beta and gamma.

The above equation permits estimating the long term

ganma activity, provided there are one-hour dose rate measurements at
.

the locations of interest.

If.

RESULTS
The first step in the analysis was to compare the dose-rate

estimates developed as prescribed above with recent surveys performed
for the Enewetak atol].

This comparison would indicate the magnitude

of the difference due to neglecting the migration of the isotopes into
the soil and plant uptake.

Figure 1 is a map of the Enewetak atol)

showing the location of 3 islands chosen for the comparison--Alice,
Janet, and Yvonne.

Table 1 lists the measured dose rate from the 1953-58

operations for these three islands as well as the 1972 estimates for

the cst3? component.
The 1972 survey (reported in NVOO-149) provides average exposure
rates separately for cst3? and Co®?,

(This latter isotope is not a

fission product but results from weapon debris activation).

In addition,

average profiles are provided of cs 43? concentration (pCi/g) versus

soii_ depth for Alice and Janet. It is important to note that there
evidently have been no cleanup activities (which would invalidate the
comparisons discussed here) on Alice and Janet.

Yvonne is a different

the testing period.

Large variations in exposure rates occur on Yvonne;

thus, mean levels are misleading.

For this reason, Yvonne wil] be dropped

from the comparison.

Table 2 provides the Cs 137 survey data for Alice and Janet.
The dose rates can be compared directly with the estimates of Table 1.
As expected, the estimates are high since among other reasons it was

assumed that the activity was al) on the surface.

The soil profiles

of activity concentration versus depth can be used to develop a pseudo
dose rate by relocating the activity back to the surface.
of this value with the estimate is useful

gummy

(800841

A comparison

in that the difference is

Sere *

Situation because of construction and earth moving activities during

Select target paragraph3