28 Nov 77

FCZ

ŝ

MEMORANDUM FOR: COMMANDER, FCDNA

SUBJECT: Chairman's Report - Conference on Runit Cleanup, 4-5 October 1977

1. Subject conference convened as scheduled. Summarized minutes of the conference are attached (Encl 1).

2. <u>Conclusions</u>: Based on the discussions and agreements during the conference, the chairman concludes that:

a. The radiological data presently available does not permit an accurate refinement of the scope of work involved in the cleanup of Runit Island.

b. Additional data, both soil profile and in-situ survey, are required if the estimate of the volume of soil to be excised is to be refined with any degree of accuracy. The greater the density of the data obtained, the greater the accuracy of the refinement of the estimate.

c. Great expenditure of resources solely to define the scope of work in Runit Island cleanup is not warranted. Such an effort would be selfdefeating.

d. To a very large extent the effort expended to definitize the scope of work in Runit Island cleanup can be done in such a manner that it will directly contribute to the effort required for certification of Runit Island. Such effort would be necessary in any event and can serve dual purposes.

e. A coordinated program should be established and conducted to simultaneously define the scope of work involved in Runit Island cleanup and contribute data required for eventual Runit Island certification.

f. Plowing and/or mixing are not desirable or suitable techniques for meeting cleanup criteria. Both could be used after cleanup but must be carefully considered and justified.

FCZ SUBJECT: Chairman's Report - Conference on Runit Cleanup, 4-5 October 1977

3. Recommendations: The chairman recommends that the following program outline be transmitted to Commander, JTG for execution generally in the sequence listed, although some actions may be performed concurrently based on availability of assets.

a. In coordination with ERSP, establish, survey and mark, a 50 meter grid for the northern half of Runit.

b. Utilize FRST, other resources, and portable field instruments to search out and remove very small "hot spots" and plutonium chunks on or near the surface. This effort should initially be confined to the FIG/ QUINCE area, concentrating on the areas shown as D level or higher concentration on the YVONNE (Runit) June-July 1977 aerial survey. This effort is visualized as a locate-and-measure and shovel-and-bag operation. It is not intended to excise extensive areas of surface contamination. Its purpose is to attempt to pick up milligram and larger particles of plutonium concentrated in very small areas, generally less than one meter square. Removing such very high contamination level spots should reduce the size of the areas which in-situ survey will characterize as greater than 400 pCi/g, thus reducing the volume of surface soil to be excised. This effort should be carefully monitored and if it appears unproductive, should be stopped. Location, amount excised, and estimated activity for each excision should be recorded. Excised soil should be stored for crater containment. If the hot spot extends deeper than about 25 centimeters the area should be treated as in f below.

c. If resources are available, the effort outlined in b above should be tried in the Cactus crater vicinity. The test should be in the vicinity of USAF-RHL sample sites 9, 10, 27, 31 as shown on the Runit data map (previously provided). This effort should not be extensive. The Cactus crater area does not exhibit the same characteristics as the FIG/QUINCE area. The effort will probably not be productive in the Cactus crater area, but potential gain justifies a limited experiment, provided sufficient resources are available not to interfere with other operations.

d. Using an IMP, conduct in situ surveys on the established 50 meter grid, to define the size of the areas contaminated to levels greater than 400 pCi/g PU 239/240. In order to minimize risk of contamination of the IMP, this need not include a detailed survey of the area within the 400 pCi/g isopleth. However, data taken should be directly contributory to the full survey required for cleanup and certification. This effort should be confined to the FIG/QUINCE area and the Cactus crater area as indicated by the contamination isopleths on the YVONNE June-July 1977 aerial survey data.

2

28 Nov 77

FCZ 28 Nov 77 SUBJECT: Chairman's Report - Conference on Runit Cleanup, 4-5 October 1977

e. Using backhoes, FRST, and other resources as available, perform soil profiling surveys in the central area (between FIG/QUINCE and Cactus crater areas) where no profile data is currently available. Ten to 15 profiles should be sufficient. Location and spacing of the sampling sites must be coordinated between JTG and ERSP and must lie on the 50 meter grid lines or agreed subdivisions thereof. Sampling locations selected must directly contribute to data required for cleanup survey and for certification. This effort should be initially limited to those areas selected for stockpiling contaminated debris and contaminated soil. (See h and i below for sampling techniques and analyses.)

f. Using backhoes, FRST, and other resources as available, perform soil profiling surveys in the FIG/QUINCE and Cactus crater areas. Sample locations and spacing must be coordinated between JTG and ERSP and must lie on the 50 meter grid lines or agreed subdivisions thereof. Sampling locations, insofar as possible, must be directly contributory to data needed for cleanup survey and for certification. This effort is intended to determine the physical limits of the subsurface contamination pockets indicated by soil sample data at sample points AEC 104, 111, 112; USAF-EPA 16, 12-1; and USAF-RHL 8, 15, 32, 10, 31, 27 and 9. If possible, this profiling effort should await completion of the in-situ survey of d above, but this is not a necessity. Profiling can be done before or concurrent with the in-situ effort. It is envisioned that this profiling effort will use iterative "one-half distance" techniques to establish the size of the subsurface pockets showing contamination levels in excess of 400 pCi/g PU 239/240. (Use of the "one-half distance" technique should not imply that the contamination can be characterized by a mathamatically continuous function. Random discontinuities must be expected. See Encl 1.)

g. As resources permit, continue soil profiling in other areas in northern half of Runit. Sample locations and spacing should be directly contributory to data needed for cleanup survey and for certification as well as characterization. Additional samples should be taken in each of the three areas, FIG/QUINCE, Cactus crater, and the central area. The objective is to further the assurance of presence or absence of subterranian contamination. If pockets of contamination are found they should be defined as in f above.

h. Soil profiling operations will be subject to continuing coordination between JTG and ERSP to ensure maximum usability of data obtained. In general, a profile site depth of 120 cm will be sufficient. However, conditions may dictate greater depth, particularly near Ground Zero locations

3

FCZ 28 Nov 77 SUBJECT: Chairman's Report - Conference on Runit Cleanup, 4-5 October 1977

and berm or mound areas. Soil sample depth increment should be 20 cm with a discrete 5 cm deep sample taken from each 20 cm increment. Location of the 5 cm sample within the 20 cm increment to be coordinated between JTG and ERSP. Local conditions of interest may dictate additional samples or change of sample techniques. Such changes are the prerogative of CJTG in coordination with ERSP, subject to availability of resources.

i. Soil sample analysis should be done by first characterizing samples by a gross exposure rate gamma scan in the ERSP laboratory, if possible gating for 60 Kev gamma from AM 241. Samples which have very high or very low levels of contamination, as shown by gamma scan, may be set aside. The intermediate level samples would require further analysis by gross alpha count and by additional radio-chemical analysis of approximately five percent of these selected samples. Variation of these procedures is the prerogative of CJTG in coordination with ERSP. All samples taken must be properly identified for possible future analysis in support of certification.

j. Runit characterization soil sample inputs to the ERSP laboratory must be restricted in order to not interfere with other cleanup operations. Daily sample input of 50 soil samples can probably be supported without interfering with other operations. Final adjustment is the subject of coordination between JTG and ERSP. Resources allocated to Runit characterization should be adjusted as necessary to maintain work flow without laboratory overload.

k. As resources permit, transects should be cut through all berms and mounds on northern Runit. Soil profile samples from such transects should be taken to radiologically characterize the contents. Soil profile cuts below the original surface may be required in such transects. This effort must contribute to cleanup survey and certification as well as characterization. Such work in the Cactus crater ejecta lip should be done only as opportune to other necessary operations. Major effort to characterize this ejecta lip should not be made until extent of entombment area is better defined.

