese occurred respectively. Body burden data for dosimetrically significant nuclides was obtained throughout the residence interval post return primarily by direct in vivo gamma spectroscopy and by indirect bioassay techniques.

The dosimetric models used in this analysis were representative of a declining continuous uptake regime. Dietary decline of radioactivity included radioactive decay of the source and a conglomerate of other factors which might have included increased use of imported foods and weathering of the source. Dietary loss rate constants were estimated from sequential body burden data and were comparable for both atolls.

Variation in body burden history data for a particular nuclide on a particular atoll was observed in whole body counting data and urine bioassay results.

This was attributed principally to the statistical variation encountered when small groups are sampled from a heterogeneous group of body burdens in people and in the case of urine bioassay, additional variation was introduced during the laboratory analysis of samples.

Daily activity ingestion rates were determined for all measured radionuclides. In general, infants, children and adults between 20-40 years of age ingested more activity each day than did adolescents and persons greater than 40 years of age. Maximum deviation from the average value of the daily activity ingestion rate for members of an age sub-group was no greater than a fac-

tor of 3. However, the population distributions illustrated a maximum factor of 5 times th mean activity ingestion rate value.

Dose equivalent rates post return were determined for members from both atolls. For Rongelap Atoll, the residents received approximately 100-200 mRem per year during the first 5000 days post return from internal emitters. The principle contributing nuclide was ¹³⁷Cs. For Utirik Atoll, the residents received 10-15 Rem per year during the first 400 days post return. The major contributing nuclides were ⁶⁵Zn and ⁶⁰Co. Dose equivalent rates to the Utirikese from internal emitters fell below 500 mRem per year at approximately 1200 days post return.

The dose equivalent for population sub-groups and for individuals was determined. Table 6 summarizes the results for the total body, thyroid, red marrow, testes, ovaries, lower large intestine wall and the liver. The catenary compartment model of Bernard and Hayes (Ber70) was used to determine doses to various segments of the gastrointestinal tract. The Utirikese received significantly more radiation dose from ⁶⁵Zn, ⁶⁰Co, and ⁵⁵Fe than did the Rongalapese due to the short mean residence times of these nuclides in the environment. ⁹⁰Sr doses to the Rongalapese were 2.5 time greater and ¹³⁷Cs doses 1.5 times greater than doses received by persons at Utirik. This occured even though Utirik residents returned to their atoll 3 years earlier and it reflects the degree to which Utirik was less contaminated than Rongelap.

Table 6

Chronic Phase

Dose Equivalent Summary, Rem

		Total Body	Thyroid	
Nuclide	Utirik Adults	Rongelap Adults	Utirik Adults	Rongelap Adults
90 Sr	.0118	.0267	.000749	.00169
⁵⁵ Fe	.0329	.0230	.0594	.0415
137 _{Cs}	1.13	1.71	1.55	2.35
⁶⁰ Co	.507	.0143	.359	.0101
65 _{Zn}	12.5	.0757	11.1	.0672
Total Internal	14.2	1.85	13.1	2.47
Net External	3.19	2.02	3.19	2.02
Total	17.4	3.87	16.3	4.49
	Red Marrow		Testes-Ovari	
	Utirik	Rongelap	Utirik	Rongelap

	Red Marrow		Testes-0	varies
	Utirik	Rongelap	Utirik	Rongelap
Nuclide	Adults	Adults	Adults	Adults
⁹⁰ sr	. 0537	.123	.000749000749	.0016900169
⁵⁵ Fe	.0603	.0422	.05830620	.07360433
137 _{Cs}	1.70	2.57	1.54-1.74	2.33-2.63
⁶⁰ Co	.629	.0177	.443-1.78	0.120502
65 _{Zn}	17.2	.103	11.3-16.3	.06850988
Net				
Internal	19.6	2.86	13.3-19.9	2.49-2.82
Net				
External	3.19	2.02	3.19	2.02
Total	22.8	4.88	16.5-23.1	4.51-4.84

Table 6 (Cont'd)
Chronic Phase

Dose Equivalent Summary, Rem

		Large ine Wall	Liv	<u>ver</u>
Nuclide	Utirik Adults	Rongelap Adults	Utirik Adults	Rongelap Adults
90 _{Sr}	. 225	. 567	.000671	.00152
55 _{Fe}	.0666	.0465	.115	.0804
137 _{Cs}	.591	.895	1.81	2.74
60 _{Co}	4.56	.132	.792	.0223
65 _{Zn}	15.0	.0910	16.5	.136
Total Internal	20.5	1.73	19.2	2.98
Net External	3.19	2.02	3.19	2.02
Total	23.7	3.75	22.4	5.00

