OPERATION REDWING

Project 2.61
 Rocket Determination of Activity Distribution Within the Stabilized Cloud

Pacific Proving Grounds
May - July 1956
Headquarters Field Command
Defense Atomic Support Agency
Sandia Base, Albuquerque, New Mexico

April 28, 1960
notice
This is an extract of WT-1315, Operation REDWING, Project 2.61, which remains classified SECRET/RESTRICTED DATA as of this date.

BEST COPY AVAILABLE

Extract version prepared for:

Director

DEFENSE NUCLEAR AGENCY
Washington, D.C. 20305
15 May 1981

Approved for public release; distribution unlimited.

This report has had classified material removed in order to make the information available on an unclassified, open publication basis, to any interested parties. This effort to declassify this report has been accomplished specifically to support the Department of Defense Nuclear Test Personnel Review (NTPR) Program. The objective is to facilitate studies of the low levels of radiation received by some individuals during the atmospheric nuclear test program by making as much information as possible available to all interested parties.

The material which has been deleted is all currently classified as Restricted Data or Formerly Restricted Data under the provision of the Atomic Energy Act of 1954, (as amended) or is National Security Information.

This report has been reproduced directly from available copies of the original material. The locations from which material has been deleted is generally obvious by the spacings and "holes" in the text. Thus the context of the material deleted is identified to assist the reader in the determination of whether the deleted information is germane to his study.

It is the belief of the individuals who have participated in preparing this report by deleting the classified material and of the Defense Nuclear Agency that the report accurately portrays the contents of the original and that the deleted material is of little or no significance to studies into the amounts or types of radiation received by any individuals during the atmospheric nuclear test program.

FOREWORD

Thus report presents the final results of one of the projects participating in the military-effect programs of Operation Redwing. Overall information about this and the other military-effect projects can be obtained from WT-1344, the "Summary Report of the Commander, Task Unit 3." This technical summary includes: (1) tables listing each detonation with its yield, type, environment, meteorological conditions, etc.; (2) maps showing shot locations; (3) discussions of results by programs; (4) summaries of objectives, procedures, results, etc., for all projects; and (5) a listing of project reports for the military-effect programs.

ABSTRACT

Forty especially developed atmospheric-sounding projectiles (ASP) were fired through the clouds resulting from Shots Cherokee, Zuni, Navajo, and Tewa to proof test a system for measuring gamma intensities within the clouds and to explore the spatial distribution of gamma activity within the stem and cloud resulting from the detonation of a nuclear device having a yield in the megaton range. Radiation intensity information was successfully telemetered out of the radioactive clouds by the ASP rockets and recorded on magnetic tape. Radiation intensities as high as 3 by $10^{4} \mathrm{r} / \mathrm{hr}$ were encountered within the cloud; intensities at the one measured point in the stem were negligible compared to the peak activity within the cloud. Contamination of rocket surfaces by radioactivity from the cloud did not appear to be of consequence. Total activities in the clouds computed from rocket data agreed in order of magnitude with activities derived from theoretical considerations.

PREFACE

This project was undertaken as a joint effort by members of the U.S. Naval Radiological Defense Laboratury (USNRDL) and Cooper Developmeat Corporation of Monrovia, California. The responsibilities of Cooper Development Corporation were defined in Bureau of Ships Contract, No. NObs 72000. These included responsibilities for the design, deveiopmen', and testing of the rockets used in the project, firing of the rockets in the field, recording of data from rockets fired in the field, and reduction of data. NRDL furnished field personnel, includirig a project officer, and was responsible for interpreting the redured data as presented by the contractor.

The project officer extends his thanks and appreciation to those individuals and groups who thr jugh their cooperation and assistance contributed materially to the successful completion of the project. Their specific contributions are cited as follows: H.R. Wasson of USNRDL, who offered technical advice and assistance in the design and testing of the radiation transducer; Lieutenant (Jg) M.H. Eklund of USNRDL, who prepared the gencral specifications for the radiation transducer, offered technical advice and performed the field calibration of the instruments; Captain and crew of the USS Knudson, APD-101, who assisted in the installation and operation of the shipboard telemetering receiving station; and Commanding Officer and men of Detachment A, Mobile Construction Battalion 5, who assisted in the installation of the rocket launching station and the Site Nan receiving station and performed the technical survey work.

CONTENTS

FOREWORD 4
ABSTRACT 5
PREFACE 6
CHAPTER 1 INTRODUCTION 11
1.1 Objectives 11
1.2 Background and Theory 11
CHAPTER 2 PROCEDURE 13
2.1 Participation 13
2.2 Instrumentation 13
2.2.1 Rockets 13
2.2.2 Radiation Transducers 15
2.2.3 Launching Site- 18
2.2.4 Recelving Stations 18
2.3 Data Requirements 21
CHAPTER 3 RESULTS 22
3.1 General Performance of the System 22
3.2 Telemetered Information 22
CHAPTER 4 DISCUSSION 28
4.1 General Operation of the System 28
4.2 Activity in the Cloud 28
4.3 Contamination of the Rocket 35
CHAPTER 5 SLMMARY 36
5.1 Con=lusions 36
5.2 Recommendations 36
REFERENCES 37
APPENDIX 38
FIGURES
2.1 Cut-away view of atmospheric sounding projectile (ASP) 14
2.2 One set of rockets and their launchers 14
2.3 Trajectories of ASP rockets 16
2.4 Radiation transducer schematic 17
2.5 Energy and direction response of ASP radiation transducer 19
2.6 ASP radiation transducer energy dependence for uniformly Histributed source 19
2.7 Location of Project 2.61 activities 20
3.1 Typical roentgen information versus time plot for Shot Cherokee, Round 2A 26
3.2 Typical roentgen information versus time plot for Shot Cherokee, Round 4A 26
4.1 Concentration of gamma emitters to produce $1 \mathrm{r} / \mathrm{hr}$ field in an infinite voiume of air 30
4.2 Activity distribution in the plane of rocket trajectories 7 minutes after Shot Cherokee 31
4.3 Activity distribution in the plane of rocket trajectories 15 minutes after Shot Cherokee 31
4.4 Activity distribution in the plane of rocket trajectories 7 minutes after Shot Zuni- 32
4.5 Activity distribution in the plane of rocket trajectories 15 minutes after Shot Zuni 32
4.6 Activity distribution in the plane of rocket trajectories 15 minutes after Snot Navajo 33
4.7 Reproducibility of similar rounds fired 15 minutes after Shot Navajo 33
4.8 Comparison of similiz trajectorics during Shots Cherokee and Tewa- 34
TABLES
1.1 Theoretical Estimates of Cloud Activity 12
2.1 Kange and Bearings of Shot Points from Receiving Stations and Launching Revetment 18
3.1 Summary of Launch Conditions for Shot Cherokee 23
3.2 Summary of Launch Conditions fer Shot Zuni 23
3.3 Summary of Launch Conditions fur Shot Navajo 23
3.4 Summary of Launch Conditions for Shot Tewa 23
3.5 Summary of Laformation Telemetered from Various Rockets during Shot Cherokee 24
3.6 Summary of Information Telemetered from Various Rockets during Shot Zuni- 24
3.7 Summary of Information Telemetered from Various Rockets during Shot Navajo 25
3.8 Summary of Information Telemetered from Various Rockets during Shot Tewa 25
3.9 Rocket Contamination from Various Shots - 25
4.1 Comparison of Theoretical and Experimental Estimates of Cloud Activity 29
A. 1 Shot Cherokee, Round 2A 39
A. 2 Shot Cherokee, Round 3A 40
A. 3 Shot Cherokee, Round 4 A 41
A. 4 Shöt Cherokee, Round 5A 41
A. 5 Shot Cherokee, Round 6A 42
A. 6 Shot Cherukee, Round 2B 42
A. 7 Shot Cherokee, Round 4B 43
A. 8 Shot Cherokee, Round 6B 43
A. 9 Shot Zuni, Round 3A- 44
A. 10 Shot Zuni, Round 4A 45
A. 11 Shot Zuni, Round 5A 46
A. 12 Shot Zuni, Round 2B 47
A. 13 Shot Zuni, Round 3B 48
A. 14 Shot Zuni, Round $4 B$ 49
A. 15 Shot Navajo Rounds 1A and 2A 49
A. 16 Shot Navajo, Round 1B 50
A. 17 Shot Navajo, Round 2B 51
A. 18 Shot Navajo, Round 5B 51
A. 19 Shot Navajo, Round 6B 52
A. 20 Shot Tewa, Round 3 52

Chopter /
 INTRODUCTION

1.1 OBJECTIVES

The specific objectives of Project 2.61 were to: (1) proof test a system using rocket-borne detection units with telemetering transmitters to explore the spatial distribution of radioactivity in the stem and cloud resulting from a nuclear detonation; (2) measure gamma intensities along several continuous known trajectories passing through tie stem and cloud at 7 and 15 minutes after detonation; and (3) estimate the extent to which the rocket became contaminated as it passed through the stem or cloud.

1.2 BACKGROUND AND THEORY

Although various mathematical models for the fallout process have been presented (Reference 1), gross differences exist among the assumptions as to spatial distribution of radioactive emit ters in the cloud and stem. Determination of the distribution which actually exists is essential to the development of correct model and the eventual realistic predictions of fallout patterns. Without such knowledge there would be continuing uncertainties as to the spatial positions of active particles prior to fall, resulting in unreliable predictions of the spread and extent of activity. Besides being essential to the development of fallout theory, a knowledge of the distribution of radioactivity in the cloud and stem at early times may be important for interception, countermeasures, and long-range-detection studies.

Construction of an effective fallout model requires knowledge of the size, activity, and spatial distribution of radioactive particles in the stem and cloud. Of these parameters, particle size distribution and related activity were determined from particles collected as fallout at the surface of the earth by Projects 2.63 and 2.65 . If, in addition, measurements of gamma intensities in the stem and cloud are made, gross distribution of active particles in the stem and cloud may be inferred. Restrictions due to time and equipment available before the speration precluded measurement by this project of any parametter except gamma activity as a function of time and position.

Measurements of radiation fields existing in clouds resulting from detonations of devices in the kiloton range have been made previously. The first measurement of cloud-radiation fields was made during Operation Greenhouse by the use of drone aircraft. These measurements were made in the stems of clouds resulting from explosions whose yields ranged from Fields of awout $10^{4} \mathrm{r} / \mathrm{hr}$ were observed at 3 to 5 minutes after detonation and of about $350 \mathrm{r} / \mathrm{hr}$ at 30 minutes after detonation (Reference 2). During Operation Upshot-Knothole, cannisters and drone aircraft operated in the mushroom tops resulting from 11 to 26 kt explosions. Fields of about $10^{4} \mathrm{r} / \mathrm{hr}$ existed at 2 to 6 minutes after detonation (Reference 3).

During Operation Redwing, aircraft were flown through the stem and lower portion of six clouds resulting from detonations in the megaton range. Reference 4 gives as the average dose rates encountered when corrected to 100 percent-fission yield:

$$
\begin{equation*}
\bar{D}=1.0 \times 10^{5} i^{-1.2} \tag{1.1}
\end{equation*}
$$

Where: $D=$ average dose rate, $r / h r$
$t=$ time after detonation, minutes
This equation yields $3,700 \mathrm{r} / \mathrm{hr}$ and $1,000 \mathrm{r} / \mathrm{hr}$ as the average dose rate to be expected at 7 min utes and 15 minutes from a 100 percent-fission yield device. A vehicle, capable of carrying a radiation detector and telemetering equipment to at least the top of the highest cloud expected, was required to explore the spatial distribution of gamma activity in clouds resulting from multimegaton detonations. It was desirable that the vehicle be able to pass well out of the top or side of the cloud, so that an indication of the contamination of the vehicle could be obtained. Because of the altitudes involved and turbulent conditions existing at early times, manned or unmanned aircraft could not be used to measure activity within the higher regions of the cloud resulting from a megaton range device. The above, along with considerations of expense and logistic problems, indicated that a single-stage, rocket-propelled ballistic missile would serve best to carry the detector and telemetering equipment.