1. It is recognized that soil sampling locations indicated on the Runit data map are only approximate. Specific coordinates by the local grid system are not available. Locations shown on the Runit data map are the best presently available and on-site location must be done by scaling from the map. Coordinate data available has been provided separately.

FCZ 28 Nov 77 SUBJECT: Chairman's Report - Conference on Runit Cleanup, 4-5 October 1977

m. CJTG must provide adequate priority for resources; logistics, transportation and personnel, to ensure smooth operational continuity. Priority should be second to Lojwa and Runit construction and equal to other radiological cleanup operations. Work schedules and immediate priorities must be set by CJTG in coordination with ERSP and other organizations concerned. The Runit characterization efforts outlined in a through f above should be considered as a part of the beginning cleanup operation and given appropriate priority. Target date for completion of data acquisition resulting from a through f above is 15 January 1978.

n. Stockpiling of contaminated debris and soil from other islands may have to be adjusted from planned locations to avoid interference with characterization of the FIG/QUINCE area. Contaminated soil must be separated into two stockpiles: one stockpile for soil excised from areas contaminated to levels greater than 400 pCi/g; the second stockpile of soil excised from areas of lesser contamination.

l Encl as

1.

CHARLES J'. TREAT COL Ord C Chairman

■ two y Articles y Articles y SUMMARIZED MINUTES CONFERENCE ON RUNIT CLEANUP 4 - 5 OCTOBER 1977 LAS VEGAS, NEVADA

The signatures of the participants recorded on the next page indicate only their agreement that the summarized minutes accurately reflect the discussions, agreements and consensus reached during the conference. Any exceptions to either the minutes or to the chairman's report by any participant are as noted below. Exceptions and explanations provided to the chairman by participants are appended to the minutes.

EXCEPTIONS/COMMENTS ATTACHED:

Mr	McCraw	Encl	7
Dr	Smale	Encl	8
Ms	Barnes	Encl	9
Mr	Church	Encl	10
Mr	Doles	Encl	10
Mr	Hendricks	Enc1	11
Mr	Bernhardt	Encl	11

PARTICIPANTS

NAME	AGENCY	
Richard F. Smale	LASL	Michael
Donald W.Hendricks	USEPA	Donald
Robert E. Yoder	Rockwell	Jole te
Thomas R. Crites	LLL	Thomas (
Edward T. Bramlitt	FCDNA	Edward
Tommy F. MCCraw	USDOE	Jann 7
A. E. Doles	Eberline	add
Bruce W. Church	USDOE/NV	ATTure-
David E. Bernhardt	EPA/ORP	Pail ?
Edwin T. Still, LtCol, USAF	AFRRI/DNA	Edwin
Arden E. Bicker	REECO	Ander
Alfred W. Western	REECO	allea
Charles Treat, Col, USA	FCDNA	Charl
Madaline Barnes	DRI	Madalin

SIGNATURE
Michael F Sunde
Donald W Hendrich
Jole HE Liter
Thomas & Ches
Edward T. Bramlett
Tomm F. Mi Craw
a d'Orla
Atruce 10, Church
Die D. Benfault
Edwin 7. Still
Andew & Bicker
alled allaster
charles theat
Madaline Barres

. * .

MINUTES OF CONFERENCE

1. A conference convened at Las Vegas, Nevada, 4-5 October 1977 to examine means of meeting requirements for a more definitive, quantitative characterization of the scope of work involved in the radiological cleanup of Runit Island, Enewetak Atoll. The message convening the conference is enclosure 1. A listing of participants and observers is enclosure 2.

2. The conference opened with introduction of participants and observers, and brief remarks by BG Grayson D. Tate, Jr., Commander, Field Command, Defense Nuclear Agency, and Mr. Roger Ray, Department of Energy, Nevada Operations Office, DOE Project Officer. General Tate stressed the overall importance of Runit in the cleanup, the necessity to obtain a better definition of the scope of work involved, and the desire to explore alternative methods of meeting cleanup requirements. Mr. Ray addressed the purpose of the conference and the possible alternative of performing cleanup of Runit first in order to determine resources remaining for use on other islands of the atoll.

3. The chairman briefly reviewed the background of the cleanup, the cleanup requirements, the plan of operations to achieve cleanup, and the specific problem relating the scope of work on Runit to total resources and the availability of resources for cleanup of other islands (enclosure 3). Mr. McCraw questioned the FCDNA position that cleanup of all soil contaminated to levels of greater than 400 pCi/g is mandatory and has priority over cleanup of contamination levels between 40 and 400 pCi/g. Mr. McCraw stated that the intent of the AEC Task Group had been to place both conditions at equal priority so long as resources were available. LTC(P) Sanches read an extract from the AEC Task Group report on this subject (enclosure 4). (More explanation of enclosure 4 can be found on pages 8 & 9 of Appendix III.) (See also enclosure 7) The chairman reiterated the FCDNA position and the fact that resources are constrained, limiting the total amount of work which can be done. This condition forces consideration of reducing the scope of work involved on Runit and the placing of priorities on tasks considered to firm requirements.

4. Dr. Bramlitt reviewed the available data, how the data was obtained and showed views of the island as it appeared during test operations and as it appears now. Printed data is enclosure 5. There were discussions of Plutonium/Americium ratios, plutonium 238 to plutonium 239/240 ratios and uranium contamination levels. Dr. Bramlitt reviewed the work done on the Erie test site and sampling methods used on areas of southern Runit.

•

1.4

5. The chairman asked participants to consider the question of what can be concluded from the available data and whether that data can lead to a better definition of the scope of work under conditions prevailing on Runit Island. There were discussions of the methods used to obtain available data; the relative degree of preciseness of aerial in-situ survey and van in-situ survey. The aerial survey technique integrates readings over approximately one hectare each second to approximately three centimeters depth. Aerial survey isopleth lines are probably limited to an accuracy of ± 100 feet. The in-situ survey integrates over a field of view of 68.8 feet diameter and approximately three centimeters depth. It was concluded that the data presently available would not support refinement of the scope of work involved. Further data is highly desirable.