REFERENCES

- Be70 Bennett, B.G., 1970, "Estimation of Gonadal Absorbed Dose Due to ronmental Gamma Radiation," Health Physics, 19, 757.
- Beasley, T.M., Held, E.E. and Conard, R.A., 1972, "Iron-55 in Ror People, Fish and Soils," Health Physics 22: 245-50.
- Bernard, R.S. and Hayes, R.L., 1970, Dose to Various Segments of
 Castrointestional Tract, Preceedings of a Symposium on Medical
 Radionuclides: Radiation Dose and Effects.
- Co57 Conard, R.A., et al., 1958, "March 1957 Medical Survey of Rongela Utirik People Three Years After Exposure to Radioactive Fallout,"

 Brookhaven National Laboratory, Associated Universities, Inc., BN
- Co59 Conard, R.A., et al., 1959, "Medical Survey of Rongelap People, M
 1958, Four Years After Exposure to Fallout," Brookhaven National
 tory, Associated Universities, Inc., BNL 534.
- Conard, R.A., et al., 1960, "Medical Survey of Rongelap People Fi Six Years After Exposure to Fallout (With an Addendum on Vegetati Brookhaven National Laboratory, Associated Universities, Inc., BN
- Co62 Conard, R.A., et al., 1962, "Medical Survey of Rongelap People Se

 Years After Exposure to Fallout," Brookhaven National Laboratory,

 Associated Universities, Inc., BNL 727.
- Coofs Gonard, R.A., et al., 1963, "Medical Survey of Rongelap People Eigens After Exposure to Fallout," Brookhaven National Laboratory,

 Associated Universities, Inc., BNL 780.

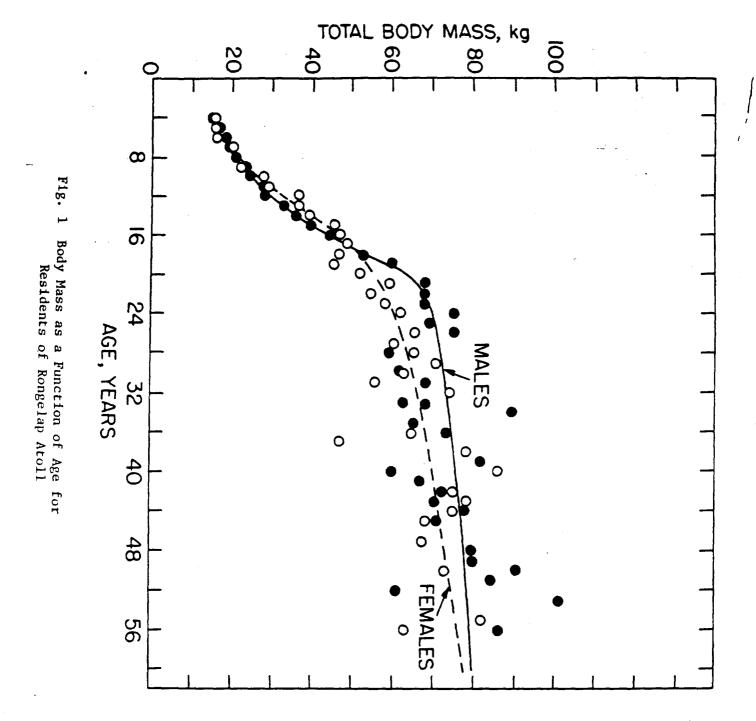
- Coos Conard, R.A., et al., 1965, "Medical Survey of the People of Rongelap and Utirik Islands Nine and Ten Years After Exposure to Fallout Radiation (March 1963 and March 1964)," Brookhaven National Laboratory,
 Associated Universities, Inc., BNL 908.
- Conard, R.A., et al., 1967, "Medical Survey of the People of Rongelap and Utirik Islands Eleven and Twelve Years After Expousre to Fallout Radiation (March 1965 and March 1966)," Brookhaven National Laboratory,

