Jj. J. KORANDA 2 Laboratory of Radiation Biology, supplied the algae samples. delta YC , ita pos com Bisdlea rips may rbonatey mments, the loose ts which Sanildefonso Is. * tritium sore carbon ugh the Halimeda opuntia, Igurin Is. indicate, Coulerpa serrulata, tlevated, Igurin Is. C source * enriched and the ‘alue less sas suspected and since the rainwater tritium aental water tritium base line, the sample was cectrolytically enriched 100-fold. This analysis velded a value of 27 + 3 Tritium Units. Soil ad plant loose-water tridum contents may for the include rld’s at. ss. Fer- erefore be compared with this base value. In summary, the results of this preliminary vey of detonation environments in the Pacific Proving Grounds indicate that residual suum and Care present in relatively high --xcentrations in soil materials of the detonation wc up to 12 yr after the event. Exchange of 2 surface der cent alifornia Che low age, but may be ‘erefore, .bound tritium with the available soil water nyplace ig in the in the ie data, physio- absorb ‘oots, oF nediate 's in the d) was ye alva iples of end of ent and a. Dr. rington om values, ugh the 2523 wel will theoretically represent the environ- SHI and ‘aulow'nia Mm entry 3244 The Eniwetok Island rainwater sample col‘ected in August 1964 is listed in Table 5 as ontaining 86 + 3 Tritium Units. This value *xpected itter are 1430 + 26 ics place at a slow butsignificant rate, and vum is detectable in plants growing in the stonation environments. Carbon-14 is also cevated in the terrestrial plants. The basis for eclevated #C is not implicit in these prelimisuy data. Tritium and !C are also present in ‘evated concentrations in marine organisms. + wever, because of the high rate of exchange of :¢ lagoon waters with the open sea, these “evated concentrations are highly localized in 2e vicinity of the detonation site (Mike Crater rea). 1457 REFERENCES I. J. B. Knox, Lawerence Radiation Laboratory, UCID- $741 (1964). 2. H. St. Joun, Pacif. Sci. 14, 313 (1960). 3 . F. C. Raney, Movement and distribution of tritiated water in plants, Thesis, University of California (1962). 4. International Atomic Energy Agency, List No. 4, 1¥P/17/4 (1964). 5. H. Lretu, J. Geophys. Res. 68, 3887 (1963). 6. J. F. Cure, Pl. Physiol. 28, 717 (1953). 7, T. Raney and Y. Vaaptia, University of California, Davis, AD-410263. p. 203 (1963). 8. QO. BroputpH and R. Cory, Pl. Physiol. 32, 608 (1957). 9. F. W. Woops and D. O’Negat, Science 147, 148 (1965). 10. D. C. Lewis and R. H. Burey, J. Geophys. Res. 69, 2579 (1964). Il. R. M. Brown, Atomic Energy of Canada Limited, AECL-2107, p. 11 (1964). ~ K. Raxkama and T. G. Sanawa, Geovtoiter, po 413. University of Chicago Press (1950). 13. B. L. Scumarz and W. S. Keys, Idaho Operations Office, USAEC, IDO-12026 (1962). 14. D. W. Ruopes and M. W. Wipine, Progress Report, February and March, 1962. Phillips Petro- leum Co. (1962). 15. C. E. Apams, N. H. Farrow and W. R. Scuett, U.S. Naval Radiological Defense Laboratory, USNRDL-TR-209; Geochim. Cosmochim. Acta 18, 42 (1960). 16. R. M. Kenapy,Jr., The soils of Rongelap Atoll, Marshall Islands, Thesis, University of Washing- ton, UWFL-67 (1962) and T/D-21432 (1962). 17. D. I. Buumenstock and D. F. Rex, Atoll Res. Bull. No. 71, 6 (1960). 18. W.S. von Arx, U.S. Geological Survey Professional Paper 260-B. Government Printing Office, Washington, D.C. (1954). 19, D. M. Skaven, New York Operations Office, USAEC, NYO-3039-1 (1964). 20. K. Kicosut and K. Enno, Bull. Chem. Soc. Japan 34, 1738 (1961). 21. G. J. Fercusson, J. Geophys. Res. 68, 3933 (1963). Yo