To serve as a basis of comparison for the activity distributions as determined by the rocket flights, theoretical estimates were prepared of the number of photons per second present at 7

TABLE 1.1 THEORETICAL ESTIMATES OF CLOUD ACTIVITY

Time	Contributor	Activity, photons/sec		
		Cherokee	Zuni	Navajo
min				
7	FP	29.3×10^{22}	7.69×10^{22}	3.69×10^{22}
	U^{238}	4.7×10^{22}	1.07×10^{22}	0.13×10^{22}
15	FP	14.8×10^{22}	3.92×10^{22}	1.89×10^{22}
	L^{-239}	3.7×10^{32}	0.84×10^{22}	0.12×10^{22}

and 15 minutes after detonation (times at which the rocket measurements were made). The contribution to the total activity of the device components only was considered. The fission product activity, based on the slow neutron fission of U^{235}, at 7 and 15 minutes was found to be
respectively (Reference 5). At these early times, the induced activity contribution of U^{239} was considered. Other induced activities with gamma energies in the range that can be measured by the rocket transducer could possibly add around 5 percent to the activities tabulated in Table 1.1 depending upon materials used in the construction of the device and nearby structures. The other induced nuclides of $\mathrm{Np}^{239}, \mathrm{U}^{240}, \mathrm{~Np}{ }^{260}$ and U^{237} represented less than 1 percent of the activity due to the fission products. For capture-to-fission ratio of 1.0 , the calculated activities of U^{239} at 7 and 15 minutes were $4.0 \mathrm{~d} / \mathrm{s} / 10^{4}$ fissions and $3.2 \mathrm{~d} / \mathrm{s} / 10^{4}$ fissions, respectively. Applying directly the capture-to-fission ratios $0.500,0.427$ and 0.125 as determined from actual samples obtained during Shots Cherokee, Zuni, and Navajo, the contribution of U^{239} to the total activity for the various events was then determined. The use of theoretical estimates (personal communication from C. F. Miller and N.E. Ballou, USNRDL) for the number of photons per disintegration for the fission products, 1.19 , and $\mathrm{U}^{238}, 0.83$, and the number of fissions per kiloton of fission yield, 1.45×10^{23}, together with the $d / 8 / 10^{4}$ fissions values for the fission products and U^{233} then yielded the activity per event in photons/second at specified times. The data obtained are presented in Table 1.1.

Chopter 2
 PROCEDURE

2.1 PARTICIPATION

The project participated in Shots Cherokee, Zuni, and Navajo (air, land and water detonations, respectively) and to a limited extent in Shot Tewa (a surface detonation over shallow water). The original intent of the project was to participate in Shots Cherokee, Zuni, and Navajo only. However, since there were four rockets (spare units) remalining at the conclusion of the Navajo event, the decision was made in the field to fire them during Shot Tewa. Forty rockets and radiation transducers with accompanying telemetering gear were used.

Thirty-six rockets were fired for Shots Cherokee, Zuni, and Navajo. Twelve rockets were fired in two salvos of six during these events. The first salvo was fired at 7 minutes and the second at 15 minutes after detonation with 2 -second intervals between rockets of each salvo. The four additional rockets were fired during Shot Tewa at 7 minutes after detonation with 10 second intervals between them. For Shots Cherokee, Zuni, Navajo (second salvo), and Tewa, the rockets of a single salvo had different trajectories in a single vertical plane. For Shot Navajo, the six rockets of the first salvo were fired at the same quadrant elevations but at different azimuthal angles. Trajectories were determined before the detonations on the basis of predicted winds. Some rockets were fired so as to pass through the cloud or stem into a radiation-free area while their signals were still being received, so that the contamination of the rocket could be estimated.

2.2 DNSTRUMENTATION

Fifty units of an especially developed rocket were produced for this operation. The radiation transducers, likewise, were especially developed. Commercial equipment served as the transmitting and receiving units.
2.2.1 Rockets. Prior to the acceptance of the proposal for this project, there was no singlestage, solid-fuel rocket that could attain an altitude of 100,000 feet when launched from sea level. Design, fabrication, and testing of the rocket was accomplished by Cooper Development Corporation, who also had the responsibility for launching the rockets and recording their data in the field. The result was a $61 / 2$-inch diameter by approximately 12 -foot-long rocket capable of attaining a maximum altitude of about 200,000 feet or a maximum range of about 230,000 feet. The radiation detector and telemetering transmitter were located in the ogive (head assembly). Figure 2.1 is a schematic drawing of the rocket.

This rocket, the atmospheric-sounding projectile (ASP), was a ground-launched ballistic missile using a solid fuel. The single-grain propellant consisted of a stabilized ammonium perchlorate oxidizer with a Thiokol base. The single-stage motor had a total impulse of 31,000 lb-sec and a burning time of 5.8 seconds. The burnout velocity of the rocket was approximately $5,400 \mathrm{ft} / \mathrm{sec}$. The prelaunch weight was 245 pounds with a burnout weight of 93 pounds.

Rockers were launched from a simple rail-type launcher employing a zero-tipoff system. Figure 2.2 shows one set of rockets on their launchers at Site How. In this zero-tipoff launching system, as a rocket moves forward, it is supported on the rail by two launching shoes. As the forward shoe leaves the front of the rail, it drops free of the rocket, and the after shoe is sheared off by a block on the launcher rail, permitting the rocket to continue to move parallel to the rail without tipoff error.

Figure 2.1 Cat-away view of aimspheric sourding rojectile (ASF).

Figure 2.2 One set cf rockets and their latnchers iconcrete pads are 100 fent long by 12 ieet wide).

The rockets were caged in position on the launchers during all events until the shock wave passed. In Figure 2.2, all rockets were caged except the one in the lower right-hand corner, on which the caging clamps stand open and are visible just above the supporting A-frame. The cages were closed with explosive bolts, whose detonation by the timer just prior to launching uncaged the rockets.

Nine rockets were expended making preoperational flight tests and obtaining trajectory information. Figure 2.3 is a plot of range versus altitude for various quadrant elevations of launching of the rockets from sea level in a standard (National Advisory Council for Aeronautics) atmosphere. Time mariss are indicated on the trajectories. Trajectories were calculated from information gathered at test firings at the Naval Air Missile Test Center, Point Mugu, California, and at White Sands Proving Grounds, New Mexico. Four rounds were fired at Point Mugu and five at White Sands. Of these, eight were fired at a quadrant elevation of $1 / 2$ radian (28.6 degrees), and one, at an elevation of $L^{1 / 2}$ radians (85.9 degrees). Rockets were tracked by phototheodolites, skin-tracking radar, and velocimeters (doppler radar). The velocimeter and phototheodolites were able to track the rockets to burnout, whereas radar tracked them to impact.

One test rocket was fired in the field in conjunction with the Shot Cherokee dry run to check out the complete system, including the Site How launching station and the Site Nan and UsS Knudson receiving stations. The USS Knudson was stationed at a point which was at the same seneral bearing and range relative to the test rocket trajectory as the planned trajectories for Shot Cherokee. Good signal strength was received at both receiving stations.
2.2.2 Radiation Transducers. The transducer (Figure 2.4), composed of the ionization chamber and the blocking oscillator circuit, was assembled as a single compact unit and mounted in the forward part of the ogive of each rocket. The ion chamber-electrometer devices were capdble of measuring gamma radiation at dose rates from at least $10,000 \mathrm{r} / \mathrm{hr}$ to less than $10 \mathrm{r} / \mathrm{nr}$ with an energy response of 0.1 to 2.0 Mev . The electrometer circuit was designed to operate in a cyclic mode to produce pulses directly proportional to the dose rate. The pulses modulated the telemetering FM transmitter (Ralph M. Parsons Company Model 7501, which supplied 2 or 3 watts to the antenna (a $7 \frac{1}{2}$-inch spike protruding from the nose of the rocket).

The ion chamber had the following characteristic 3 :

> Type of construction - Parallel-plate guard ringed
> Gas and pressure - Pure Argon, 15 atmospheres
> Collecting volume - Nominal 100 cc
> Maximum radiation rate $-10,000 \mathrm{r} / \mathrm{hr}$
> Current output - Nominal $10^{-10} \mathrm{amps} / \mathrm{r} / \mathrm{hr}$
> High voltage electrode voltage -180 volts
> Number of plates $-4 \mathrm{HV}, 3$ collecting
> Collecting-to- HV electrode capacitance -40 to $50 \mathrm{\mu mf}$
> Plate spacing -0.48 cm
> Beta response - None

The energy response of the chamber alone was not specified, as it was measured as a function of direction over the entire 4π solid angle as installed in the rocket.

The electrometer circuit was the siniple blocking oscillator shown in Figure 2.4. Its operation may be briefly traced as follows. If a pulse has just occurred, the grid of the electiometer tube is at a negative potential of 10 to 15 volts with respect to ground and completely cuts off the tube. Ionization caused by gamma radiation incident on the chamber discharges the chamber capacitance; since the ion chamber is completely saturated, the discharge is linear with respect to time. As the grid voltage rises, the tube gradually reaches a critical trigger value, at which time regeneration occurs through the chamber capacitance. Th chamber is recharged uy grid current as the pulse occurs; when the pulse falls, the grid diode action ceases and the grid resets to the negative cut-off potential. Earh pulse out represents a certain increment oi dose, so the repetition rate of the pulses is proportional to the dose rate. The nominal pulse-rate of the circuit was $0.2 \mathrm{pps} / \mathrm{r} / \mathrm{hr}$, so the upper pulse-rate at $10,000 \mathrm{r} / \mathrm{hr}$ was 2 kc and the increnien-

tal dose per pulse was nominally 1.4 mr . The upper radiation dose was determined by chamber saturation characteristics; dose rates above $10,000 \mathrm{r} / \mathrm{hr}$ may be measured with reduced accuracy by applying appropriate correction factors to the data. The lower limit is set by the vacuum tube grid current and varies some what from unit to unit.

The relative polar response of the chamber was determined by using gamma or X-rays of various energies. These data were obtained by operating chambers inside ogives (the forward

Figure 2.4 Radiation traiasducer schematic.
element of the rocket containing telemetering equipment) with associated equipment and exposing them to gamma and X-rays of various energies at different polar angles. As shown in Figure 2.5, the low energy response was relatively high along the normal to the vehicle axis. This response was considered desirable to compensate for low energy attenuation in other directions. Integration of the 1.3 Mev curve indicated that the integrated response was 85 percent of that due to a point source producing the same field but located on a line passing through the center of
the chamber and normal to the axis of the chamber. The integrated response over the 4π solid angle was relatively flat as shown in Figure 2.6. From this curve it can be seen that the response of the chamber was independent of energy within ± 10 percent from 90 to $2,000 \mathrm{kev}$.

The radiation transducers for the rocket flights showed a range of sensitivities of 0.17 to 0.39 pulse $/ \mathrm{sec} / \mathrm{r} / \mathrm{hr}$ when calibrated with a 4 -curie point source of Co^{60}. As noted above, the sensitivity was reduced by 15 percent when the transducers were operated inside the rocket ogive in a uniformly distributed radioactive field.
2.2.3 Launching Site. A launching revetment was constructed on Site How (10 to 18 miles from the shot points). The revetment consisted of two concrete launching pads, each 100 feet by 12 feet; an embankment to protect the launchers from possible water waves; and an instrument shelter.