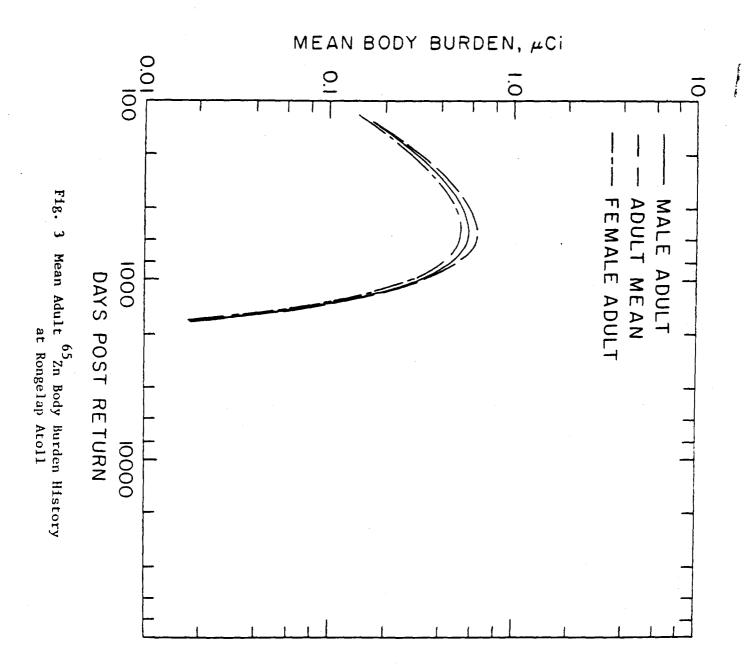
 Associated Universities, Inc., BNL 50029.
- Contrd, R.A., et al., 1970, "Medical Survey of the People of Rongelap and Utirik Islands Thirteen, Fourteen and Fifteen Years After Exposure to Fallout Radiation (March 1967, March 1968, and March 1969),"

 Brookhaven National Laboratory, Associated Universities, Inc., BNL 50220.
- Co75 Conard, R.A., et al., 1975, "A Twenty-Year Review of Medical Findings in a Marshallese Populations Accidentally Exposed to Radioactive Fallout," Brookhaven National Laboratory, Associated Universities, Inc., BNL 50424.
- Co80a Conard, R.A., et al., 1980, "A Twenty-Five Year Review of Medical Findings in a Marshallese Population Accidentally Exposed to Radioactive
 Fallout," Brookhaven National Laboratory, Associated Universities,
 Inc., BNL In Press.
- Co80b Conard, R.A., Private Communication.
- Cronkite, E.P., Bond, V.P., and Dunham, C.L., 1952, "A Report on the Marshallese and Americans Accidentally Exposed to Radiation from Fall-out and a Discussion of Radiation Injury in the Human Being," U.S.

 Atomic Energy Commission, TID 5358.

- Glasstone, S., Editor, 1957, "The Effects of Nuclear Weapons," Defense Atomic Support Agency, Department of Defense.
- Gr77 Greenhouse, N.A., and Miltenberger, R.M., 1977, "External Radiation Survey and Dose Predictions for Rongelap, Utirik, Rongerik, Ailuk and Wotje Atolls," Brookhaven National Laboratory, Associated Universities
 Inc., BNL.
- ICRP59 Recommendations of the International Commission on Radiological Protection, 1959, ICRP Publication 2, Report of Committee II on Permissible Dose for Internal Radiation.
- ICRP68 Recommendations of the International Commission on Radiological Protection, 1968, ICRP Publication 10, Report of Committee IV on Evaluation of Radiation Doses to Body Tissues from Internal Contamination due to Occupational Exposure.
- ICRP69 Recommendations of the International Commission on Radiological Protection, 1969, ICRP Publication 10A, Report of Committee IV on the Assessment of Internal Contamination Resulting from Recurrent or Prolonged Uptakes.
- ICRP74 Recommendations of the International commission on Radiological Protection, 1974, ICRP Publication 23, Report of the Task Group on Reference Man.
- ICRP79 Recommendations of the International Commission on Radiological Protection, 1979, ICRP Publication 30, Report of Committee II on Limits for Intakes of Radionuclides by Workers.
- James, R.A., 1964, "Estimate of Radiation Dose to Thyroids of the Rongelap Children Following the BRAVO Event," University of California, Lawrence Radiation Laboratory, UCRL-12273.


- Killough, G.G., Dunning, D.E., Bernard, S.R., Pleasant, J.C., 1978,


 "Estimates of Internal Dose Equivalent to 22 Target Organs for

 Radionuclides Occurring in Routine Releases from Nuclear Full-Cycle

 Facilities," NUREG/CR-0150, ORNL/NUREG/TM190.
- Lessard, E.T., Miltenberger, R.P., and Greenhouse, N.A., 1980, "Dietary Radioactivity Intake from Bioassay Data: A Model Applied to 137Cs Intake by Bikini Island Residents," Health Physics 38.
- Mi80 Miltenberger, R.P., Greenhouse, N.A. and Lessard, E.T., 1980, "Whole Body Counting Results from 1974 to 1979 for Bikini Islands Residents," Health Physics 38.
- Mi81 Miltenberger, R.P., Lessard, E.T., and Greenhouse, N.A., 1981, "60 Co and 137 Cs Long Term Biological Removal Rate Constants for the Marshallese Population," Health Physics 39.
- Na80 Naidu, J., Greenhouse, N. and Knight, J., 1980, "Marshall Islands: A Study of Diet and Living Patterns," Brookhaven National Laboratory,