6. The chairman then addressed the obtaining of such data. There was discussion of methods of measuring both surface level and subsurface contamination levels and the specified removal criteria. Mr. McCraw read extracts from the four removal criteria contained in the operations plan (OPLAN 600-77) (encl 6). Miss Barnes stated that it would be impossible to reach even the 50 percent confidence level of not having missed significant subsurface contamination without doing much more profile sampling. A lower density of measurements would result in lower confidence in the estimate and a greater error term. For example, to find a particular region of contamination two feet wide, under worst case with the seam parallel to the grid lines, would require sampling every four feet. To provide such characterization would require commitment of substantial resources.

a. If the characterization is done on a simple yes-no criteria i.e. contamination exceeds a specified level, the sampling need not be so precise. Using the highest contamination level recorded on the island, 3200 pCi/g, Dr. Crites demonstrated a calculation showing that a pocket of contamination which would average greater than 400 pCi/g over a 21 meter (68.8 ft) field of view would be approximately seven meters in diameter. Thus sampling on a grid of less than seven meters should locate such a minimum pocket size subsurface contamination of interest (see also encl 8).

b. There was discussion on the one half distance technique for determining the presence or absence (yes-no) of subsurface contamination. Available data indicates only a few sample locations showing subsurface contamination at greater than 400 pCi/g levels. Sample locations are spaced on approximately a 200 foot grid. Moving one half the distance between greater than and less than sample points iteratively should provide boundary definition of contamination areas of interest (see encl 8). This investigation would be limited to those areas where

2

available data indicates high subsurface contamination levels, thus reducing the effort involved. The "7 meter" criteria would set the lower bound of the iterative half distance.

7. There were discussions of techniques for taking profile samples centered primarily on advantages of backhoe versus auger. During the Erie test area investigation 40 sample sites were completed in about 10 days using the backhoe. This was accomplished in spite of the delay imposed by operating in anti-contamination clothing as required by rad-safe procedures. It was concluded that the backhoe was probably faster and provided more precise sampling.

8. The chair requested participants to address the northern half of Runit as three distinct areas, the Cactus crater area, a central area, and the Fig/Quince area, and what sampling should apply to each. The consensus was that the Cactus area, showing high levels of subsurface contamination should be treated as is the Fig/Quince area, i.e., one half distance yes-no sampling in the vicinity of locations showing high subsurface contamination. The background history of the central area provides no reason to suspect high subsurface contamination in that area. Therefore, sampling in this area should be limited to a few confirmatory samples sites in areas not covered by the available data. (This probably amounts to something on the order of 20 sites or less.)

9. The ejecta (lip) of Cactus crater presents a special problem. Past history and available data tend to indicate that there may be high subsurface contamination below the pre-detonation surface level. This level is now buried under the ejecta. This condition lead to a brief explanation of the cratering operation and the possible extent of the area to be covered by the entombment. Consensus was that this area should be considered after a better knowledge of the extent of the area to be covered is gained. If the area is to be covered by cement/soil mixture no further sampling is needed. If it is not to be covered, then sampling should be done to confirm presence or absence of greater than 400 pCi/g contamination levels, both in the ejecta and below the pre-detonation surface.

10. The method of analysis of samples was discussed. It was agreed that a gross alpha count was probably the fastest and simplest method to obtain the yes-no answer sought. This would not define the isotopic contamination content but would provide a base to be supplemented by radio-chemistry analysis which would provide the isotopic content and should be correlatable to gross alpha count for any specific area.

3

۱

jî.

11. Discussion turned to sampling increment to be utilized. Increments discussed included the averaged 10 centimeter depth used for most of the available data; averaged 20 centimeter depth, based on a nominal 6-inch cut capability for a dozer; and 20 centimeter increments with a specific 5 centimeter sample from each increment. The operations plan specifies 5 cm sample depth because of past experience at Nevada Test Site. Five centimeter depth samples will be the basis for certification of the condition of the islands upon completion of cleanup. Discussion included the advantages and disadvantages of horizontal averaging versus vertical averaging for sampling. Consensus favored vertical averaging. Discussion also included the capability of the laboratory to analyze the samples produced. Maximum capability would be about 150 samples per day for gamma scan and gross alpha count plus about five percent radiochemical analysis. This level would not permit support of other operations. Other operations could be supported at levels of 50 samples per day input. It was agreed that gamma scan of samples at the laboratory could be used to select samples for analysis. Only the "hot" samples would be analyzed. Other samples would be held for future use depending on the outcome of the "hot" samples analysis. This technique was favored over using gamma scan on sample site sidewalls and only sampling "hot" areas (see encl 9). This concluded the first day's discussion.

12. Discussion resumed on 5 October. The chair outlined the two incremental sampling techniques discussed and proposed adoption of 20 cm sampling increments with a discrete 5 cm sample to be taken from each 20 cm increment. This technique should suffice for characterization and may also meet some certification requirements. The proposal was accepted.

13. The chair requested the group consider depth to which sampling should extend. Consensus indicated that a depth of 120 cm generally will suffice but that the option to go deeper should be left to field personnel. It may be particularly desirable to go to greater sampling depths in areas of ground zeros, in burm or mound areas, and in ejecta areas near Cactus crater. The backhoe may not suffice for some of these depths (greater than 10 feet) and other equipment may be required.

14. Discussion reverted to the sampling grid to be used for characterization. Mr. Church proposed, for consideration, a 10 meter grid for the "hot" areas (Fig/Quince and Cactus crater areas), and a wider spaced grid for the "cool" area in between. Several members indicated their support for the half distance technique for initial exploration with grid size to be decided later based on data obtained from initial efforts. This lead to extensive discussion of desire for data versus reasonable expenditure of resources and purpose and extent of characterization. The chair maintained that characterization should be limited to determining the extent of known subterranean pockets and the extent of surface contamination areas. The effort should not extend to exploration to locate other

possible subterranean pockets. Mr. Church stated that the available data was not extensive enough to support a contention that other pockets did not exist. For purposes of certification there would have to be additional data taken. The same method of obtaining data for certification applies to all islands. This consists of in-situ and surface soil sample surveys, and investigation of suspected burial sites, supplemented by selected soil profiling data. Obviously, the greater the density of soil sampling profile data, the lower the chance of being surprised later in the cleanup.

a. After extensive discussion, the following was proposed and accepted. The northern half of the island will be gridded on a 50 meter grid. The "cool" area will be sampled first in order to characterize the areas to be used for stockpiling of soil and debris from other islands. Approximately 16 to 50 sample sites will be required, depending on initial findings. Areas are to be decided based on stockpile locations. Sampling transects should be cut through the mounds in this area to characterize the contents thereof. Characterization of the extent of subsurface pockets can use an adaptation of the one half distance technique, working along the 50 meter grid lines. Density of other sampling in the "hot" areas can be decided on basis of data obtained from the "pocket" investigation.

b. Use of the standard 50 meter grid will permit use of data obtained during characterization for consideration for certification. Although Runit will be no different in method for certification, the history of the island and available data do indicate a probable requirement for higher density survey than may be required for other islands. This led to a discussion of the advantages and disadvantages of placing contaminated stockpiles on relatively uncontaminated areas. It would generally be better to put contaminated stockpiles in areas known to be contaminated to similar or higher levels. The "cool" area requires relatively few sampling sites and to place the contaminated stockpile in the "hot" area may interfere with the characterization effort.

15. It was agreed that when resources permit it would be highly desirable to use one IMP to further refine the area of surface contamination to be removed. These areas are defined, in the Fig/Quince area, by aerial survey contours. The Cactus crater area is not defined. In-situ survey refinement would assist considerably in refining the estimates of area, and thus volume, to be excised. Mr. Church proposed to use the IMP only to move in toward "hot" areas and define the periphery of those areas over 400 pCi/g. This would not be a full survey but would refine the area boundries and would avoid risk of high contamination of the IMP. There was discussion of use of this "peripheral" technique as compared to a full survey. It was agreed that the peripheral technique would not totally

1

5

A state of the second seco

define the surface area but certainly should provide better estimating data than the aerial survey. Used on the grid lines the characterization effort would be directly applicable to the full survey for certification and, thus, is not wasted effort.

