Jj. J. KORANDA

2

Laboratory of Radiation Biology, supplied the
algae samples.
delta YC
,
ita
pos
com
Bisdlea

rips may

rbonatey
mments,
the loose

ts which

Sanildefonso Is.

* tritium
sore carbon
ugh the

Halimeda opuntia,
Igurin Is.

indicate,

Coulerpa serrulata,

tlevated,

Igurin Is.

C source
* enriched
and the
‘alue less

sas suspected and since the rainwater tritium

aental water tritium base line, the sample was
cectrolytically enriched 100-fold. This analysis
velded a value of 27 + 3 Tritium Units. Soil
ad plant loose-water tridum contents may

for the
include
rld’s at.
ss. Fer-

erefore be compared with this base value.

In summary, the results of this preliminary
vey of detonation environments in the
Pacific Proving Grounds indicate that residual
suum and Care present in relatively high
--xcentrations in soil materials of the detonation
wc up to 12 yr after the event. Exchange of

2 surface

der cent
alifornia
Che low
age, but
may be

‘erefore,

.bound tritium with the available soil water

nyplace
ig in the

in the
ie data,
physio-

absorb
‘oots, oF
nediate

's in the
d) was

ye alva
iples of
end of
ent and
a. Dr.

rington

om

values,

ugh the

2523

wel will theoretically represent the environ-

SHI and
‘aulow'nia

Mm entry

3244

The Eniwetok Island rainwater sample col‘ected in August 1964 is listed in Table 5 as
ontaining 86 + 3 Tritium Units. This value

*xpected

itter are

1430 + 26

ics place at a slow butsignificant rate, and
vum is detectable in plants growing in the
stonation environments. Carbon-14 is also
cevated in the terrestrial plants. The basis for
eclevated #C is not implicit in these prelimisuy data. Tritium and !C are also present in
‘evated concentrations in marine organisms.

+ wever, because of the high rate of exchange of

:¢ lagoon waters with the open sea, these
“evated concentrations are highly localized in
2e vicinity of the detonation site (Mike Crater
rea).

1457
REFERENCES

I. J. B. Knox, Lawerence Radiation Laboratory, UCID-

$741 (1964).

2. H. St. Joun, Pacif. Sci. 14, 313 (1960).
3 . F. C. Raney, Movement and distribution of tritiated water in plants, Thesis, University of
California (1962).

4. International Atomic Energy Agency, List No. 4,

1¥P/17/4 (1964).

5. H. Lretu, J. Geophys. Res. 68, 3887 (1963).
6. J. F. Cure, Pl. Physiol. 28, 717 (1953).

7, T. Raney and Y. Vaaptia, University of California,

Davis, AD-410263. p. 203 (1963).

8. QO. BroputpH and R. Cory, Pl. Physiol. 32, 608

(1957).

9. F. W. Woops and D. O’Negat, Science 147, 148

(1965).
10. D. C. Lewis and R. H. Burey, J. Geophys. Res.
69, 2579 (1964).
Il. R. M. Brown, Atomic Energy of Canada Limited,
AECL-2107, p. 11 (1964).
~ K. Raxkama and T. G. Sanawa, Geovtoiter, po
413. University of Chicago Press (1950).
13. B. L. Scumarz and W. S. Keys, Idaho Operations
Office, USAEC, IDO-12026 (1962).
14. D. W. Ruopes and M. W. Wipine, Progress
Report, February and March, 1962. Phillips Petro-

leum Co. (1962).
15. C. E. Apams, N. H. Farrow and W. R. Scuett,
U.S. Naval Radiological Defense Laboratory,

USNRDL-TR-209; Geochim. Cosmochim. Acta 18,

42 (1960).
16. R. M. Kenapy,Jr., The soils of Rongelap Atoll,

Marshall Islands, Thesis, University of Washing-

ton, UWFL-67 (1962) and T/D-21432 (1962).
17. D. I. Buumenstock and D. F. Rex, Atoll Res.
Bull. No. 71, 6 (1960).
18. W.S. von Arx, U.S. Geological Survey Professional
Paper 260-B. Government Printing Office,
Washington, D.C. (1954).

19, D. M. Skaven, New York Operations Office,
USAEC, NYO-3039-1 (1964).
20. K. Kicosut and K. Enno, Bull. Chem. Soc. Japan
34, 1738 (1961).
21. G. J. Fercusson, J. Geophys. Res. 68, 3933 (1963).

Yo

Select target paragraph3