 Associated Universities, Inc., BNL
- Sh57 Sharp, R. and Chapman, W., 1957, "Exposure of Marshall Islanders and American Military Personnel to Fallout," Naval Medical Research Institute, WT-938.
- United States Public Health Service, 1959, "Report of Public Health Service Off-Site Radiological Monitoring Data, Operation Hardtack Phase I

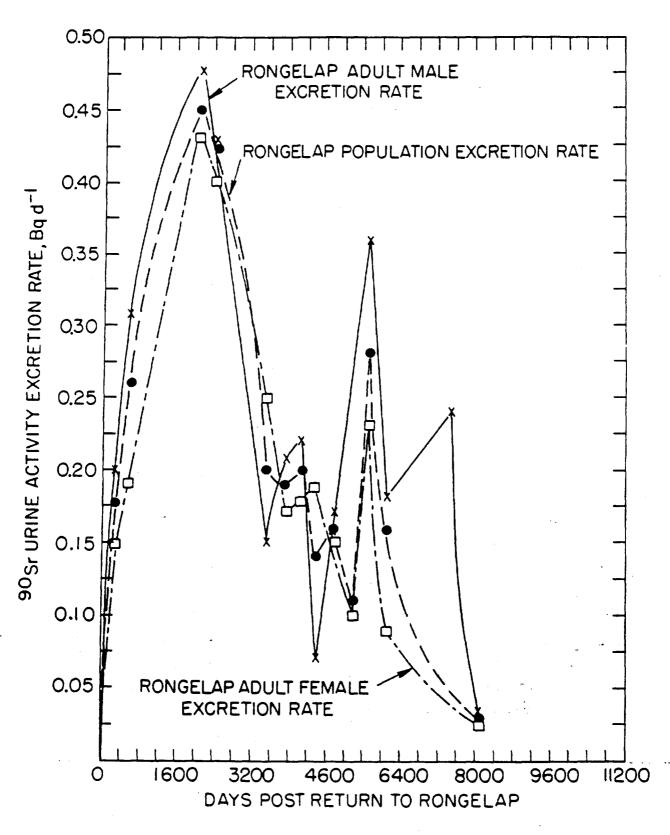


Fig. 5 Mean Adult 90 Sr Urine Activity Excretion Rate at Rongelap Atoll

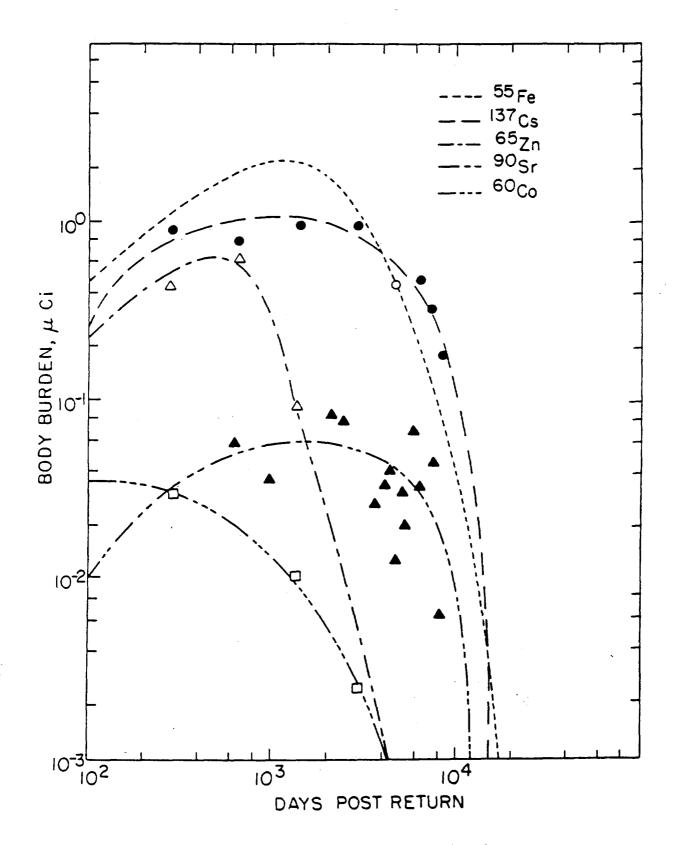
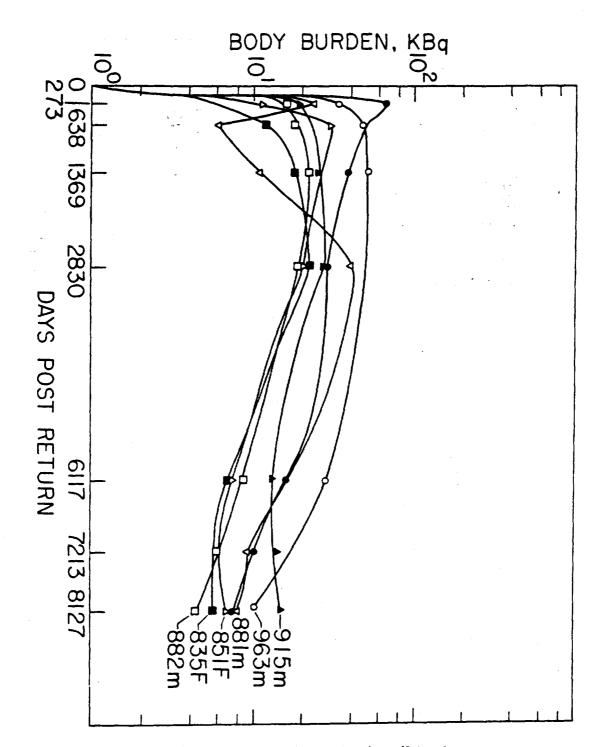