16. It was recommended by Mr. Doles that the FRST and field instruments be used to search the Fig/Quince area for very localized "hot spots" and "chunks". Removal of such spots, by shovel and bagging techniques, could contribute measurably to reducing the areas measured to be over 400 pCi/g by in-situ survey. This should be done prior to soil profiling and in-situ survey. It appears that the overlap period for FRST members would be an excellent opportunity to conduct this effort. It would contribute to training with a meaningful effort. This may also apply to soil profiling efforts.

17. The question was raised whether soil profiling in known hot pocket areas would disturb the validity of the in-situ survey. It was concluded that it probably would not. It would be desirable to perform the in-situ survey before soil profiling but this is not an absolute necessity. "Hot" piles from soil profiling can be shielded from the IMP view.

18. The cost in resources and time required was addressed. It was generally agreed that these costs can not be accurately assessed at this time. Density of profiling efforts and of the in-situ survey effort depends, to some extent, on the initial data obtained. However, the effort does not appear to be excessive. Additionally, as proposed for conduct it largely contributes directly to effort required anyway for certification. Thus only minimal resource expenditure is devoted exclusively to the characterization effort. The efforts which may not be directly contributory are the delineation of the subterranean pockets and the FRST pick up of "hot spots".

19. Mr. Doles asked what priority would be given to this characterization operation. He indicated that without some priority the operation would be only sporadic and require a long time. The chair replied that this operation should receive the same priority as the beginning of cleanups on Lujor and Boken. Hopefully assets available would permit simultaneous work on cleanup and characterization. Mr. Doles expressed concern that much time would be wasted unless the characterization effot had priority on logistic support, particularly boat transportation support. The chair stated that priority within reason would be afforded to ensure as smooth an operation as possible under circumstances existing on the atoll. 20. The group discussed time frames and future meetings. It was agreed that 90 days appeared to be a reasonable target for obtaining data for the characterization. Data only for certification could be obtained during cleanup of Runit. The group would plan to meet again, at the call of the Chairman, after the characterization data is available.

21. The chair addressed the question of "plowing" to further homogonize Runit soil, thus reducing the "hot spot" concentrations. Mr. Yoder stated that cleanup experience so far indicates that we have had to go back repeatedly to cleanup to new, lower levels. Plowing will simply make such future cleanup more difficult and he strongly recommends against plowing. Further discussion indicated that plowing generally tends to lower average concentrations, and if the primary problem is air resuspension, plowing may help. However, in the specific case of Runit plowing might result in increasing surface levels by bringing subsurface contamination to the surface. This condition would be worse than doing nothing. It was generally agreed that plowing should not be used to meet cleanup criteria. After cleanup plowing may be considered to further reduce concentration in "hot" areas. However, if plowing is used, for any reason, it must be fully justified and defensible. Plowing should in all cases be kept shallow, on the order of six inches.

22. The concept of limiting disposal soil quantities by spreading lower level contaminated soil from other islands on Runit was discussed. It was agreed that leaving such soil uncontained on Runit was preferable to leaving it on other islands of greater potential benefit. If this concept is used the soil should not be spread on Runit. The soil should, instead, be used to fill in holes, left by cleanup of Runit, and/or left in one stockpile. Whichever is done the area should be clearly identified and delineated for future reference. A re-assay of the soil would be necessary for certification purposes.

23. The group indicated a consensus that amounts of soil excised, amounts of soil entombed, and amounts of soil left uncontained should be recorded. An estimate of the curie content of activity entombed and left uncontained should be recorded for future use. This could be done by sampling truckloads and estimating content thereof.

