J. 0. Pflaum

-?-

The following table summarizes some selected fatality rates and risks.

Activity

Fatality Rate*

Risk

All industries (1976)

14

1.4 x 1074

Construction (1976)

57

5.7 x 107

At work (1980)

State of Nevada

4.9

DOE & Contractors

(1978-82 average)

4.9 x 10

|

5.6

5.6 x 10

_5

5

NTS (1965-1981 average)

27

2.7 x 107"

Enewetak cleanup

70

7.0 x 1074

*Par 100,000 worker-years.
é

Because of the great variability in the data, and the requirement to

interpolate and extrapolate, it is essential that a careful uncertainty,

apalysis be made by EPA.

This analysis is necé

y

to ensure confidence that

the risk of cleanup does not exceed thegrisk from leaving the contamination
undisturbed; which may be as low as 10 or lower.
2,

Imaginary Versus Real Deaths!

The models used to assess the health effects (i.e. radiation-induced
cancer fatalities) on the Enewetak people during the planning phase estimated
< 3 health effects (cancer deaths) over 30 years with no cleanup and no
restrictions on island or food usage.
An analysis of the total radiation dose to the returning people of Enewetak
after the cleanup leads to the conclusion that there mignt be an additional

0.926 deaths in 30 years from cancer caused by radiation.

This is compared to

the two persons who died in course of the three-year cleanup.

The uncertainty which is inherent in cancer-risk estimates is graphically

illustrated in Table V-4, page 147 in the 1980 BEIR report in which the

expected number from continuous exposure of one rad per year to a population
of 1,000,009 ranges from zero to 568,
The risk estimates of cancer deaths as required by the proposed EPA standard
(maximizing risk estimates} give hypothetical, or imaginary deaths as compared
to the real deaths which do occur in construction projects. The fact is that
no increase in cancer rate has been, nor can be, identified at the dose levels
comparable to background radiation levels.

Select target paragraph3