Fig. 7 Composite Nuclide Body Burden History for Adults at Rongelap Atoll

9 Individual Male and Female Body Burden Histories Randomly Chosen from the Rongelap Atoll Population

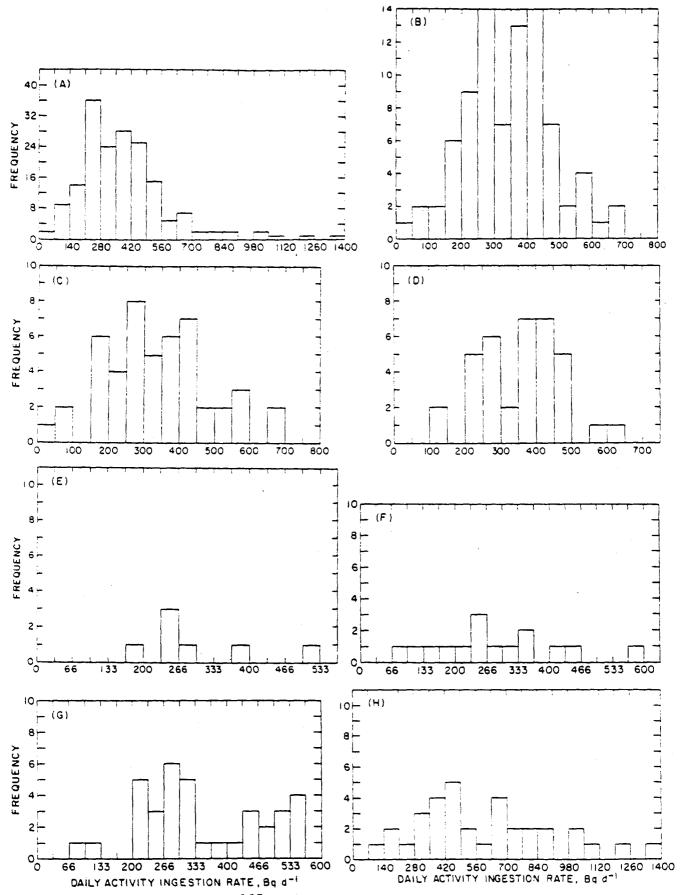


Fig. 11 137 Cs Daily Activity Ingestion Rate for (A) All Residents (B) Adults (C) Adult Males (D) Adult Females (E) Young Adults (F) Adolescents (G) Children and (H) Infants