24. The chair thanked the attendees and outlined his plan for report and minutes submission. The conference adjourned.

Ol OT PP PP MESSAGE HANDLING INSTRUCTIONS NO FROM: FCDNA KIRTLAND AFB NM/FCL TO: AFRRI WASHINGTON DC/RPC/LTC STILL DNA WASH DC/LGEC/MR STEVENS DR ROBERT E. YODER, DIRECTOR, HEALTH, SAFETY AND ENVIRONMENT, ROCKWELL INTERNATIONAL ATOMICS INTERNATIONAL DIVISION, ROCKY FLATS PLANT, PO BOX 464 GOLDEN CO 80401 MR. ARDEN E. BICKER, MANAGER, ENVIRONMENTAL SCIENCES DEPARTMENT (MAIL STOP 709) AND MR. ALFRED W. WESTERN DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:	Ì	PAGE	DRAFTER OR PELEASERTIM	FREC	EDENCE INFO	LME	CLASS	CIC	FOR MESSA	GE CENTER/CO	DATE - TIME	MONTH	HTY
Indext Mathematical State Handling Instructions NO FROM: FCDNA KIRTLAND AFB NM/FCL To: AFRRI WASHINGTON DC/RPC/LTC STILL DNA WASH DC/LGEC/MR STEVENS DR ROBERT E. YODER, DIRECTOR, HEALTH, SAFETY AND ENVIRONMENT, ROCKWELL INTERNATIONAL ATOMICS INTERNATIONAL DIVISION, ROCKY FLATS PLANT, PO BOX 464 GOLDEN CO 80401 MR. ARDEN E. BICKER, MANAGER, ENVIRONMENTAL SCIENCES DEPARTMENT (NAIL STOP 709) AND MR. ALFRED W. WESTERN DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECERTICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USER0A WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:	-]	01 _{of} 07		PP	PP	1						SEP	T
FROM: FCDNA KIRTLAND AFB NM/FCL TO: AFRRI WASHINGTON DC/RPC/LTC STILL DNA WASH DC/LGEC/MR STEVENS DR ROBERT E. YODER, DIRECTOR, HEALTH, SAFETY AND ENVIRONMENT, ROCKWELL INTERNATIONAL ATOMICS INTERNATIONAL DIVISION, ROCKY FLATS PLANT, PO BOX 464 GOLDEN CO 80401 MR. ARDEN E. BICKER, MANAGER, ENVIRONMENTAL SCIENCES DEPARTMENT (MAIL STOP 709) AND MR. ALFRED W. WESTERN DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:	-	NO					MESSA	GE HAND	LING INSTRUCTI	ONS			
 FORME FORMER FOR THE STREET OF THE STREET OF	-			FRC		FCDN	IA KIRTI	AND AF	B NM/FCL				
 TO: MINIT MANATORIA DOTA OFTA OFTA OFTA OFTA OFTA OFTA OFTA O				110	,,,,,	ΔΕΡΠ	THACH T	NGTON		STU	•		
DRA WASH DE/EGEC/MA STETCHS DR ROBERT E. YODER, DIRECTOR, HEALTH, SAFETY AND ENVIRONMENT, ROCKWELL INTERNATIONAL ATOMICS INTERNATIONAL DIVISION, ROCKY FLATS PLANT, PO BOX 464 GOLDEN CO &0401 MR. ARDEN E. BICKER, MANAGER, ENVIRONMENTAL SCIENCES DEPARTMENT (MAIL STOP 709) AND MR. ALFRED W. WESTERN DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:		·		•	10:	DNA	WASH DO		MD STEVENS	JILL			
EN NOUENT E. NOUENT, DIRECTOR, DIRECTOR, MEALTH, SMIELT AND ENVIRONMENT, ROCKWELL INTERNATIONAL ATOMICS INTERNATIONAL DIVISION, ROCKY FLATS PLANT, PO BOX 464 GOLDEN CO 80401 MR. ARDEN E. BICKER, MANAGER, ENVIRONMENTAL SCIENCES DEPARTMENT (MAIL STOP 709) AND MR. ALFRED W. WESTERN DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501					•	תחע ם פח		· V0ng			SAFETY AND		
INTERNATIONAL DIVISION, ROCKY FLATS PLANT, PO BOX 464 GOLDEN CO 80401 MR. ARDEN E. BICKER, MANAGER, ENVIRONMENTAL SCIENCES DEPARTMENT (MAIL STOP 709) AND MR. ALFRED W. WESTERN DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501						ראו באו			ACTION ANT	CONATIONAL	ATOMICS		
INTERNATIONAL DIVISION, ROCKY PLATS PLANT, PO BOX 464 GOLDEN CO 80401 MR. ARDEN E. BICKER, MANAGER, ENVIRONMENTAL SCIENCES DEPARTMENT (MAIL STOP 709) AND MR. ALFRED W. WESTERN DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:						En		INT, RU	UNICION D	OCHY FLATS	DIANT		
MR. ARDEN E. BICKER, MANAGER, ENVIRONMENTAL SCIENCES DEPARTMENT (MAIL STOP 709) AND MR. ALFRED W. WESTERN DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501						10	DOV 40		DIVISION, K	OUNT FLAIS	PLANI,		
MR. ARDEN E. BICKER, MANAGER, ENVIRONMENTAL SCIENCES DEPARTMENT (MAIL STOP 709) AND MR. ALFRED W. WESTERN DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501						PU	BUX 46	GULD	EN CO 804				
DEPARTMENT (MAIL STOP 709) AND MR. ALFRED W. WESTERN DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501						MR.	ARDEN E	BICK	ER, MANAGE	R, ENVIRON	MENTAL SULE	NCES	
DIRECTOR, FIELD OPERATIONS (MAIL STOP 235) REYNOLDS ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTA:						DE	PARTMEN	(MA1	L STOP 709) AND MR.	ALFRED W. W	ESTERN	۱,
ELECTRICAL & ENGINEERING, INC., PO BOX 14400, LAS VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:						DI	RECTOR,	FIELD	OPERATION -	S (MAIL ST	OP 235) REY	NOLDS	
VEGAS, NV 89114 DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:						EL	ECTRICA	L & EN	GINEERING,	INC., PO	BOX 14400,	LAS	
DR. TOM CRITES, LAWRENCE LIVERMORE LABORATORY, PO BOX 808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:						VE	GAS, NV	8911	4				
808, LIVERMORE CA 94550 MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:						DR.	TOM CRI	TES, L	AWRENCE LI	VERMORE LA	BORATORY, P	O BOX	
MISS MADELINE BARNES, DESERT RESEARCH INSTITUTE, LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501		· •				80	08, LIVE	RMORE	CA 94550		·		
LAS VEGAS, NV USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501						MISS	MADELI	NE BAR	NES, DESER	T RESEARCH	INSTITUTE,		
USERDA WASH DC/AES/TOM MCCRAW MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:						LA	IS VEGAS	, NV					
MR. AL DOLES, VICE PRESIDENT, EBERLINE INSTRUMENT CORP PO BOX 2108, SANTA FE, NM 87501 DISTR:						USER	RDA WASH	DC/AE	S/TOM MCCR	AW	. · ·		
PO BOX 2108, SANTA FE, NM 87501						MR.	AL DOLE	S, VIC	E PRESIDEN	T, EBERLIN	E INSTRUMEN	T CORF	ç
						PO	BOX 21	08, SA	NTA FE, NM	87501	ل		
WALLE-TOP INTERIOR INTERIOR AND A STATE AND A STATE OF THE AND A STATE	D	ISTR:											
DRAFTER TYPED NAME, T										•			
	9 4	ana ta						ien Lei					846
		Tructo								•			
	2005 V003	GRAYSO	N D. TAT	E, JF	<u>R., B</u>	IG, U	SA, FC	4-451	5				-
GRAYSON D. TATE, JR., BG, USA, FC, 4-4515	חפרב	134	ipsil	$\lambda!$	10	171	1/-	S	UNCLASSI	FIED			
GRAYSON D. TATE, JR., BG, USA, FC, 4-4515 SIGNATURE HE SIGNATURE UNCLASSIFICATION UNCLASSIFIED	Ē	D FORM	1173 F	1011	A. RE	EPLACE	SPREVIOL	S EDITIO	N WHICH WILL E	DE USED.	a de la constante de la constan La constante de la constante de	PO- 1974-	

PAGE	OPASTER C -	PRECED	DENCE	LMF	CLASS	CIC	FOR MESSA	GE CENTER/C	OMMUNICATIO	NS CENTER	ON
	RELEASENTINE	ACT	INFO						DATE -	TIME NON	
02 OF 07	l				Messa	GE HANDL	ING INSTRUCT	IONS		SEP	<u>_</u>
NO											
		FROM	A:				•		-		
		T):	MR.	BRUCE	CHURCH,	, CHIEF, R	ADIOLOGIC	AL BRANCH	l,	
				В	IOENVIR	ONMENTA	AL SCIENCE	S DIV, US	ERDA, PO	BOX 1410	0,
	-			L	AS VEGA	S, NV	89114	*			
				MR.	MR. DONALD W. HENDRICKS, DIRECTOR, OFFICE OF RADIATION						
				Pl	ROGRAMS	, AND M	IR. DAVID	E. BERNHA	RDT, PROG	ram Mana	.GEI
				F	OR DOSE	ASSESS	MENT, US	ENVIRONME	NTAL PROT	ECTION	
				A	GENCY,	LAS VEG	AS FACILI	TY, PO BC	X 15027,	LAS VEGA	s,
				· N'	v 8911	4					•
				MR.	JEROME	DUMMER	R, HI GROU	P LEADER	(MS -401)	AND MR.	
				R	ICHARD	F. SMAL	.e, Assist	ANT HI [:] GF	ROUP LEADE	R, PO BO	X
				1	663, LO	S ALAMO	S SCIÈNTI	FIC LABOR	RATORY, LO	IS ALAMOS	• •
				N	M 875	45				•	
		IN	-0:	DIR	DNA WAS	H DC			•		
				FCD	NA LIAI	SON OF	C LAS VEGA	S NV/FCTO	CL		
				USE	RDA LAS	VEGAS	NV/ROGER	RAY			
				FCD	NA HICK	AM AFB	HI/FCLP			*	
				CJT	G ENEWE	τακ ατο	OLL MI/FCR				-
DISTR:		-			الي 7 من دوري ، بز مارين م				Ville Colourcey		
DRAFTER TYPED	NAME. TITLE. OFFI	CE SYMBO	DL. PHO	NE & DA	TE	SP	ECIAL INSTRUC	TIONS		- CONTRACTOR -	-
W IYPED N	AME. TITLE. OF	ICE SY	MBOL	AND	PHONE					-	
	HR.1	<u> </u>				SE	CURITY CLASS	IFICATION			
۳ ا	NNT					Ui	VCLASSIFIE	D			