Firing of the rockets was controlled by a sequence timer located in the instrument shelter. The timer was armed by a minus 1 -second signal provided by an Edgerton, Germeshausen and

TABLE 2.1 RANGE AND BEARINGS OF SHOT POINTS FROM RECEIVING STATIONS AND LAUNCHING REVETMENT

Shot		Cherokee *	Zuni	Navajo	Tewa
Site How Launching	Range	$92,300 \dagger$	$76,800 \dagger$	$55,600 \dagger$	$73,000 \dagger$
Revetment	Bearing	$285 \ddagger$	$232 \ddagger$	$283 \ddagger$	$283 \ddagger$
Site Nan Recesving	Range	$116,000 \dagger$	$70,800 \dagger$	$81,000 \dagger$	$97,100 \dagger$
Station	Bearing	$302 \ddagger$	$261 \ddagger$	$308 \ddagger$	$304 \ddagger$
APD 101 Receiving	Range	$105,000 \dagger$	$165,000 \dagger$	$160,000 \dagger$	$200,000 \dagger$
Station	Bearing	$330 \ddagger$	$280 \ddagger$	$315 \ddagger$	$310 \ddagger$

* Planned Ground Zero.
\dagger Range, feet.
\ddagger Bearing, degrees.
Grier ($E G \& G$) timing relay. Two blue boxes were arranged so that the timer would also start if one or both of the boxes were triggered by the bomb light. The timer started the local power generators after the blast wave had passed, (The local power generators were left running when the shelter was secured for Shot Cherokee and the shock wave stopped them; therefore, the generators were started by the sequence timer after passage of the shock wave for subsequent shots.) turned on the long-wave transmitter, started the rocket telemeters, uncaged the rockets, ignited the rocket flares, and fired the rockets. Power for all but the long-wave transmitter was supplied by batteries.

The long-wave transmitter, ${ }^{-}$a BC-610 AM transmitter operated at 2.545 Mc , was located at the launching revetment and relayed the launching times of the rockets to telemetering receiving stations.
2.2.4 Receiving Stations. Duplicate receiving stations were set up at Site Nan and aboard the USS Knudson (APD-101). Figure 2.7 shows the position of the receiving stations. Table 2.1 gives the range and bearing of the various ground zero locations from the launching revetment at Site How, the shipboard receiving station, and the Site Nan receiving station.

The two receiving stations were similar except that the one at Site Nan was unmanned at shot time and was equipped with automatic timing equipment to operate the recording devices. The basic equipment of the stations consisted of six Raymond Rosen 842-C FM telemetering receivers, a R-390/Urr AM receiver tuned to 2.545 Mc , and an Ampex Model S 3530 seven-channel tape recorder. Telemetering frequencies of $223,224,225,226,227,228$, and 239 Mc were assigned, giving six channels and one spare. The six signals from the rocket telemeters were detected and recorded on six of the channels. The launch signals from the BC-610 transmitter at the launching site were recorded on the seventh channel. In addition to the basic information

Figure 2.5 Energy and direction response of ASP radiation transducer.

Figure 2.6 ASP radiation transducer energy dependence for uniformly distributed source.
$\circ:$
-1
$\stackrel{\circ}{\stackrel{\circ}{2}}$

on radiation intensity, the strength of the carrier signal, as received at the shipboard station, was recorded on aix channels of an oscillograph.

Automatic readout equipment at the shipboard station was intended to record the six channels of information simultaneously on a logarithmic scale as a function of time. However, the equipment falled prior to the first event, probably due to overheating of components. Repair in the field was impossible since the components were imbedded in potting compound.

2.3 DATA REQUIREMENTS

Data required to meet the objectives of the project consisted of general observations upon the working of the system and radiation intensity measurements as a function of rocket position. Supplementary data were also obtained on telemetering transmitter carrier field strength. The latter data were used as an aid in interpreting the primary data. Radiation intensity information was recorded on magnetic tape, while carrier field strength was recorded on oscillograph paper.

Magnetic tapes containing the primary information were processed by Cooper Development Corporation at Monrovia, California. Simultaneous readout of six channels of information on the magnetic tapes was accomplished utilizing a six-channel discriminator capable of sorting out data in the presence of a high noise background. With the information thus obtained together with fleld strength records from the shipboard station, the rocket transmitters were identified with specific channels at a given time. The reduced data were presented in the form of radiationintensity readings as a function of time after launching.

Chapter 3
 RESULTS

3.1 GENERAL PERFORMANCE OF THE SYSTEM

During Shot Cherokee all rockets fired and good (data, pulses could be heard well with no noise background) signal strength was received on all channels. The blast wave stopped two generators at the launching station, causing loss of the rocket-launch signals. However, data from later firings provided sufficient information for computing the launch times. In spite of relatively high radiation fields ($3 \times 10^{4} \mathrm{r} / \mathrm{hr}$) no serious attenuation of the telemetering signal was noted. There were no aata on channels corresponding with rockets shot at the stem. It is probable that these projectiles missed the stem.

All rockets fired during Shot Zuni, and good signal strength was received on all channels. Radiation fields that were measured were lower than those encountered during Shot Cherokee. Channels corresponding to rockets almed at the lowest elevations had no data on the carriers.

All Shot Navajo rockets fired, and good signal strength was received on 10 of the 12 channels. Radiation fields measured were lower than those previously encountered. Channels corresponding to rockets aimed at the stem indicated low activity there.

Four spare rockets were instrumented and prepared for launching during Shot Tewa. All fired, and good signal strength was received on three of the four channels. One transmitter failed shortly (about 5 seconds) after takeoff, and one transmitter was considerably off frequency. Accelerometers were used on two of the rockets. Useful radiological intensity information was received from only rocket (Round 3).

In all events, instability in the transmitter-receiver portion of the telemetering system caused receivers to pick up rocket transmitters other than those assigned; also, there were cases of receivers changing from one rocket transmitter to another during a particular salvo.

3.2 TELEMETERED INFORMATION

Tables 3.1, 3.2, 3.3, and 3.4 summarize launch conditions for Shots Cherokee, Zuni, Navajo, and Tewa. The column headed Azimuth gives the azimuthal settings of the launchers with respect to ground zero stations.

Figures 3.1 and 3.2 give roentgen intensity versus time information that is typical of the various shots. Tables 3.5 through 3.8 summarize all the information from telemetering channels upon which there were data for Shots Cherokee, Zuni, Navajo, and Tewn. These tables show oniy the information for the more reliable early portions of the trajectories, where the accuracy of the trajectory information was estimated by the contractor to be within ± 10 percent. In all cases zero time is the time of launch of the rocket. Sketches of the clouds with rocket trajectories are presented in Figures 4.2 through 4.6 in Chapter 4.

Rockets fired at the stem of the Shot Navajo cloud ylelded no data although the rocket transmitters and transducers appeared to be operating normally.

Contamination of the rocket surfaces was not serious. Table 3.9 indicates in terms of percentages of peak readings the contamination of rockets for which the telemetered record was long enough for contamination determinations to be made. Four rockets had residual readings
TABLE 3.2 SUMMARY OF LAUNCH CONDITIONS

Rocket	Azimuth	Quadrant Elevation	Launching Time
		degrees	min:sec
1A	GZ	31	$\mathrm{H}+7: 00$
2A	GZ	35	$\mathrm{H}+7: 02$
3A	GZ	45	$\mathrm{H}+7: 04$
4A	GZ	55	$\mathrm{H}+7: 06$
5A	G2	65	$\mathrm{H}+7: 08$
6A	GZ	$\mathbf{8 5}$	$\mathrm{H}+7: 10$
1B	GZ	31	$\mathrm{H}+15: 00$
2B	GZ	$\mathbf{4 5}$	$\mathrm{H}+15: 02$
3B	GZ	55	$\mathrm{H}+15: 04$
4B	GZ	65	$\mathrm{H}+15: 06$
5B	GZ	75	$\mathrm{H}+15: 08$
6B	GZ	85	$\mathrm{H}+15: 10$

TABLE 3.4 SUMMARY OF LAUNCH CONDITIONS

table 3.1 Summary of launch conditions FOR SHOT CHEROKEE

Rocket	Azimuth	Quadrant Elevation	Launching Time
		degrees	min: Bec
1A	GZ	36	$\mathrm{H}+7: 00$
2A	GZ	43	$\mathrm{H}+7: 02$
3A	GZ	53	$\mathrm{H}+7: 04$
4A	GZ	65	$\mathrm{H}+7: 06$
5A	GZ	75	$\mathrm{H}+7: 08$
6A	GZ	85	$\mathrm{H}+7: 10$
1B	GZ	35	$\mathrm{H}+15: 00$
2B	GZ +25 deg right	44	$\mathrm{H}+15: 02$
3B	GZ +25 deg right	55	$\mathrm{H}+15: 04$
4B	GZ +25 deg right	65	$\mathrm{H}+15: 06$
5B	GZ +25 deg right	75	$\mathrm{H}+25: 08$
GB	GZ +25 deg riglt	85	$\mathrm{H}+15: 10$

TABLE 3.3 SUMMARY OF LAUNCH CONDITIONS

Kocket	Azimuth	Quadrant Elevation	Launching Time
		degrees	min:sec

		乌

Figure 3.1 Typical roentgen information versus time plot for Shot Cherokee, Round 2A.

Figure 3.2 Typical roentgen information versus time plot for Shot Cherokee, Round 4A.
in excess of 6 percent of the peak readings. The data from these rockets were corrected by subtracting the quantity

$$
\frac{\int_{0}^{t} r d t}{\int_{0}^{t} r d t}
$$

from the rocket readings, where $t=$ the time after the start (rocket enters cloud) of the rise of the record, $f=$ reading of the rocket at time $t, R=r e s i d u a l$ reading due to contamination of the rocket, and $t_{R}=$ the time at which the readings are down to R.

Chapter 4
 DISCUSSION

4.1 GENERAL OPERATION OF THE SYSTEM

At the onset of this experiment, great concern was expressed about the ability of the telemetering system to transmit information out of the highly ionized air expected to be encountered. One theoretical calculation indicated that the 1 watt of power radiated from the rocket antenna would be attenuated to the extent that information carried by th would be below the noise level when received. Another calculation indicated the opposite. Both calculations were sensitive to small changes in the parameters assumed. Fieids as high as $3 \times 10^{4} \mathrm{r} / \mathrm{hr}$ were encountered with no apparent loss of information. Thus, this concerr. for the ability of the system to transmit through the highly ionized air seems unfcunded.

The system as a whole was made up of commercially available components, (the telemetering transmitters and receivers and the tape recorders) and newly developed experimental components (the rockets and radiation transducers). In generai, the performance of the rockets, transducers, and tape recorders may be characterized as satisfactory; that of the transmitters and receivers was less than satisfactory in this particular, unusually rigorous service.

The only difficulties experienced in the field with the transducers could be attributed to faulty packaging. Several transducers failed before they were installed in the rocket heads, probably because the compound in which the electronic components were potted shrunk and cracked the tubes. However, calibrating and testing the detectors before installing them in the rockets insured reliable units.

Drift of the frequency of the transmitters necessitated operating the receivers with their automatic frequency-control circuits turned on so that the receivers might follow the changing frequencies of the transmitters. As a result, two or three receivers occasionally locked on the same transmitter and duplicated the information. On other cccasions, receivers changed from one transmitter to another during flight. These iffects were due to the tact that a given carrier from one rocket could take control of two or more receivers when their automatic frequency controls were not locked onto a carrier. This capture of control could occur either during the launching period, before all the carriers were on the air, or during the flight period, generally as a result of a strong disturbance in the carrier previously controlling the receiver.

A warm-up time of 12 hours or more was required to reduce appreciable drift in receiver frequency. As mentioned in Chapter 2 , the Site Nan receiving station was unmanned during the shot. Since it was necessary to leave this station about 12 hours before shot time, its receiving equipment had to be turned on 24 hours before each shot.

4.2 ACTIVITY IN THE CLOUD

To obtain a measure of the amount of gamma emitters in the cloud, it was necessary to convert roentgen intensity readings to curies of gamma emitters per unit volume. The roentgen activity at a given place in the clouds depends upon the number of photons being emitted per unit time per unit volume, the energy of the photons, and the density of the medium (function of altitude).