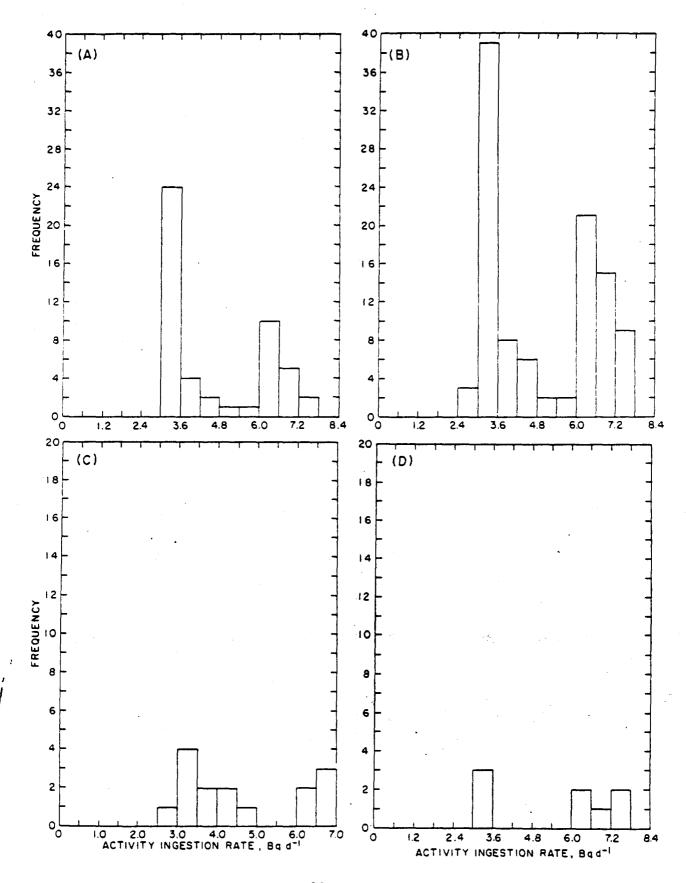


Fig. 13a 90 Sr Daily Activity Ingestion Rate for (A Adults (B) All Residents (C) Infants and (D) Adolescents on Rongelan

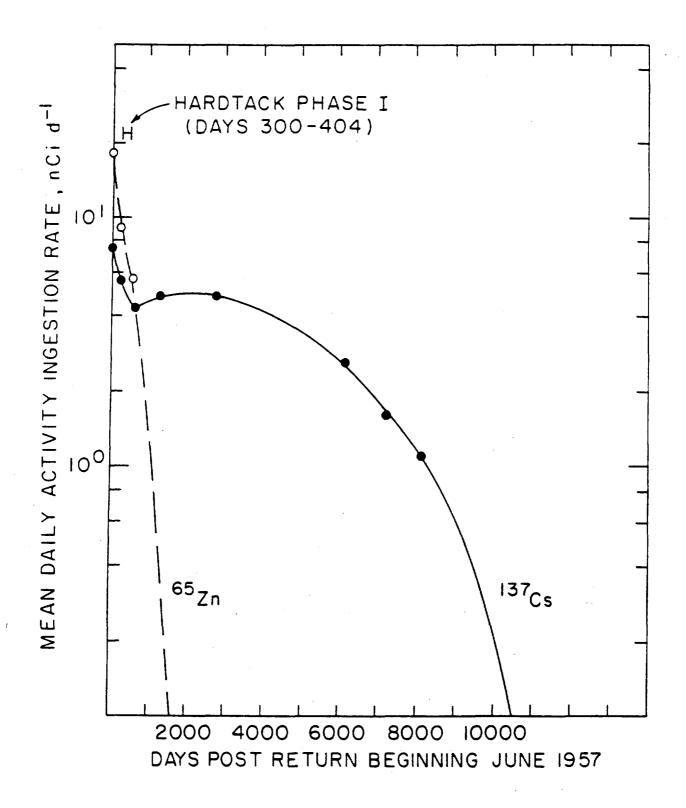


Fig. 14 Adult Mean Daily Activity Ingestion Rate for 137 Cs and 65 Zn at Rongelap Referenced to Mid-1957

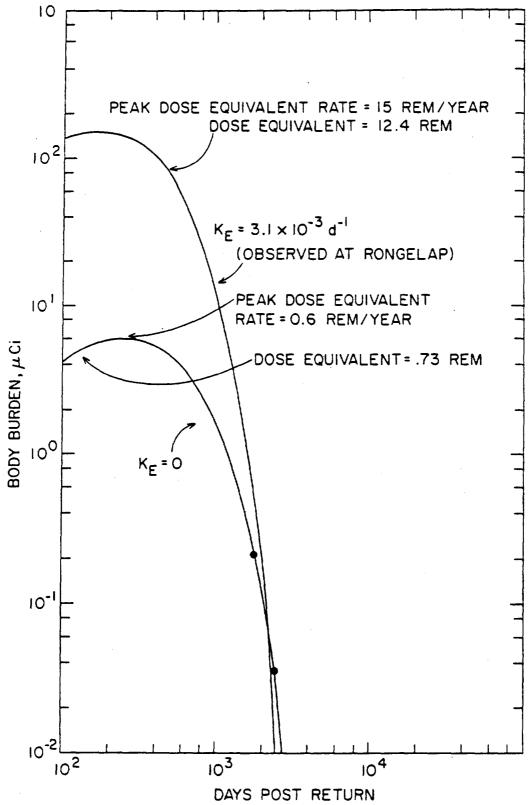


Fig. 16 Mean Adult ⁶⁵Zn Body Burden, Peak
Dose Equivalent Rate and Dose
Equivalent for Utirik Atoll

