The physical properties of iodine-123 are such that it has been
considered an ideal radionuclide for thyroid diagnostic use (17-18).
Similarities to technetium-99m in decay characteristics plus the biological
behavior of todine indicate that it should be superior to technetium.

The

only drawback has been lack of availability due to limited production
capabilities of most cyclotrons.

Hopefully this limitation can be overcome

in the near future.
PHYSICAL ASPECTS

The decay characteristics of technetium-99m and iodine-123 are rather
similar.

Both possess principal gamma photons of intermediate energy and

minimal amounts of beta-type emission.
gamma photon in 1.3% abundance.

Iodine-123 also possesses a 530 kev

This is insufficient to cause any problems

in imaging or quantitative studies.

Both nuclides can be efficiently used

with the gamma camera and low energy collimators.
The principal gamma energy of fLodine-123 (159 keV) is somewhat higher
than the 140 keV gamma of technetium-99m.

This results in some advantage

to the use of fodine-123 as can be seen in Figure 1.

There is a better

separation of the photopeak from the Compton scatter and the level of
scattered radiation relative to the height of the photopeak is more
| favorable for fodine-123.

|

The short physical half-life of six hours for technetium-99m is
appropriate to the studies performed with it.

It presents no problem so

far as availability is concerned because of its production by decay of

molybdenum-99.

The physical half-life of iodine-123, while nearly ideal

for the usual studies of thyroid physiology, presents problems with supply.
Shelf-life ordinarily can be no more than one day, and even this is not

possible if there is any serious contamination with longer- Lived

50017399

Select target paragraph3