The number of Mev per cubic meter per second produced in air contalnang C curies (In this treatment, it is arbitrarily assumed that there is one photon per disintegration, so a curie is to be taken to mean 3.7×10^{10} photons per second throughout the chapter,) of gamma emitters per cubic meter of an average effective energy of E Mev is $3.7 \times 10^{10} \mathrm{C} \mathrm{E} \mathrm{Mev} / \mathrm{sec} / \mathrm{m}^{3}$. If this
body of air is infinite in extent and in equilibrium, then the energy emitted per unit volume must be equal to the energy absorbed per unit volume. If this air is a standard atmosphere, then the definition of the roentgen leads to the relation, $1 \mathrm{r}=6.77 \times 10^{4} \mathrm{Mev} / \mathrm{cm}^{3}$ from which 3.7×10^{10} C E Mev/sec $/ \mathrm{m}^{3}$ being absorbed yields a field of $1,970 \mathrm{C} \mathrm{Er} / \mathrm{hr}$ in a standard atmosphere. If a medium has the same absorption and scattering coefficients per gram as the standard atmosphere, then the roentgen field is inversely proportional to density and is given by
or

$$
\begin{align*}
& I=1,970 \mathrm{C} \mathrm{E} \frac{\rho \text { standard air }}{\rho \text { medium }} \\
& I=2.54 \frac{\mathrm{C} E}{\rho} \tag{4.1}
\end{align*}
$$

where I is the intensity in $r / h r$ inside of an infinite medium of homogeneously mixed emitters, E is the average effective energy of the photons in Mev, C is the number of curies per cabic meter and ρ is the density of the medium in grams per cubic centimeter.

Figure 4.1 ls a plot of the number of millicaries per cubic meter required to give a field of $1 \mathrm{r} / \mathrm{hr}$ versus altitude. This plot was obtained from Equation 4.1 in which the value for the

TABLE 4.1 COMPARISON OF THEOHETICAL AND EXPERIMENTAL estinates of clotd activity

Source	Total Phutons per Sccond		
	Cherokee	Zuni	Navajo
	7 minute		
From cioud profiles	24.5×10^{22}	5.6×10^{22}	-
Theoretical $\{$	$29.3 \times 10^{2 \prime}$	7.69×10^{22}	3.69×10^{22}
	$4.7 \times 16^{?}$	1.07×10^{22}	4.13×10^{22}
	15 mirute		
From cloud profiles	11.0×10^{22}	3.7×10^{22}	0.68×10^{22}
Theoretical $\{$ fiss. prod.	14.8×10^{22}	3.92×10^{22}	1.89×10^{22}
Theoretical U^{239}	3.7×10^{22}	0.84×10^{22}	0.12×10^{22}

* Activity due to the 0.07 Mc gamsal from U^{239} is on the borderline for detection by the radiation tiansducet, and therefore the bulk of activity :ecorded arises from fissior products.
energy was assumed to be 1.25 Mev and those for the densities were taken from Reference 6. From Figure 4.1 it is evidec.t that altitude is an imporiant consideration in interpreting the information telemetered by ruckets.

The telemetered information tabulated in Appendix A is converted to millicuries per cubic meter as a function of range and altitude of the rocket by the use of Figure 4.1 and cornputed trajectories. Figures 4.2 through 4.6 were prepared irom this information by plotting rocket trajectories and drawing contour lines throu, h points of equal activity concentration, thus giving activity profiles through the clouds in the planc of the rocket trajectories. Since the usable parts of the trajectories were mostly through the portions of the clouds between the :ocket launching point and ground zero, only this half of the profile is sketched. Figures 4.2 and 4.3 give the semiprofiles for Shot Cherokee at 7 and 15 minutes after detonation; Figures 4.4 and 4.5 give the semiprofiles for Shot Zuni at 7 and 15 minutes after detonation; and, Figure 4.6 gives the semiprofile for Shot Navajo at 15 minutes after detonation. The wind profile in the plane of the rocket trajectories has been computed and is shown on the $15-$ minute clouds. This line is a projection on the plane of the rocket trajectories of the vertical line above ground zero as it would have been distorted in 15 minutes by winds. It provides a means for visualizing the amount of shear to be expected it: the clouds.

During Shot Navajo, Round 2B, fired 15 minutes and 2 seconds after detonation, and Round 5 B , fired 15 minutes and 8 seconds after detonation, were launched at the same quadrant elevation to check the reproducibility of information from rockets following the same trajectories at essentially the same time. Figure 4.7 shows activities measured by rounds as a function of time after launching of individual rockets. Peak intensities recorded arreed within 2 percent The areas inder the curves, which gave a measure of total activity measured by the rockets,

Figure 4.1 Concentration of gamma emitters to produce $1 \mathrm{r} / \mathrm{hr}$ field in an infinite volume of air.
agreed within 7 percent, and the times to peak activity were 1 second apart. Since 1 second is the sampling period in the readout system, the peaks could be between 1.5 and 0.5 seconds apart.

Of the four rockets fired during Shot Tewa, only one produced useful radiological information. However, it is of interest to compare the one round producing information with a round fired at the same time after detonation, at the same quadrant elevation of launch and as far as can be determined, at a similar part of Shot Cherokee. Round 3 at Shot Tewa and Round 5A at Shot Cherokee were both fired at 7 minutes after detonation and were launched at a quadrant elevation of 75 degrees. Figure 4.8 shows a comparison of the data obtained from the two rcunds. The lower curve shows the Shot Tewa results normalized to the same fission to total yield ratio as Shot cherokee.

Figure 4.2 Activity distribution in the plane of rocket trajectories 7 minutes after Shot Cherokee.

Figure 4.3 Activity distribution in the plane of rocket trajectories 15 minutes after Shot Cherokee.

Figure 4.4 Activity distribution in the plane of rocket trajectories 7 minutes after Shot Zuni.

Figure 4.5 Activity distribution in the plane of rocket crajectories 15 minutes after Shot Zuni.

Figure 4.0 Activity distribution in the plane of rocket trajectories 15 minutes after Shot Navajo.

Figure 4.7 Reproducibility of similar rounds fired 15 minutes after Shot Navajo.

The shapes of the curves are similar and the normalized Shct Tewa curve is lower, as might be expected from the higher fallout rates from a water-reef shot as compared to an air burst. This agreement is not of great significance since these rockets went through areas near the edges of the clouds. However, the single set of data

Figure 4.8 Comparison of similar trajectories during Shots Cherokee and Tewa.
obtained from Shot Tewa was not inconsistent with data from Shot Cherokee.
Two of the rockets that were fired through the Shot Navajo stem yielded data. Rocket 1A yielded a peak concentration of $9.3 \mathrm{mc} / \mathrm{m}^{3}$ while Rocket 2 A indicated a peak concentration of $12.6 \mathrm{mc} / \mathrm{m}^{3}$. On the basis of the $15-\mathrm{minut}$ measurements made in the cloud, it is estimated that these concentrations would be about 10 percent of the peak concentration in the main body of the cloud at the same time. These rockets passed through the stem at an altitude of about 25,000 feet.

Having constructed the profiles of Figures 4.2 through 4.6 , it is possible to obtain an estimater of the total number of photons per second at the time for which the profile is drawn. This esti-
mate of the total activity is made by rotating the profile about its vertical axis through 2π radians and integrating. Table 4.1 gives these estimates and compares them with the theoretical estimates of cloud activity given in Table 1.1.

Except for the 15 -minute Zuni cloud, estimations, based on rocket data, of the total number of photons in the clouds were not influenced by theoretical estimates. Everi so, the results agreed closely. The uncertainties involving such items as energy of the photons, axial symmetry of the clouds, and positions of rockets are such that the close agreement might be fortuitous, but it may be concluded that the theoretical values and those derived from rocket data agree, at least, in order of magnitude.

4.3 CONTAMINATION OF THE ROCKET

The possible contamination of the rocket itself was considered important since it would affect the measurements obtained by the radiation transducer. At the velocities attained by the rocket, aerodynamic heating causes the paint to burn off the skin of the rocket, leaving a blackened, charred surface. Subsequent contamination of this surface could cause high background detection in the rocket head. However, examination of the data obtained revealed background counting rates abcve 6 percent in terms of the peak readings in only four cases and in these cases the peak readings were relatively low. These four sets of data were corrected (see Section 3.2) for contamination of the rocket; however, even if they had not been, the resulting cloud profiles would not have been significantly altered.

Chopter 5

SUMMARY

5.1 CONCLUSIONS

It is concluded that a rocket-borne radiation detection unit with a telemetering transmitter for relaying information to a ground station constitutes a practical system for exploring the spatial distribution of radioactivity in the cloud resulting from a large-yield nuclear detonation. Performance of the system developed for this project may be characterized as generally satisfactory, particularly with respect to the rocket itself and the radiation transducer. Instability of the transmitter-receiver combination resulted in some telemetering failures and consequent loss of data.

Radioactive fields of intensities as high as $3.4 \times 10^{4} \mathrm{r} / \mathrm{hr}$ were encountered with no apparent attenuation of the telemetering signal.

Information from a salvo of rockets fired through the Shot Navajo stem at 25,000 feet indicate the peak activity at that level to be about 10 percent of the peak activity in the cloud. Since the volume of the cloud is about two orders of magnitude larger than that of the stem, it is estimated that the order of 0.1 percent of the total activity is in the stem.

Contamination of the rocket surfaces was not serious. In terms of peak readings, the maximum contamination encountered was higher than 6 percent on only four rockets. In these cases the peak activity encountered by the rockets was relatively low.

Values derived from rocket data, for the number of photons per second in the clouds agreed with theoretical estimates in order of magnitude.

5.2 RECOMMENDATIONS

It is recommended that further development and refinement be made in order that the system may be available for making early time radiological surveys of nuclear clouds. It is further recommended that the feasibility of using similar systems for measuring energy spectra and decay and for obtaining early-time cloud samples be investigated.

REFERENCES

1. AFSWP-895; Fallout Symposium; Armed Forces Special Weapons Project, Washiagton, D. C.; January 1955; Secret Restricted Dati.
2. G. E. Koch; "Cloud Radiation Field"; Annex 6.8, Operation Greenhoise, WT-11, August 19j1; U.S. Naval Radiological Defense Laboratory, San Francisco, California: Secret Resiricted Data.
3. W. H. Langham and others; "The Radiation Hazards to Personnel Within an Atomic Cloud": Project 4.1, Operation Upshot-Knothole, XT-743, December 1953: Air Force Cambridge Research Center, Cambridge. Massachusetts: Secret Kestricted Data.
4. Ernest A. Pinson and others; "Earls Cloud Penetratio:": Project 2.0̂6, Operation Redwing, ITR-1320, September 1956; Air Force Spectal Weapons Center, Kirtland Air Force Base, New Mexico; Secret Restricted Dala.
5. R.C. Botres and N. E. Mallou; "Calculated Activities and Abundances of U^{235} Fission Products"; USNRDL- 456 , August 1956; Luc!ussified.
6. E.A. Schuert: "A Fallout Forecastme Technique with Results Othaned at the Eniwetois Proung Grounds": USNRDL-TiR-139. April 1957; Unciassified.
7. K. D. Culeman; Summary Report of the Commander. Task Uiat $3^{\prime \prime}$: Military Effects Programs 1-9, Operation Redwing, ITR-1344. Nivember 1956; Office of the Deputy Chiet of Staff, Weapons Effects Tests, Field Cummand, AFSWP, Sanda Base, Albuquarque, New Mexico: Se cret Restricted Data.