PAGE	0046759.02	ACT INFOI	CLASS CIC	FOR MESSAGE CEN	TER/COMMUNICATIONS	CENTER ONL
	RELEASER INTE					SED 7
. <u>U3 орU/</u> Воок	<u> </u>		MESSAGE HANDLI	NG INSTRUCTIONS	<u></u>	
}						<u></u>
	:	FROM:				
		то:		. *		
UNCLAS						
SUBJ: C	CONFERENCE (ON RUNIT CLEAN	IUP			
1. THIS	S MESSAGE AI	NNOUNCES A CON	FERENCE TO B	E CONVENED AT	THE	
ENERGY R	RESEARCH ANI	D DEVELOPMENT	(ERDA) NEVAD	A OPERATIONS	OFFICE,	
LAS VEGA	S. NEVADA.	4-5 OCT 1977.	. CONFERENCE	WILL BEGIN A	T 0830.	
A OCT	ADDDECCEEC	ARE DEGUESTER	TO ATTEND	· · ·		
2 DUD	NOCE OF THE	CONCEDENCE TO	TO EVANTAR	MEANS OF MEET	INC	
2. PURP		NODE DEFINIT		MEANS OF MEET		
REQUIREM	ENIS FOR A	MORE DEFINITE	, QUANIIIAII	VE CHARACTERI		
OF THE S	COPE OF WOR	RK INVOLVED IN	I THE RADIOLO	GICAL CLEANUP	- UF	
RUNIT IS	LAND.		<u>}</u>	,	· · · ·	
3. BACK	GROUND:					
A. DIRE	CTOR DNA HA	AS BEEN DESIGN	NATED AS THE	DOD PROJECT M	ANAGER	
FOR THE	CLEANUP OF	THE ENEWETAK	ATOLL. THE	ERDA IS RESPO	NSIBLE	
FOR RADI	OLOGICAL SU	UPPORT. THIS	INCLUDES DEF	INING AND REC	0M-	
MENDING	TO DNA THE	AREAS WHICH (QUALIFY FOR R	ADIOLOGICAL C	LEANUP;	
DEFINING	AND RECOM	MENDING THE VO	DLUME OF SOIL	TO BE REMOVE	D (ALL	
WITHIN T	HE GUIDELI	NES SPECIFIED	IN THE ENVIR	ONMENTAL IMPA	ст	
DISTR:		ر بر				
						•
DRAFTER TYPED	NAME, TITLE, OFFICE	SYMBOL PHONE & DATE	SPE	CIAL INSTRUCTIONS		
E TYPED NA	ME. TITLE, OFFI	CE SYMBOL AND PH	DNE			
SIGNATU	REJ. D. A		SEC	URITY CLASSIFICATI	0N	
Ĕ	MAY			UNCLASSIFIE	D	

	PAGE	DRAFTERDR	PHECEDENCE	LME	CLASS	<u> </u>	FOR MESGAGE	CENTER/COM	MUNICATIONS C	ENTER ONLY			
<u> </u>	01 07	RELEASEPTINE	ACT INFO	4					DATE TIME	SEP 7			
	04 07 800x				MESSAC	GE HANDL	ING INSTRUCTION	5	L				
			FROM:					-					
	STATEMEN	IT (EIS) A	то: ND FCDN/	A OPLA	N 600-7	'6); AN	D CERTIFYIN	G THAT					
	CLEANUP	HAS BEEN	COMPLETE	D IN	ACCORD	WITH T	HOSE GUIDEL	INES.					
	B. IN A	PPROVING	THIS OPE	ERATIO	IN, THE	CONGRE	SS LIMITED	RESOURCES		• ·			
	TO AN AP	PROPRIATI	07 OF \$2	20 MIL	LION PL	US ERD	A AND DOD AS	SSISTANCE					
	ERDA IS	PROVIDING	RADIOL	GICAL	. SUPPOR	T. TH	E MILITARY	SERVICE					
	COMPONEN	ITS ARE PR	OVIDING	MEN A	ND EQUI	PMENT	FOR OPERATIO	DNS; DNA					
IS PROVIDING FUNDING FOR CAMP OPERATIONS AND PERSONNEL FOR													
PROJECT DIRECTION. THIS OPERATION IS ONE OF SEVERELY CONSTRAINED RESOURCES WHICH MUST JUDICIALLY BE EXPENDED TO MAXIMIZE THE									IED				
	BENEFITS	TO BE OB	TAINED.	FOR	EXAMPLE	, THE	METHOD OF D	ISPOSAL C)F				
	CONTAMIN	ATED MATE	RIAL REG	UIRES	PROCUR	EMENT	OF CEMENT.	IF THE					
	VOLUME O	F CONTAMI	NATED SO)IL E)	CEEDS T	HE EST	IMATED QUAN	TITIES,					
	MONEY MU	ST BE REA	LLOCATE) FROM	SOME O	THER T	ASK TO PROC	JRE MORE					
	CEMENT.									•			
	C. THE	ENEWETAK	CLEANUP	GUIDA	NCE DOC	UMENTS	REQUIRE CE	RTAIN					
	MANDATOR	Y TASKS:	DISPOS	AL OF	HAZARDO	NUS, NO	NRADIOACTIV	E DEBRIS;					
	DISPOSAL	OF RADIO	ACTIVE (DEBRIS	; EXCIS	ING BU	RIAL SITES (on Aomon					
	DISTR:												
					•								
-						•			·				

| |

TYPED NAME. TITLE. OFFIC	CE SYMBOL AND PHONE		
SIGNATURE		SECURITY CLASSIFICATION UNCLASSIFIED	
DD 1 DEC 70 173	REPLACES PREVIOUS EDIT	TION WHICH WILL BE USED.	
n na serie de la construcción de la La construcción de la construcción d La construcción de la construcción d			سی د ی ی مسی د ی ی