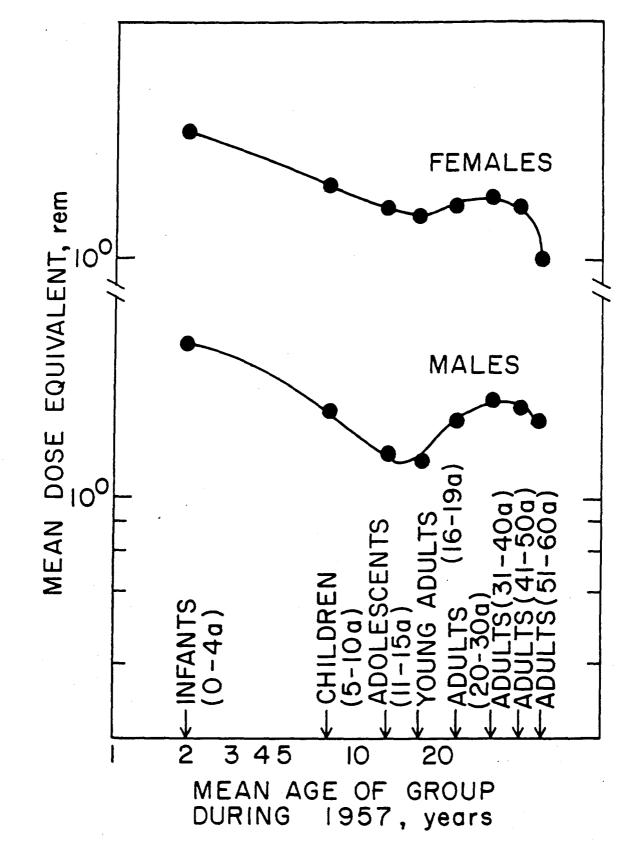
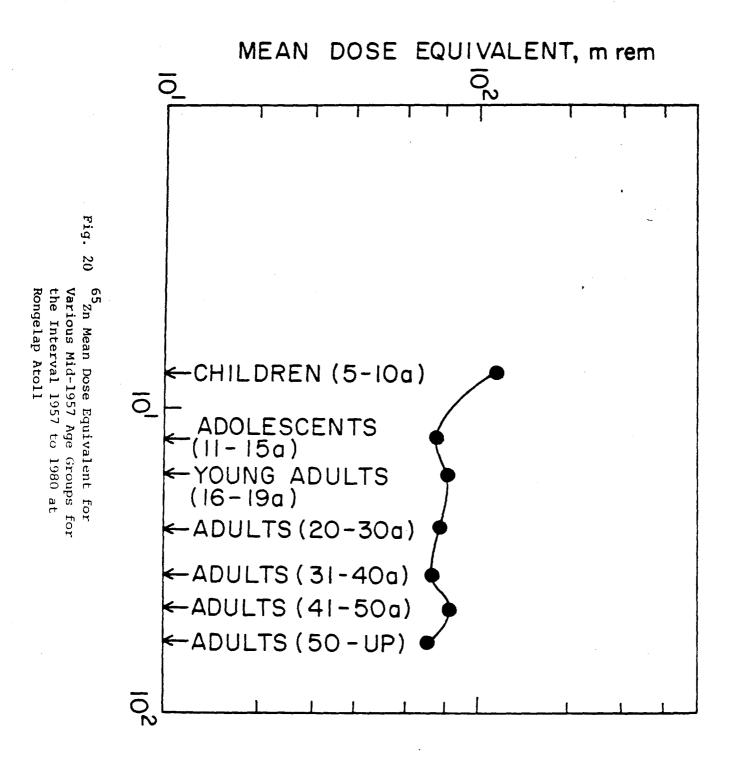



Fig. 18 137 Cs Mean Dose Equivalent for Various Mid-1957 Age Groups for the Interval 1957 to 1980 at Rongelap Atoll