Appendix
 SUMmARY of DATA

This Appendix summarizes the data used in preparing the cloud profiles. Trajectory tables and radiation intensity versus time data were supplied by the Cooper Development Corporation. The radiation intensity data were converted to concentration by applying factors from Figure 4.1.
table a. 1 Shot cherokek, round 2a, qE 43 Degrees

Time	Range	Altitude	Factor	Reading	Concentration	Time	Range	Aiticude	Factor	Reading	Concentration
sec	$10^{3} \mathrm{ft}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{3}\right) /(\mathrm{r} / \mathrm{hr})$	r/hr	$\mathrm{mc} / \mathrm{m}^{2}$	Sce	$10^{3} \mathrm{ft}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{3}\right) /(\mathrm{r} / \mathrm{hr})$	r / hr	$\mathrm{mc} / \mathrm{m}^{2}$
20	54.8	33.4	12.7×10^{-2}	33	4.18	52	109.7	46.7	7.96×10^{-2}	3,752	298.6
21	56.9	34.4	12.2×10^{-2}	66	8.04	53	111.1	46.5.	8.04×10^{-2}	3,884	312.1
22	59.0	35.4	11.7×10^{-2}	115	13.7	54	112.4	46.2	8.11×10^{-2}	4,074	330.5
23	61.2	36.4	11.5×10^{-2}	181	20.9	55	113.7	46.0	8.19×10^{-2}	4,166	341.2
24	63.3	37.4	11.2×10^{-2}	297	33.2	56	114.9	45.7	8.27×10^{-2}	4,348	359.6
25	65.4	38.4	10.8×10^{-2}	429	46.2	57	116.1	45.5	8.35×10^{-2}	4,504	376.1
26	67.4	31.2	10.4×10^{-2}	725	75.0	58	117.1	\$5.2	8.43×10^{-2}	4,428	373.4
27	60.3	34.9	10.1×10^{-2}	1,140	115.4	59	118.6	45.0	8.51×10^{-2}	4,022	342.4
28	71.3	40.7	9.87×10^{-2}	1,870	185.4	60	119.8	44.7	8.60×10^{-2}	3,434	329.6
29	73.2	41.4	0.62×10^{-2}	3,130	301.2	61	120.5	44.2	8.74×10^{-2}	3,646	318.8
30	75.2	42.2	8.39×10^{-2}	4,560	428.0	62	122.1	43.8	8.89×10^{-2}	3,514	312.3
31	77.0	42.7	9.23×10^{-2}	4,952	450.9	63	123.2	44.3	9.93×10^{-2}	3,580	323.3
32	78.7	43.2	9.07×10^{-2}	4,850	439.8	54	124.4	42.9	9.27×10^{-2}	3,016	276.7
33	80.5	43.7	$\times .91 \times 10^{-2}$	4,564	406.8	65	125.5	42.4	9.32×10^{-2}	2,430	226.5
34	82.2	4.3	8.76×10^{-7}	4,530	396.6	1.6	126.5	41.9	9.49×10^{-2}	2,006	190.4
35	84.0	44.7	8.60×10^{-2}	4,438	381.5	65	127.5	41.3	0.66×10^{-2}	1,698	164.0
36	85.6	45.9	8.51×10^{-2}	4,140	352.2	68	12 y .4	40.8	9.83×10^{-2}	1,450	142.6
37	87.3	45.3	8.42×10^{2}	3,708	312.2	69	129.4	40.2	10.0×10^{-2}	1,246	124.8
38	88.9	45.5	8.33×10^{-2}	3,344	278.6	70	130.4	39.7	10.2×10^{-2}	1,021	105.1
39	90.6	45.8	8.24×10^{-2}	2,964	244.4	71	131.4	39.1	10.4×10^{-2}	842	87.4
40	42.2	46.1	8.16×10^{-2}	2,614	213.2	72	132.4	38.4	10.7×10^{-2}	688	74.0
41	93.7	46.3	8.09×10^{-2}	2,390	193.3	73	133.3	37.8	11.1×10^{-2}	586	64.9
42	95.2	46.5	8.02×10^{-2}	2,214	17 T .5	74	134.3	37.1	11.2×10^{-2}	474	53.4
43	96.8	46.8	7.95×10^{-2}	2,166	172.1	75	135.2	36.5	11.5×10^{-2}	381	43.9
44	98.3	47.0	\%. 88×10^{-2}	2,224	175.2	i6	136.2	35.8	11.8×10^{-2}	31.	37.6
45	99.8	4 4.2	7.81×10^{-2}	2,208	172.4	77	137.2	35.0	12.0×10^{-2}	262	31.9
46	101.3	47.2	7.81×10^{-2}	2,278	177.9	78	138.1	34.3	12.2×10^{-2}	205	25.1
47	102.7	47.2	7.81×10^{-2}	2,476	193.3	79	139.1	33.5	12.6×10^{-2}	168	21.1
48	104.2	47.2	7.81×10^{-2}	2,748	214.6	80	140.0	32.8	13.0×10^{-2}	157	20.4
49	105.6	47.2	7.81×10^{-2}	3,140	245.2	81	140.8	32.0	13.2×10^{-2}	108	14.3
50	107.1	47.2	7.81×10^{-2}	3,360	262.3	82	141.8	31.2	13.4×10^{-2}	78	10.7
51	108.4	47.0	2.88×10^{-2}	3,626	285.8	83	142.4	30.3	14.0×10^{-2}	59	8.29

table A. 2 shot cherokee, hound 3a, qe 53 degrees

table a. 6 shot cherokee, round 2b, qe 44 degrees

	"
感	
$\begin{gathered} \text { e } \\ \stackrel{y y}{i} \\ \text { 2 } \end{gathered}$	
$\stackrel{0}{d}$	
$\stackrel{\text { E }}{ }$	

table a. 5 bhot cherokee, round 6a, qe bs degrees

Time	наяge	Alutucte	Factor	Reading	Concentration
sec	$10^{2} \mathrm{ft}$	$10^{2} \mathrm{n}$	($\mathrm{mc} / \mathrm{m}^{\text {l }} /(\mathrm{r} / \mathrm{mr}$)	r/hr	$\mathrm{mc} / \mathrm{m}^{2}$
15	5.9	52.9	60.2×10^{-3}	${ }^{3}$	1.98
16	6.3	56.4	49.8×10^{-3}	12	3.58
17	6.7	59.9	42.6×10^{-3}	112	4.77
18	7.2	6.4	33.9×10^{-3}	164	5.56
19	7.6	67.0	27.7×10^{-3}	219	6.08
20	8.0	70.5	22.5×10^{-2}	264	5.94
21	8.4	73.8	18.6×10^{-4}	321	5.96
22	8.8	77.0	15.4×10^{-3}	361	5.55
23	9.2	80.3	12.9×10^{-3}	385	1.98
24	9.6	33.5	10.4×10^{-3}	399	4.14
25	10.0	88.8	8.62×10^{-3}	406	3.50
26	10.4	89.9	7.28×10^{-3}	410	2.98
27	10.8	92.9	6.02×10^{-3}	406	2.44
28	11.2	96.0	5.05×10^{-7}	397	2.00
29	11.7	99.0	4.24×10^{-4}	зя9	1.65
30	12.1	102.1	3.59×10^{-3}	378	1.36
31	12.5	108.0	2.99×10^{-3}	365	1.09
32	12.9	107.9	2.54×10^{-3}	350	0.990
33	13.3	110.7	2.16×10^{-3}	334	0.720
34	13.7	113.6	1.81×10^{-3}	318	0.575
35	14.1	116.5	1.55×10^{-3}	301	0.465

\%		E
$\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned}$		
픙	$\stackrel{y}{y}$	
$\begin{aligned} & \boldsymbol{I} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { ed } \\ & \text { cid } \end{aligned}$	=
$\stackrel{\overline{\mathbf{M}}}{\underset{G}{4}}$	$\stackrel{ٌ}{E}$	

Time Range Altitude Factor Reading Concentration

table a. 9 Shot zuni, round 3a, qe 45 degrees

Time	Range	Altitude	Factor	Reading	Concentration	Time	Range	Altitude	Factor	Reading	Concentration
sec	$10^{1} \mathrm{ft}$	$10^{2} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{3}\right) /(\mathrm{r} / \mathrm{hr})$	r/hr	$\mathrm{mc} / \mathrm{m}^{3}$	sec	$10^{2} \mathrm{ft}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{2}\right) /(\mathrm{r} / \mathrm{hr})$	r/hr	$\mathrm{mc} / \mathrm{m}^{2}$
17	46.4	31.5	13.3×10^{-2}	115	15.3	55	115.3	53.1	5.94×10^{-2}	3,727	221.7
18	48.9	33.0	12.9×10^{-2}	569	73.4	56	116.7	52.9	6.01×10^{-2}	3,811	229.2
19	51.4	34.4	12.1×10^{-2}	2,534	308.2	57	118.1	52.7	6.08×10^{-2}	3.923	238.6
20	53.8	35.9	11.7×10^{-2}	4,768	559.9	58	119.4	52.5	6.15×10^{-2}	4.094	251.8
21	56.0	37.0	11.2×10^{-2}	6,449	727.8	59	120.8	52.2	6.21×10^{-2}	4,204	261.5
22	58.2	38.2	10.8×10^{-2}	6,525	710.8	60	122.2	52.0	6.28×10^{-2}	4,358	274.0
23	60.3	39.3	10.3×10^{-2}	7.165	738.5	61	123.5	51.7	6.39×10^{-2}	4,434	283.7
24	62.5	40.4	9.94×10^{-2}	6,824	679.0	62	124.8	51.3	6.50×10^{-2}	4,658	303.2
25	64.7	41.6	9.58×10^{-2}	6,320	605.0	63	126.2	51.0	6.62×10^{-2}	4.916	325.4
26	66.7	42.4	9.30×10^{-2}	6,468	601.9	64	127.5	50.6	6.73×10^{-2}	5.180	348.9
27	68.6	43.3	9.02×10^{-2}	6,304	469.2	65	128.8	50.2	6.84×10^{-2}	5,180	354.8
28	70.6	44.2	8.75×10^{-2}	6,099	534.1	66	130.0	49.7	7.00×10^{-2}	5,220	365.6
29	72.6	45.1	8.47×10^{-2}	5,472	463.9	67	131.3	49.3	7.15×10^{-2}	5,430	388.7
30	74.6	45.9	8.20×10^{-2}	4,787	392.9	68	132.5	48.8	7.31×10^{-2}	5,712	417.7
31	76.4	46.6	7.99×10^{-2}	4,336	346.8	69	133.7	48.3	7.47×10^{-2}	6.071	453.6
32	78.2	47.2	7.79×10^{-2}	4,200	327.2	70	135.0	47.8	7.62×10^{-2}	6,229	475.1
33	80.0	47.9	7.58×10^{-2}	4,176	316.9	71	136.1	47.2	7.81×10^{-2}	6.400	500.
34	81.9	48.6	7.38×10^{-2}	4.130	304.8	72	137.3	46.5	8.01×10^{-2}	6,459	517.7
35	83.7	49.2	7.17×10^{-2}	4,266	306.0	73	138.5	45.9	8.21×10^{-2}	7,041	578.2
36	85.4	49.7	7.03×10^{-2}	4,292	301.8	74	139.6	45.3	8.40×10^{-2}	7.532	633.0
37	87.1	50.1	6.88×10^{-2}	4,060	279.7	75	140.8	44.7	8.59×10^{-2}	7,830	673.3
38	88.8	50.6	6.74×10^{-2}	3,825	257.9	76	141.9	44.0	8.83×10^{-2}	7.915	699.1
39	90.5	51.0	6.59×10^{-2}	3,580	236.2	77	143.0	43.2	4.05×10^{-2}	7.858	711.8
40	92.2	51.5	8.45×10^{-2}	3,335	215.3	78	144.0	42.5	9.29×10^{-2}	7,728	717.9
41	93.9	51.8	6.37×10^{-2}	3,186	203.0	79	145.1	41.8	9.52×10^{-2}	7,500	714.1
42	95.8	52.0	0.28×10^{-2}	3,141	197.4	80	146.2	41.0	9.74×10^{-2}	7.200	701.8
43	97.1	52.3	6.19×10^{-2}	3,225	199.8	81	147.2	40.2	10.0×10^{-2}	6.460	647.8
44	98.7	52.6	6.10×10^{-2}	3,335	203.7	82	148.2	39.4	10.2×10^{-2}	5,000	514.2
45	100.3	52.9	6.02×10^{-2}	3.435	206.8	83	149.2	38.6	10.6×10^{-2}	2,750	293.2
48	101.9	53.0	5.98×10^{-2}	3,680	220.3	84	150.2	37.7	11.0×10^{-2}	1,640	181.7
47	103.4	83.1	8.95×10^{-2}	3,940	234.6	85	151.2	36.9	11.3×10^{-2}	1,030	11 c .8
48	104.9	53.2	5.92×10^{-2}	3,714	220.0	86	152.1	36.0	11.6×10^{-2}	657	76.8
49	106.5	53.3	5.89×10^{-2}	3,449	203.2	87	153.0	35.1	11.9×10^{-2}	452	54.1
50	108.0	53.4	5.85×10^{-2}	3,302	193.4	88	153.9	34.2	12.2×10^{-2}	265	32.5
51	109.5	53.3	5.87×10^{-2}	3,357	197.3	89	154.8	33.3	12.7×10^{-2}	172	21.9
52	110.9	53.3	5.89×10^{-2}	3,429	202.1	90	155.7	32.4	13.0×10^{-2}	96	12.7
53	112.4	53.2	5.91×10^{-2}	3,513	207.7	91	156.5	31.4	13.3×10^{-2}	49	6.57
54	113.8	53.2	5.93×10^{-2}	3,672	217.8	92	157.3	30.5	13.8×10^{-2}	41	5.67
						93	158.1	29.6	14.4×10^{-2}	41	5.93