PAGE	DRAFTEROR	PRECEDENCE	LMF	CLA55	CIC	FOR MESSAG	E CENTER/COM		NS IM	WONTH	VLY VLY
05 07	RELEASE	ACTINFO							-	SEP	7
UOOK UOOK	L	<u> </u>	I	MESSA	GE HANDI	I ING INSTRUCTIO	NS	L		4	i
	······								·		، بەلىكىنى تە
		FROM:					-				
		TO:									
ISLAND	(AND OTHE	ER BURIA	_ SIT	ES DISC	OVERED	DURING THE	OPERATIO	N);			
AND EXC	ISING OF S	SOIL CON	TAMIN	ATED WI	TH PU	239/240 TO	LEVELS	•			
GREATER	R THAN 400	PCI/G F	ROM L	UJOR, B	OKEN A	ND RUNIT IS	LANDS (AN	D			
OTHER A	REAS DISCO	OVERED DI	JRING	THE OP	ERATIO	N). AREAS	CONTAMINA	TED			
TO LEVE	LS LESS TH	IAN 40 P(CI/G	DO NOT	REQUIR	E CLEANUP.	CLEANUP	0F			
239/240	PU CONTAN	INATED S	SOIL	IN THE	RANGE	DF 40 TO 40	O PCI/G,	ON	•	·	
THESE A	ND OTHER I	ISLANDS,	IS T	O BE BA	SED ON	A CASE-BY-	CASE ANAL	YSIS			
GUIDED	BY COST BE	ENEFIT CO	DNSID	ERATION	s.						
O. THE	RADIOLOGI	CAL SIT	JATIO	N ON RU	NIT IS	LAND, AS PO	RTRAYED B	Y.			
AVAILAB	LE DATA, I	IS A HETE	EROGE	NEOUS A	DMIXTU	RE OF LAYER	S AND				
POCKETS	OF HIGH L	EVELS OF	- CON	TAMINAT	ION AB	OVE, BELOW,	AND BETW	EEN			
AREAS O	F RELATIVE	LY LOWER	R CON	TAMINAT	ION.	THERE MAY B	E MILLIGR	АМ			
SIZED P	ARTICLES C	F PU CO	ITAMI	NATION	SCATTE	RED IN SOME	AREAS.		-		
THIS HI	GHLY HETER	OGENEGUS	5 SIT	UATION	HAS LE	D TO AN UNC	ERTAINTY				
IN THE	VALIDITY C	F THE ES	STEMA		UME OF	SOTI TO BE	EXCISED				
FROM RU	NTT. BY S	OME EST	MATE	S. RUNT	T ACCO	UNTS FOR 80	PERCENT	•			
OF ALL	CONTEMTNAT	ED SOT		E EYCIS	ED ON	THE ATON	тня				•
									الجلدادين		
DISTH:											
DRAFTER TYPED	NAME, TITLE, OFFIC	E SYMBOL, PHO	NE & DA	p nætningthärte f FE	SP	ECIAL INSTRUCT	IONS		فيصوديه		

D	D 1 DEC 70 173	REPLACES PREVIOUS EDIT	ION WHICH WILL BE USED.	\$ CPO: 11
ЯE	1 ANT		UNCLASSIFIED.	
ÿ	SIGNATURE A A		SECURITY CLASSIFICATION	
S S	· · · · · · · · · · · · · · · · · · ·			

.

CPO: 1974--- \$50-27:

.

- (- 19				LAF	CLASS	CIC	FOP MESSAGE (ENTER/COMMU	VICATIONS	CENTER O	אני
- (07 (RELEASER THE	ACT INFO	-				'	DATE - TIME	SFP	+
	06 of 0/			<u> </u>	MESSAC	E HANDI	ING INSTRUCTIONS	I			Γ.
	-		FROM:					- 1			
			то:						•		
	UNCERTA	INTY IN T	HE VALID	ITY O	F ESTIM	ATED S	DIL VOLUME LI	EADS TO			
	UNCERTAI	INTY IN T	HE SCOPE	OF W	ORK INV	DLVED	IN THE CLEAN	JP OF			
	PHNIT	THIS COM	BINED WI	гн сол	NSTRAIN	ED RES	OURCES, INDU	CES			
	LUCEDIA:	THEY IN D	LANNING J	EU3 8	ESOURCE	S WHIC	H MAY RE AVA				
			TUED TOL		NE CREAT	FER RE	NEFIT TO THE			-	
	FUR LLEP		INCK ISL	1000	UT UNER						
	ENEWEIA	C PEUPLE.				DEVICE	ע דעב החבכבאי				
ľ	4. THIS	5 CONFERE	NCE WILL	BE A	SKED LU	REVIE	N THE PRESEN				
1	AVAILABU	LE RUNIT	RADIOLOG	ICAL	DATA, A	DVISE	AS IU WHETHE	R ADDI-			
	TIONAL E	DATA WILL	ASSIST	IN RE	FINING	THE SC	OPE OF WORK,	AND			
	RECOMMEND METHODS AND RESOURCES INVOLVED IN OBTAINING SUCH										
	ADDITION	IAL DATA.	PERTIN	ENT I	NFORMAT	ION IS	BEING FORWA	RDED TO			
	CONFERE	ES FOR RE	VIEW PRI	OR TO	THE CO	NFEREN	CE.		•		
	5. SING	CE BOTH R	ADIOLOGI	CAL A	ND OVER	ALL CL	EANUP RESOUR	CES WILL			
Ì	BE EFFE	CTED BY T	HE DISCU	SSION	,FCDNA,	AS A	REPRESENTATI	VE OF		•	
.	THE OVE	RALL PROJ	ECT MANA	GER,	WILL CH	AIR TH	IS CONFERENC	E. COL			
	CHARLES	J. TREAT	HAS BEE	N DES	IGNATED	AS CH	AIRMAN. CON	FEREES	1		
	NEEDING	ASSISTAN	CE AT ER	DA, L	AS VEGA	s, sho	ULD CONTACT	MR. ROGER			
D	ISTR:					ang na siluates					-

;

PARTICIPANTS

AGENCY

LASL

USEPA

LLL -

FCDNA

USDOE

Rockwell

Eberline

USDOE/NV

AFRRI/DNA

EPA/ORP

REECO

REECO

FCDNA

FCDNA

DOE/NV

HQ DNA

DOE/NV

DOE/NV

DOE/NV

DOE/NV

DOE/NV

EGG

FCDNA

JTG, FCDNA

EMSL-LV/EPA

DRI

OBSERVERS

DRI

NAME

Richard F. Smale Donald W. Hendricks Robert E. Yoder Thomas R. Crites Edward T. Bramlitt Tommy F. McCraw A. E. Doles Bruce W. Church David E. Bernhardt Edwin T. Still, Lt Col, USAF Arden E. Bicker > Alfred W. Western Madaline Barnes Charles Treat, COL, USA

Grayson D. Tate, JR. BG, USA Roger Ray M. E. Stevens H. N. Friesen Edwin N. Dodd, Jr, LTC, USA Ernest D. Campbell John V. Hemler, Jr, COL, USA John Moroney Phlip Lyberg

Don R. Martin John Tipton John Stewart Paul J. Mundra Ron Spencer

Manuel L. Sanches, LTC (P), USA

FCDNA

FCDNA

TELEPHONE NO. (505) 667-7137 (702) 736-2969 (303) 497-2206 (415) 447-1100 x 3854 (505) 264-6487 (301) 353-3721 (505) 471-3232 FTS 598-3181 FTS 595-2969 Local 796-29 av comm 202-295-0227 FTS 546-9810 FTS 546-2571 (702) 734-3277 (505) 264-7236

(505) 264-4515 FTS 598-3553 (202) 325-7132 (702) 734-3277

FTS 598-3181 (505) 264-0681 FTS 598-3181 comm 736 FTS 595-2969 x-374 FTS 598-3237 FTS 598-3237 FTS 598-3306 FTS 598-3306 (505) 264-4515 AV 964-4515 (505) 264-6326