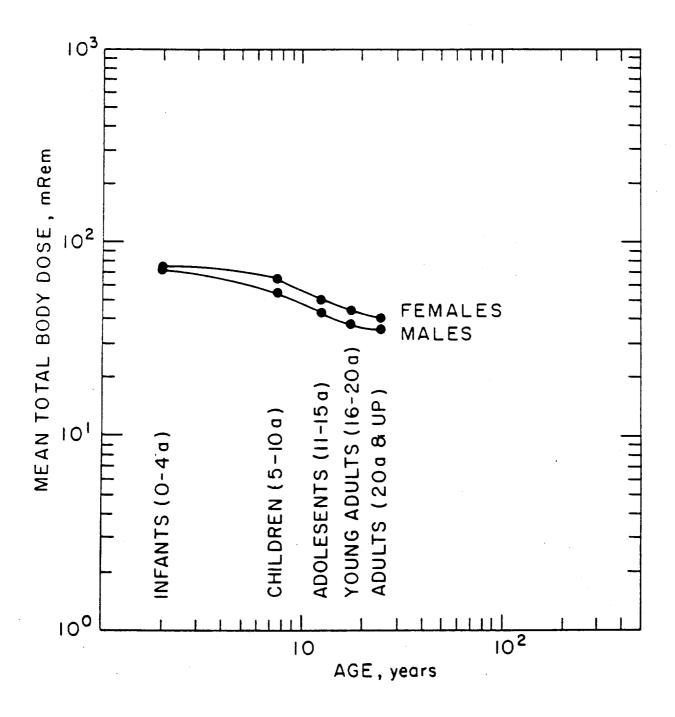


Fig. 22 Age and Sex Group

Mean Values for 90Sr

Dose Equivalent for the

Interval 1957 to 1980 at

Rongelap Atoll

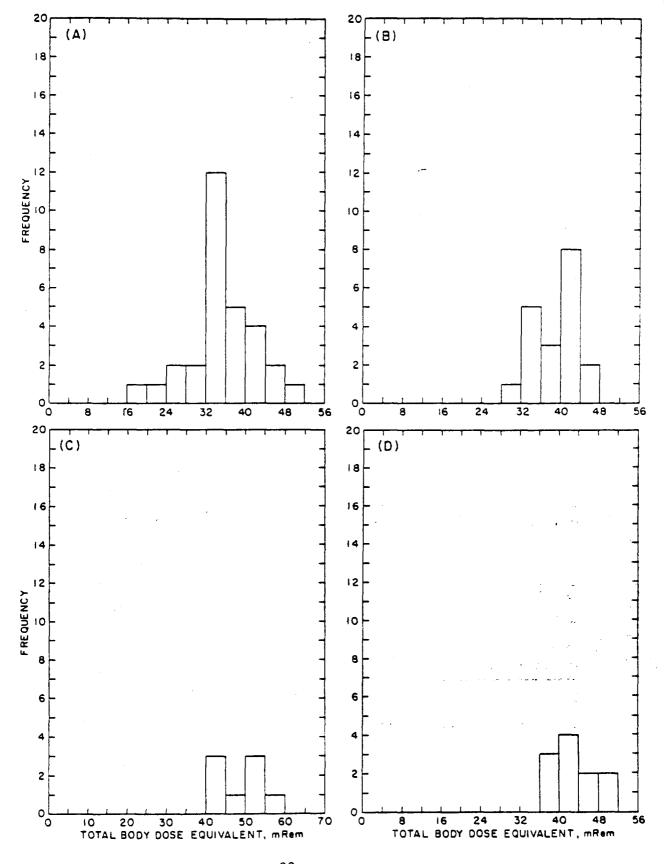
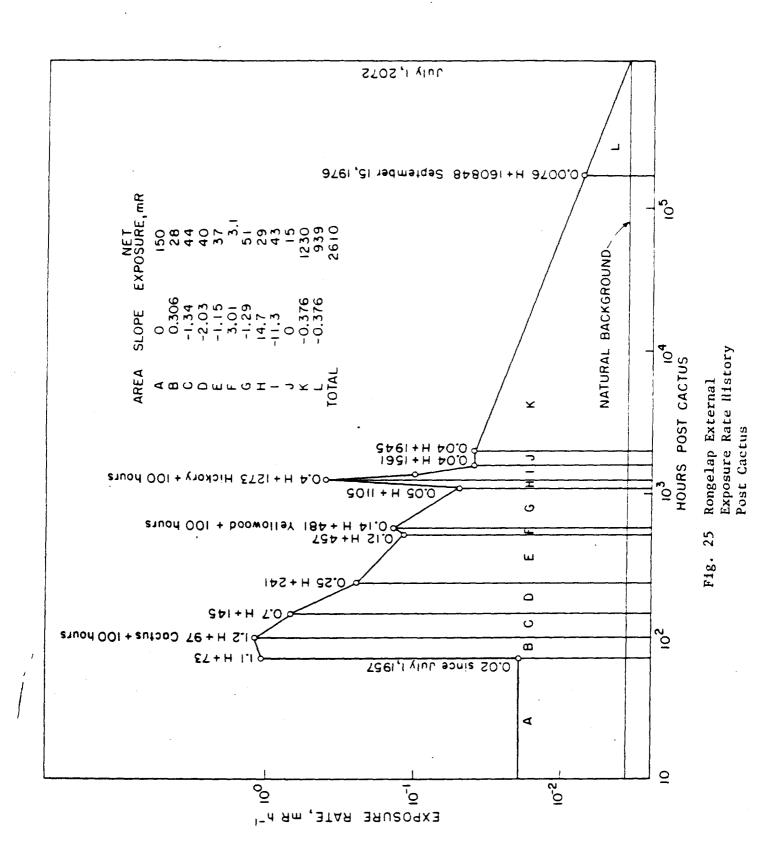



Fig. 23b 90 Dose Equivalent for (A) Adult Males (B) Adult Females (C) Adolescents and (D) Young Adults