table a. 10 shot zuni, hound 4 a, qe 55 degrees

rime	Range	Altitude	Factor	Reading	Concentration	Time	Hange	Altitude	Factor	Reading	Concentration
sec	$10^{\mathrm{s}} \mathrm{ft}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{3}\right) /(\mathrm{r} / \mathrm{hr})$	r / hr	$\mathrm{mc} / \mathrm{m}^{2}$	sec	$10^{3} \mathrm{ft}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{2} /(\mathrm{r} / \mathrm{hr})\right.$	r / hr	$\mathrm{mc} / \mathrm{m}^{\text {d }}$
16	37.8	39.5	102.5×10^{-3}	149	15.4	40	86.9	78.0	34.5×10^{-3}	404	5.87
17	40.1	41.6	95.6×10^{-3}	450	43.1	41	88.8	79.0	13.9×10^{-3}	387	5.39
18	42.4	43.8	88.8×10^{-3}	1,120	99.5	42	90.6	80.0	13.2×10^{-3}	348	4.60
19	44.7	46.0	82.0×10^{-3}	2,200	180.6	43	92.5	81.0	12.3×10^{-3}	348	4.29
20	47.0	48.1	75.2×10^{-3}	4,615	347.3	44	94.3	82.0	11.7×10^{-3}	328	3.85
21	49.2	49.9	69.5×10^{-3}	8,300	576.7	45	96.2	83.0	10.7×10^{-3}	267	2.87
22	51.3	51.8	63.7×10^{-3}	11,600	738.9	46	98.0	83.8	10.2×10^{-3}	232	2.37
23	53.4	53.6	57.9×10^{-3}	12,740	737.8	47	99.9	84.6	9.69×10^{-3}	232	2.25
24	55.5	55.4	52.1×10^{-3}	11,063	576.7	48	101.7	85.4	9.30×10^{-3}	232	2.16
25	57.6	57.3	47.8×10^{-3}	8,030	384.3	49	103.6	86.3	8.96×10^{-3}	232	2.08
26	59.6	58.9	44.3×10^{-1}	5,115	226.5	50	105.4	87.1	8.47×10^{-3}	232	1.96
27	61.6	60.4	41.1×10^{-3}	3,380	139.0	51	107.2	87.8	8.26×10^{-3}	232	1.92
28	63.6	62.0	36.2×10^{-3}	2,545	93.0	52	109.0	88.4	7.92×10^{-3}	222	1.76
29	65.7	63.6	33.7×10^{-3}	1,965	66.2	53	110.9	89.1	7.54×10^{-7}	172	1.30
30	67.7	65.2	31.1×10^{-1}	1,560	48.5	54	112.9	89.7	7.32×10^{-3}	172	1.26
31	69.6	66.6	28.5×10^{-3}	1,258	35.9	55	114.5	90.4	7.06×10^{-3}	172	1.21
32	21.6	67.9	26.2×10^{-3}	1,054	27.6	56	116.3	90.9	6.82×10^{-3}	116	0.791
33	73.5	69.3	24.1×10^{-3}	914	22.0	57	118.1	91.4	6.65×10^{-3}	109	0.726
34	75.4	70.7	22.3×10^{-3}	286	17.5	58	119.9	91.9	6.50×10^{-3}	102	0.664
35	77.4	72.1	20.7×10^{-3}	206	14.6	59	121.7	92.4	6.29×10^{-3}	95	0.599
36	79.3	73.2	19.2×10^{-3}	614	11.8	60	123.5	92.8	6.05×10^{-3}	${ }^{88}$	0.535
37	81.2	74.4	17.7×10^{-3}	556	9.8	61	125.3	93.2	5.92×10^{-3}	81	0.483
38	83.1	75.6	16.6×10^{-3}	500	8.32	62	127.1	93.5	5.82×10^{-3}	74	0.435
39	85.0	76.8	15.6×10^{-3}	446	6.97	63	128.9	93.8	5.72×10^{-3}	67	0.388
						64	130.6	94.2	5.62×10^{-1}	61	0.342

TABLE A. 11 SHOT ZUNI, ROUND 5A, QE 65 DEGREES

Time	Range	Altitude	Factor	Reading	Concentration
sec	$10^{3} \mathrm{ft}$	$10^{3} \mathrm{ft}$	($\mathrm{nc} / \mathrm{m}^{3}$)/(r/hr)	r/hr	$\mathrm{mc} / \mathrm{m}^{3}$
16	29.2	47.5	77.2×10^{-3}	31	2.39
17	31.1	50.3	68.4×10^{-3}	185	12.6
18	32.9	53.1	59.6×10^{-3}	370	22.0
19	34.8	55.8	50.8×10^{-3}	586	29.8
20	36.6	58.6	44.6×10^{-3}	771	34.3
21	38.4	61.1	39.0×10^{-3}	804	31.3
22	40.2	63.6	33.6×10^{-3}	741	24.9
23	42.0	66.1	29.4×10^{-3}	710	20.8
24	43.7	68.6	25.2×10^{-3}	678	17.1
25	45.5	71.1	21.9×10^{-3}	647	14.1
26	47.2	73.4	19.0×10^{-3}	615	11.7
27	49.0	75.6	16.6×10^{-3}	588	9.77
28	50.7	77.9	14.6×10^{-3}	557	8.12
29	52.4	80.2	13.0×10^{-3}	540	7.04
30	54.1	82.4	11.3×10^{-3}	525	5.91
31	55.8	84.5	9.77×10^{-3}	494	4.83
32	57.5	86.6	8.76×10^{-3}	463	4.06
33	59.2	88.6	7.78×10^{-3}	448	3.48
34	60.9	90.7	6.90×10^{-3}	431	2.97
35	62.6	92.8	6.08×10^{-3}	415	2.52
36	64.3	94.7	5.45×10^{-3}	414	2.26
37	66.0	96.6	4.86×10^{-3}	382	1.85
38	67.7	98.5	4.33×10^{-3}	368	1.59
39	69.3	100.3	3.99×10^{-3}	360	1.43
40	71.0	102.2	3.54×10^{-3}	350	1.24
41	72.7	104.0	3.16×10^{-3}	338	1.07
42	74.4	105.7	2.89×10^{-3}	310	0.895
43	76.0	107.4	2.62×10^{-3}	291	0.761
44	77.7	109.1	2.34×10^{-3}	278	0.650
45	79.4	110.8	2.15×10^{-3}	260	0.558
46	81.0	112.4	1.97×10^{-3}	247	0.486
47	82.7	113.9	1.77×10^{-3}	228	0.403
48	84.4	115.5	1.64×10^{-3}	216	0.354
49	86.0	117.0	1.50×10^{-3}	209	0.314
50	87.7	118.6	1.35×10^{-3}	203	0.273

TABLE A. 12 Shot ZUNl, hound 2B, QE 45 degrees

Time	Range	Altitude	Factor	Reading	Concentration	Time	Range	Altitude	Factor	Reading	Concentration
sec	$10^{3} \mathrm{ft}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{2}\right) /(\mathrm{r} / \mathrm{hr})$	r / hr	$\mathrm{mc} / \mathrm{m}^{3}$	sec	$10^{2} \mathrm{fl}$	$10^{2} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{3}\right) /(\mathrm{r} / \mathrm{hr})$	r / hr	$\mathrm{mc} / \mathrm{m}^{1}$
13	35.6	24.8	16.8×10^{-2}	88	14.8	49	106.5	53.3	5.89×10^{-2}	4,172	245.8
14	38.5	26.7	15.9×10^{-2}	114	18.2	50	108.0	53.4	5.86×10^{-2}	3.798	222.5
15	41.5	28.6	15.0×10^{-2}	133	20.0	51	109.5	53.3	5.88×10^{-2}	3,660	215.1
16	44.9	30.1	14.1×10^{-2}	153	21.6	52	110.9	53.3	5.89×10^{-2}	3.265	192.4
17	46.4	31.5	13.3×10^{-7}	173	23.1	53	112.4	53.2	5.91×10^{-8}	2,922	172.8
18	48.9	33.0	12.9×10^{-2}	179	23.1	54	113.8	53.2	5.93×10^{-2}	2.652	157.3
19	51.4	34.4	12.2×10^{-2}	155	18.8	55	115.3	53.1	5.95×10^{-2}	2,487	147.9
20	53.8	35.9	11.7×10^{-2}	128	15.0	56	116.7	52.9	6.02×10^{-2}	2,461	148.0
21	56.0	37.0	11.3×10^{-2}	129	14.6	57	118.1	52.7	6.08×10^{-2}	2,482	151.9
22	58.2	38.2	10.9×10^{2}	169	18.4	58	119.4	52.5	6.15×10^{-2}	2,610	160.5
23	60.3	39.3	10.3×10^{-2}	219	22.6	59	120.8	52.2	6.22×10^{-8}	2,813	175.0
24	62.5	40.4	9.95×10^{-2}	298	29.7	60	122.2	52.0	6. 29×10^{-2}	3.050	191.7
25	64.7	41.6	9.58×10^{-2}	415	39.8	61	123.5	51.7	6. 40×10^{-2}	3,260	208.6
26	66.7	42.4	9.31×10^{-2}	535	49.8	62	124.8	51.3	6. 51×10^{-2}	3,380	220.0
27	$6 \times .6$	43.3	9.03×10^{-2}	676	61.1	63	126.2	51.0	6.62×10^{-7}	3,460	229.1
28	70.6	44.2	8.76×10^{-2}	${ }^{828}$	72.5	64	127.5	50.6	6.73×10^{-2}	3.580	241.1
29	72.6	45.1	8.48×10^{-2}	1,013	85.9	65	128.8	50.2	6.85×10^{-2}	3,780	258.9
30	74.6	45.9	8.21×10^{-2}	1,256	103.1	66	130.0	49.7	7.00×10^{-2}	3,860	270.4
31	76.4	46.6	8.00×10^{-2}	1,536	122.6	67	131.3	49.3	7.16×10^{-2}	3.820	273.4
32	78.2	47.2	7.79×10^{-2}	1,872	145.8	68	132.5	48.8	7.31×10^{-2}	3,820	279.4
33	80.0	47.9	7.59×10^{-2}	2,182	165.6	69	133.7	48.2	7.47×10^{-2}	3.780	282.4
34	81.9	48.6	7.38×10^{-2}	2.446	180.5	20	135.0	47.8	7.63×10^{-2}	3.700	282.2
35	83.7	49.2	7.17×10^{-2}	2,114	194.7	71	136.1	$4 \% .2$	7.82×10^{-2}	3.500	273.7
36	85.4	49.7	7.03×10^{-2}	2,984	209.8	72	137.3	46.5	8.02×10^{-7}	3,218	257.9
37	87.1	50.1	6.89×10^{-2}	3,274	225.5	${ }^{73}$	138.5	45.9	8.21×10^{-2}	2.929	240.5
38	88.8	50.6	6.74×10^{-2}	3,687	248.6	74	139.6	45.3	8.40×10^{-2}	2.612	219.5
39	90.5	51.0	6.60×10^{-2}	4.0:3	270.1	75	140.8	44.7	8.60×10^{-2}	2.373	204.1
40	92.2	51.5	6.46×10^{-2}	4,414	284.9	76	141.9	44.0	8.83×10^{-2}	2.161	190.9
41	93.9	51.8	6.37×10^{-2}	4,531	289.6	72	243.0	43.2	9.06×10^{-2}	1,969	178.4
42	95.5	52.0	6.28×10^{-2}	4.510	283.4	78	144.0	42.5	9.29×10^{-2}	1,698	157.7
43	97.1	52.3	6.20×10^{-2}	4,534	281.0	79	145.1	41.8	9.52×10^{-1}	1,490	141.9
44	98.7	52.6	6.11×10^{-2}	4,622	282.4	80	146.2	41.0	9.75×10^{-1}	1.150	112.2
45	100.3	52.9	6.02×10^{-7}	4,124	284.4	81	147.2	40.2	10.0×10^{-1}	${ }^{822}$	82.5
46	101.9	53.0	5.99×10^{-2}	4.770	285.6	82	148.2	30.4	10.3×10^{-3}	598	61.5
47	103.4	53.1	5.96×10^{-2}	4,686	279.1	${ }^{83}$	149.2	38.6	10.7×10^{-7}	456	48.6
48	104.9	33.2	5.92×10^{-2}	4.460	264.2						

table a. 13 shot zuni, hound 3b, qe 55 deghees

Time	Hange	Allitude	Factor	Reading	Concentration	Time	Range	Altitude	Factor	Heading	Concentration
eec	$10^{3} \mathrm{ft}$	$10^{2} \mathrm{fl}$	$\left(\mathrm{mc} / \mathrm{m}^{2}\right) /(\mathrm{r} / \mathrm{hr})$	r / hr	$\mathrm{mc} / \mathrm{m}^{2}$	sec	$10^{3} \mathrm{ta}$	$10^{2} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{3}\right) /(\mathrm{r} / \mathrm{hr})$	r/hr	$\mathrm{mc} / \mathrm{m}^{2}$
12	27.7	29.4	145.3×10^{-2}	105	15.3	56	116.3	90.9	6.82×10^{-3}	212	1.45
13	30.3	32.1	131.8×10^{-3}	168	22.2	57	118.1	91.4	6.65×10^{-3}	207	1.38
14	32.9	34.7	120.9×10^{-3}	238	28.8	58	119.9	91.9	6.50×10^{-3}	196	1.27
15	35.4	37.3	112.0×10^{-7}	375	42.0	59	121.7	92.4	6.29×10^{-3}	191	1.20
18	37.8	39.5	102.5×10^{-8}	504	51.7	60	123.5	92.8	6.05×10^{-1}	180	1.09
17	40.1	41.6	95.6×10^{-3}	606	58.0	61	125.3	93.2	5.92×10^{-1}	178	1.06
18	42.4	43.8	88.8×10^{-3}	659	58.6	62	127.1	93.5	5.82×10^{-3}	172	1.00
19	44.7	46.0	82.0×10^{-3}	845	69.3	63	128.9	' 93.8	5.72×10^{-3}	165	0.949
20	47.0	48.1	35.2×10^{-3}	1,130	85.0	64	130.6	94.2	5.62×10^{-3}	159	0.897
21	49.1	49.9	69.5×10^{-3}	1,402	97.4	65	132.4	94.5	5.51×10^{-3}	153	0.847
22	51.3	51.8	63.7×10^{-8}	1,760	112.1	66	134.2	94.6	5.46×10^{-3}	147	0.805
23	53.4	53.6	57.9×10^{-3}	2,237	129.5	67	136.0	94.8	5.41×10^{-3}	141	0.764
24	55.5	55.4	52.1×10^{-3}	2,670	139.2	68	137.8	95.0	5.36×10^{-2}	135	0.724
25	57.6	57.3	47.8×10^{-2}	3,178	152.1	69	139.5	95.1	5.31×10^{-1}	129	0.685
26	59.6	58.9	44.3×10^{-1}	3,482	154.2	70	141.3	95.3	5.26×10^{-1}	123	0.646
27	61.6	60.4	41.1×10^{-2}	3,666	150.7	71	143.0	95.3	5.25×10^{-3}	119	0.625
28	63.6	62.0	36.2×10^{-3}	3,745	135.4	72	144.8	95.3	5.25×10^{-3}	115	0.605
29	65.7	63.6	33.7×10^{-2}	3,575	120.4	73	146.6	95.3	5.25×10^{-3}	111	0.584
30	67.7	65.2	31.1×10^{-2}	2,870	89.3	74	148.3	95.3	5.25×10^{-3}	107	0.564
31	69.6	66.6	28.5×10^{-3}	1,930	55.0	75	150.1	95.3	5.25×10^{-2}	103	0.543
32	71.6	67.9	26.2×10^{-3}	1.450	38.0	76	151.8	95.2	5.30×10^{-2}	99	0.527
33	73.5	69.3	24.1×10^{-3}	1,215	29.3	77	153.6	95.0	5.35×10^{-3}	95	0.511
34	75.4	70.7	22.3×10^{-3}	1,005	22.4	78	155.3	94.8	5.40×10^{-3}	91	0.495
35	77.4	72.1	20.7×10^{-1}	859	17.8	79	157.1	94.1	5.45×10^{-3}	87	0.479
36	79.3	73.2	19.2×10^{-8}	756	14.5	80	158.8	94.5	5.50×10^{-3}	84	0.461
37	81.2	74.4	17.7×10^{-3}	684	12.2	81	160.6	94.2	5.60×10^{-3}	82	0.463
30	83.1	75.6	26.8×10^{-2}	618	10.3	82	162.3	93.9	5.70×10^{-3}	81	0.465
39	85.0	76.8	15.6×10^{-2}	551	8.61	83	164.0	93.6	5.80×10^{-3}	80	0.466
40	86.9	78.0	14.5×10^{-3}	515	7.49	84	165.8	93.3	5.90×10^{-3}	79	0.467
41	88.8	79.0	13.9×10^{-3}	480	6.68	85	167.5	92.9	6.00×10^{-3}	78	0.468
42	90.6	80.0	13.2×10^{-3}	444	5.88	86	169.2	92.5	6.23×10^{-1}	76	0.478
43	92.5	81.0	12.3×10^{-8}	409	5.05	87	170.9	92.0	6.46×10^{-3}	75	0.488
44	94.3	82.0	11.7×10^{-8}	381	4.47	88	172.6	91.5	6.61×10^{-9}	74	0.491
45	94.2	83.0	10.7×10^{-3}	366	3.93	89	174.4	91.0	6.75×10^{-1}	73	0.494
46	98.0	83.8	10.2×10^{-2}	350	3.58	90	176.1	90.6	6.97×10^{-1}	72	0.501
47	99.9	84.6	9.69×10^{-8}	328	3.19	91	177.8	89.9	7.26×10^{-3}	68	0.495
48	101.7	85.4	9.30×10^{-8}	310	2.89	92	179.5	89.3	7.46×10^{-3}	64	0.481
49	103.6	66.3	8.96×10^{-8}	293	2.62	93	181.2	88.7	7.76×10^{-3}	60	0.472
50	105.4	87.1	8.47×10^{-3},	283	2.40	94	182.9	88.0	8.15×10^{-3}	57	0.466
51	107.2	87.8	8.26×10^{-2}	274	2.27	95	184.6	87.4	8.37×10^{-3}	53	0.447
52	109.0	88.4	7.92×10^{-3}	253	2.01	96	186.3	86.6	8.72×10^{-3}	49	0.434
53	110.9	89.1	7.54×10^{-3}	248	1.87	97	188.0	85.9	9.17×10^{-3}	46	0.122
54	112.1	89.7	7.32×10^{-1}	237	1.74	98	189.6	85.1	9.42×10^{-3}	42	0.399
55	114.5	90.4	7.06×10^{-1}	212	1.50	99	191.3	84.3	9.91×10^{-8}	38	0.383
				.		100	193.0	83.5	10.39×10^{-3}	35	0.363

table a. 14 Shot zuni, round 4B, qE 65 degrees

Time	Range	Altitude	Factor	Reading	Concentration
sec	$10^{3} \mathrm{ft}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{3}\right) /(\mathrm{r} / \mathrm{hr})$	r / hr	$\mathrm{mc} / \mathrm{m}^{3}$
11	19.1	31.7	132:8 $\times 10^{-3}$	60	7.97
12	21.2	35.0	120.1×10^{-1}	208	25.0
13	23.2	38.2	108.7×10^{-3}	430	46.8
14	25.3	41.4	96.2×10^{-3}	761	73.2
15	27.3	44.7	86.0×10^{-1}	1,303	112.0
16	29.2	47.5	77.2×10^{-3}	2,187	168.8
17	31.1	50.3	68.4×10^{-3}	3,617	247.4
18	32.9	53.1	59.6×10^{-1}	4,604	274.4
19	34.8	55.8	50.8×10^{-2}	3,952	200.9
20	36.6	58.6	44.6×10^{-3}	2,215	98.7
21	38.4	61.1	39.0×10^{-1}	1,185	46.2
22	40.2	63.6	33.6×10^{-2}	785	26.4
23	42.0	66.1	29.4×10^{-2}	582	17.1
24	43.7	68.6	25.2×10^{-3}	471	11.8
25	45.5	71.1	21.9×10^{-8}	379	8.30
26	47.2	73.4	19.0×10^{-2}	314	5.99
27	49.0	75.6	16.6×10^{-3}	274	4.56
28	50.7	72.9	14.6×10^{-2}	235	3.43
29	52.4	80.2	13.0×10^{-3}	201	263
30	54.1	82.4	11.3×10^{-3}	183	2.06
31	55.8	84.5	9.77×10^{-3}	167	1.64
32	57.5	86.6	8.76×10^{-2}	147	1.29
33	59.2	88.6	7.78×10^{-3}	127	0.992
34	60.9	90.7	6.90×10^{-8}	120	0.828
35	62.6	92.8	6.08×10^{-3}	120	0.729
36	64.3	94.7	5.45×10^{-3}	120	0.654
37	66.0	96.6	4.86×10^{-3}	120	0.582
38	67.7	98.5	4.34×10^{-3}	109	0.474
39	69.3	100.3	3.99×10^{-2}	99	0.394
40	71.0	102.2	3.54×10^{-3}	89	0.317
41	72.7	104.0	3.16×10^{-3}	80	0.252
42	74.4	105.7	2.89×10^{-3}	80	0.231
43	76.0	107.4	2.62×10^{-3}	80	0.209
44	71.7	109.1	2.34×10^{-3}	80	0.187
45	79.4	110.8	215×10^{-3}	∞	0.171
46	81.0	112.4	1.97×10^{-7}	80	0.159
47	82.7	113.9	1.77×10^{-3}	0	0.141
48	84.4	115.5	1.68×10^{-2}	60	0.131
49	8.0	117.0	1.50×10^{-3}	∞	a. 120
50	87.7	118.6	1.35×10^{-3}	80	0.107

TABLE A. 16 SHOT NAVAJO RUUND 1B, QE 55 DEGKEES

Time	Range	Allutude	Factor	Reading	Concentration	Time	Hange	Allitucte	Factor	Reading	Connentration
sec	$10^{8} \mathrm{ft}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{2}\right) /(\mathrm{r} / \mathrm{hr})$	r/hr	$\mathrm{mc} / \mathrm{m}^{3}$	Sec	$10^{\text {d }}$ a	$10^{3} \mathrm{ft}$	$\left(\mathrm{me} / \mathrm{m}^{2}\right) /(\mathrm{r} / \mathrm{hr})$	r / hr	$\mathrm{mc} / \mathrm{m}^{3}$
19	44.7	46.0	82.0×10^{-3}	59	4.84	61	125.3	93.2	5.92×10^{-3}	174	1.03
20	47.0	48.1 -	75.2×10^{-3}	119	8.96	62	127.1	33.5	5.82×10^{-3}	170	0.990
21	49.2	49.9	69.5×10^{-3}	199	13.8	63	128.9	93.8	5.72×10^{-3}	166	0.949
22	51.3	51.8	63.7×10^{-3}	297	18.9	64	130.6	94.2	5.62×10^{-3}	162	0.910
23	53.4	53.6	57.9×10^{-3}	396	22.9	65	132.4	94.5	5.52×10^{-3}	158	0.871
24	55.5	55.4	52.1×10^{-3}	555	28.9	66	134.2	94.6	5.46×10^{-3}	158	0.863
25	57.6	57.3	47.8×10^{-3}	730	34.9	67	136.0	94.8	5.41×10^{-3}	158	0.854
26	59.6	58.9	44.3×10^{-3}	853	37.8	68	137.8	95.0	5.36×10^{-2}	158	0.846
27	61.6	60.4	41.1×10^{-1}	1,010	41.5	69	139.5	95.1	5.31×10^{-2}	158	0.838
28	63.6	62.0	36.2×10^{-3}	1.180	42.6	70	141.3	95.3	5.26×10^{-3}	158	0.830
29	65.7	63.6	33.7×10^{-2}	1,270	42.8	71	143.0	95.3	5.25×10^{-3}	158	0.830
30	67.7	65.2	31.1×10^{-3}	1.410	43.9	72	144.8	95.3	5.25×10^{-3}	158	0.830
31	69.6	66.6	28.5×10^{-3}	1.580	45.0	73	146.6	95.3	525×10^{-3}	158	0.829
32	71.6	87.9	26.2×10^{-3}	1,720	45.0	74	148.3	95.3	5.25×10^{-3}	1.58	0.829
33	73.5	69.3	24.1×10^{-3}	1.820	43.8	75	150.1	95.3	5.25×10^{-3}	158	0.829
34	75.4	70.7	22.3×10^{-3}	1,780	39.7	76	151.8	95.2	5.30×10^{-3}	158	0.837
35	77.4	72.1	20.7×10^{-3}	1,720	35.6	77	153.6	95.0	5.35×10^{-3}	158	0.845
36	79.3	73.2	19.2×10^{-3}	1.590	30.5	78	155.3	94.8	5.40×10^{-1}	158	0.853
37	81.2	74.4	17.7×10^{-3}	1.450	25.7	79	157.1	94.7	5.45×10^{-3}	156	0.861
38	83.1	75.6	16.6×10^{-3}	1.290	21.5	80	158.8	94.5	5.50×10^{-3}	158	0.868
39	85.0	76.8	15.6×10^{-3}	1,190	1 t \%	81	166.6	94.2	5.60×10^{-3}	162	1. 907
40	86.9	78.0	14.5×10^{-3}	1,010	14.7	82	162.3	93.5	5.70×10^{-3}	166	0.946
41	88.8	79.0	13.9×10^{-3}	930	12.9	83	164.0	93.6	5.80×10^{-3}	170	0.985
42	90.6	80.0	13.2×10^{-3}	832	11.0	84	165.8	93.3	5.90×10^{-3}	174	1.036
43	92.5	81.0	12.3×10^{-3}	730	9.00	R5	167.5	92.9	6.100×10^{-3}	178	: 078
44	94.3	82.0	11.7×10^{-3}	620	7.26	86	169.2	92.5	6.23×10^{-3}	190	1.184
45	96.2	н3.0	10.7×10^{-3}	574	6.16	87	170.9	92.0	6.46×10^{-1}	202	1.304
46	98.0	83.8	10.2×10^{-3}	493	5.03	88	172.6	91.5	6.61×10^{-3}	214	1.413
47	99.9	84.6	9.69×10^{-3}	469	455	89	174.4	91.0	6.75×10^{-3}	226	1.536
48	101.7	85.4	9.30×10^{-3}	416	3.87	90	176.1	90.6	6.97×10^{-3}	238	1.668
49	103.6	8 C .3	8.96×10^{-1}	396	3.55	91	177.8	89.9	7.26×10^{-3}	226	1.649
50	105.4	87.1	8.47×10^{-1}	376	3.18	2	17 y . 5	89.3	7.46×10^{-3}	214	1.606
51	107.2	87.8	8.26×10^{-3}	356	2.94	93	181.2	88.7	7.76×10^{-3}	202	1.576
52	109.0	88.4	7.92×10^{-3}	336	2.67	4	182.9	88.0	8.15×10^{-3}	190	1.559
53	110.9	89.1	8.54×10^{-3}	316	2.38	95	184.6	87.4	8.37×10^{-3}	178	1.493
54	112.7	89.7	7.32×10^{-3}	296	2.17	96	186.3	86.6	8.72×10^{-3}	208	1.814
55	114.5	90.4	7.06×10^{-1}	277	1.95	97	188.0	85.9	9.17×10^{-1}	238	2.183
56	116.3	90.9	6.82×10^{-3}	257	1.76	98	189.6	85.1	9.42×10^{-3}	198	1.879
57	118.1	91.4	6.65×10^{-3}	237	1.58	\%	191.3	84.3	9.51×10^{-3}	158	1.571
58	119.9	91.9	6.50×10^{-3}	217	1.41	100	193.0	83.5	10.4×10^{-3}	119	1.246
59	121.7	92.4	6.29×10^{-3}	197	1.24	101	194.7	82.6	11.1×10^{-3}	59	0.656
61	123.5	92.8	6.05×10^{-3}	176	1.08						- -

table a. 17 shot navajo, round 2b, qe 65 degrees

Tinue	Range	Altitude	Factor	Reading	Concentration
sec	$10^{3} \mathrm{f}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{3}\right) /(\mathrm{r} / \mathrm{hr})$	$r / h r$	$\mathrm{mc} / \mathrm{m}^{2}$
12	21.2	35.0	$120: 1 \times 10^{-3}$	21	2.62
13	23.2	38.2	108.7×10^{-3}	59	6.51
14	25.3	41.4	96.2×10^{-1}	104	10.0
15	27.3	44.7	86.0×10^{-3}	208	17.9
16	29.2	47.6	77.2×10^{-3}	378	29.2
17	31.1	50.3	68.4×10^{-3}	651	44.6
18	32.9	53.1	59.6×10^{-3}	727	43.3
19	34.8	55.8	50.8×10^{-3}	702	35.7
20	36.6	58.6	44.6×10^{-3}	576	25.7
21	38.4	61.1	39.0×10^{-3}	343	13.4
22	40.2	63.6	33.6×10^{-3}	270	9.10
23	42.0	66.1	29.4×10^{-3}	264	7.76
24	43.7	68.6	25.2×10^{-1}	254	6.42
25	45.5	71.1	21.9×10^{-3}	234	5.13
26	47.2	73.4	19.0×10^{-3}	219	4.19
27	49.0	75.6	16.6×10^{-3}	199	3.31
28	50.7	77.9	14.6×10^{-3}	182	2.66
29	52,4	80.2	13.0×10^{-3}	163	2.14
30	54.1	82.4	11.3×10^{-3}	142	1.60
31	55.8	84.5	9.77×10^{-3}	125	1.23
32	57.5	86.6	8.76×10^{-3}	112	0.986
33	59.2	88.6	7.78×10^{-3}	108	0.840
34	60.9	90.7	6.90×10^{-3}	98	0.678
35	62.6	92.8	6.08×10^{-3}	90	0.550
36	64.3	94.7	5.45×10^{-3}	77	0.423
37	66.0	96.6	4.86×10^{-3}	73	0.357
38	67.7	98.5	4.34×10^{-3}	70	0.303
39	69.3	100.4	3.99×10^{-3}	70	0.279
40	71.0	102.2	3.54×10^{-3}	65	0.244
41	72.7	104.0	3.16×10^{-1}	59	0.188
42	74.4	105.7	2.89×10^{-3}	55	0.160
43	76.0	107.4	2.62×10^{-3}	53	0.138
44	77.7	109.1	2.34×10^{-3}	53	0.124
45	79.4	110.8	2.15×10^{-3}	53	0.113
46	81.0	112.4	1.97×10^{-3}	52	0.103
47	82.7	113.9	1.77×10^{-3}	49	0.087
48	64.4	115.5	1.64×10^{-3}	43	0.070
49	M6,0	117.0	1.50×10^{-3}	42	0.064
3	47.8	118.6	1.35×10^{-3}	39	0.152
51		124.0	1.26×10^{-3}	38	0.04 H

TABLE A. 19 SHOT NAVAJO ROUND 6B, QE 85 DEGREES

Time	Range	Altitude	Factor	Reading	Concentration
sec	$10^{3} \mathrm{ft}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{3}\right) /(\mathrm{r} / \mathrm{hr})$	r / hr	$\mathrm{mc} / \mathrm{m}^{3}$
13	5.0	45.0	85.0×10^{-3}	30	2.55
14	5.4	48.9	72.6×10^{-3}	174	12.6
15	5.9	52.9	60.2×10^{-3}	392	23.6
16	6.3	56.4	49.8×10^{-3}	313	15.6
17	6.7	59.9	42.6×10^{-3}	204	
18	7.1	63.5	33.9×10^{-3}	189	8.69
19	7.6	67.0	27.7×10^{-3}	91	6.41
20	9.0	70.5	22.5×10^{-3}	68	2.52
21	8.4	73.8	18.6×10^{-3}	38	1.53

TABLE A. 20 SHOT TEWA ROUND 3, QE 75 DEGREES

Time	Range	Altitude	Factor	Reading	Concentration
sec	$10^{3} \mathrm{ft}$	$10^{3} \mathrm{ft}$	$\left(\mathrm{mc} / \mathrm{m}^{3}\right) /(\mathrm{r} / \mathrm{h} \cdot)$	r / hr	$\mathrm{mc} / \mathrm{m}^{3}$
12	13.3	39.0	104.3×10^{-3}	8	0.796
13	14.6	42.6	92.4×10^{-3}	21	1.99
14	15.9	46.4	80.8×10^{-3}	79	6.42
15	17.2	50.0	69.1×10^{-3}	245	16.9
16	18.4	53.3	58.8×10^{-3}	539	31.7
17	19.6	56.6	49.4×10^{-3}	1,029	50.9
18	20.9	59.8	42.7×10^{-3}	1,720	73.5
19	22.1	63.1	34.4×10^{-3}	2,400	82.6
20	23.3	66.4	28.8×10^{-3}	2,768	79.9
21	24.5	69.4	24.0×10^{-3}	2,746	65.8
22	25.6	72.4	20.3×10^{-3}	2,459	49.9
23	26.8	75.4	16.7×10^{-3}	2,143	36.0
24	28.0	78.4	14.3×10^{-3}	1,860	26.6
25	29.2	81.4	12.1×10^{-3}	1,616	19.5
26	30.3	84.1	10.0×10^{-3}	1,148	14.5
27	31.5	86.9	8.55×10^{-3}	1,298	11.1
28	32.6	89.7	7.33×10^{-3}	1,182	8.67
29	33.9	92.5	6.22×10^{-3}	1,043	6.49
30	34.9	95.3	5.27×10^{-3}	913	4.81
31	36.1	97.9	4.45×10^{-3}	808	3.60
32	37.2	100.5	3.95×10^{-3}	742	2.93
33	38.4	103.1	3.30×10^{-3}	663	2.19
34	39.5	105.6	2.89×10^{-3}	628	1.82
35	40.6	108.2	2.48×10^{-3}	563	1.40
36	41.8	110.7	2.16×10^{-3}	508	1.10
37	42.9	113.1	1.88×10^{-3}	483	0.907
38	44.0	115.5	1.64×10^{-3}	427	0.699
39	45.2	118.0	1.40×10^{-3}	408	0.569