Ence 2 & Encl

RUNIT CLEANUP CONFERENCE

AGENDA

0830 4 OCT 77

1. INTRODUCTION -

2. BACKGROUND

3. PROBLEM

4. DATA REVIEW -

5. DISCUSSION

Incl 3- to Incll

INTRODUCTION - COL Treat 1. BACKGROUND/REQUIREMENT/PLAN - COL Treat 2. BACKGROUND а. Enewetak Evacuated - 1947 View Tests 1947 thru 1958 Graph Runit worst - 18 tests Return to TTPI - 1972 Auth for Cleanup - 1976 Limitations - 20 or + b. REQUIREMENT 1. Hazardous nonradioactive debris View 2. Radioactive debris Graph 3. Burial site(s) 4. >400 pCi/g - mandatory (NBLB) 5. 40-400 pCi/g - case by case <40 pCi/g - no action 6. c. PLAN 1. Classify debris 2. Clear brush 3. Rad measurement (survey) View 4. Excise soil Graph 5. Re-survey 6. Excise soil 7. Etc: to level 8. Concurrent - burial sites 9. Move to Runit - radioactive 10. Dump nonradioactive Stockpile & dispose (crater) 11. **3.** PROBLEM a. Runit vs Resources b. Heterogeneous = uncertainty View c. Volume - 80% or 63,000 cu yd vs 16,000 cu yd. Validity Graph d. Uncertainty \rightarrow uncertainty Can we get better definition of scope of work - within е. reasonable expenditure of resources. Recommend - method f. size of effort DATA REVIEW 4. Runit a. Pace data b. EPA data Map c. NVO - 140 data d. Crater area e. "Clean area" f. Fig/Quince area 5. OPEN DISCUSSION a. Can we get definition b. How (method(s)) c. Cost (Resources)

options. The numerical guidance therein should be reduced by the factors of 50 percent for individual exposure and 20 percent for gonadal exposure considering that exposures cannot be precisely predicted. The detailed rationale for these reductions is provided in Appendix III. The resulting guides for planning cleanup actions will then be:

whole body and bone marrow -	0.25 Rem/yr
Thyroid -	0.75 Rem/yr
Bone -	0.75 Rem/yr
Gonads -	4 Rem in 30 vr

• Since there is no adequate scientific information which would support general guidance for cleanup of plutonium contaminated soil, guidance can only be developed on a case-by-case basis using conservative assumptions and safety factors. With this in mind, the Task Group recommends the following for use in making decisions concerning ²³⁹Pu cleanup operations at Enewetak:

a. < 40 pCi/gm of soil - corrective action not required.

b. 40 to 400 pCi/gm of soil - corrective action determined on a case-by-case basis* considering all radiological conditions.

c. > 400 pCi/gm of soil - corrective action required.

ASSESSMENT OF DOSES AND THE RESULTS OF ALTERNATIVE CORRECTIVE ACTIONS

The Task Group approach for development of judgments and recommendations for the radiological cleanup and rehabitation of Enewetak was to consider a number of alternatives for exposure reduction that may be feasible. Basically, the procedure involved four steps:

*See Appendix III for additional guidance.

Encl 4 to Encl 1

	عرق TTO ج کلمظیر		·
- ISLAND	P/A	P/E	P(1)/P
ALICE	2.83 <u>+</u> 0.12	3.97 <u>+</u> 0.17	0.088±.007
BELLE	3.78<u>+</u>0.1 9	4.70 <u>+</u> 0.13	0.11<u>+</u>.00 6
CLARA	4.18<u>+</u>0.6 4	5.36 <u>+</u> 0.32	0.12±.014
DAISY	4.12 <u>+</u> 0.42	5.08<u>+</u>0.1 6	0.12± 003
EDNA	3.34+0.15	5.96 <u>+</u> 0.37	
IRENE	7. 69 <u>+</u> 0.45	3.65 <u>+</u> 0.13	0.43±.03
JANET	3.06 <u>+</u> 0.074	5.10 <u>+</u> 0.11	0.062
KATE	2.84<u>+</u>0.08 4	4.70 <u>+</u> 0.26	
MARY	2.77 <u>+</u> 0.092	5.76 <u>+</u> 0.29	
NANCY	2.30+0.067	4.70 <u>+</u> 0.17	
OLIVE	3.04 <u>+</u> 0.13	5.76 <u>+</u> 0.34	0.23 <u>+</u> .031
PEARL	6.79 <u>+</u> 0.47	4 .92<u>+</u>0.3 0	0.46+0.036
PERCY	2.78 <u>+</u> 0.14	5.05 <u>+</u> 0.47	
RUBY	8.7/ <u>,+</u> 1.80	1.49 <u>+</u> 0.073	0.11
SALLY	5.93<u>+</u>0.9 4	5.04 <u>+</u> 1.52	0.021 <u>+</u> .0035
TILDA	2.77 <u>+</u> 0.30	6.58 <u>+1.50</u>	
URSULA	2.73+0.14	4.27 <u>+</u> 0.28	
VERA .	2.76+0.23	5.53 <u>+</u> 0.41	
WILMA	2.81 <u>+</u> 0.21	6.17 <u>+</u> 0.43	
S YVONNE	8.43 <u>+</u> 0.67	4.18±0.49	0 . 39 <u>+</u> .013
N YVONNE	12.2 <u>+</u> 0.84	21.2 <u>+</u> 13.6	0.072+.022
-			

ENGL 5 & ENCLI

USAF - EPA							USAF - EPA	
DEPTH (cm)	11	11-2	12-1	, 12 -2	12-3		DEPTH (cm)	16
0 - 1	NV	3.6	NV	NV	NV	•	0 - 2.5	800
0 - 2.5	1.7	נ.58] ער	NV	68	28		30 - 31	[<.01] 700
0 - 5	[.09]	NV	600	[.57]	[.5/]		31 - 32	03]
1 - 2		4.6	[.55]				32 - 33	[.02] 170
2 - 3		8.7					91 - 92	2500
3 - 8		[.50] 5.2 [.46]					122 - 123	[.02] 3200 [.02]
s - 14		6.4 [.34]						[]
14 - 20		7.8						

÷, 1

CACTUS : .5BLACTFOOT : .26 FRO/SWINCE : .03 [] = Pu-238/Pu-239+240 ERIE : .4

.

\bigcirc	107	106	105	104	103	102	101
DEPTH (cm)			• .				
0 - 10	.3 (.055)	6.4 [.20]	4.2 [.12]	495	1,9 [.11]	5.1 [.11]	2.9 [.14]
10 - 20	1.8	11 (.062)	4.1	366	.1	1,9	1.4
20 - 30	.5	2.4	3.4	316	<.03	1.3	.04
30 - 40	.3 [.25]	.2	6.7 [.25]	294	<.01	.4 [.34]	.04
40 - 50	.03	.1	1.1	399	.03	•5 [•33]	.007
50 - 60	<.01	.04	.7	272	<.01	.7	<.03
60 - 70	<.02	.01	<.01	268	<.01	.4 [.37]	<.02
70 - 80	<.01	.03	<.03	442	<.01	<.07	<.03
80 - 90	<.01	<.005	<.03	441	<.01	<.08	<.02
90 - 100	<.007	<.005	<.05	794	NV	.06	<.04
100 - 110	.02	<.06	<.03	58	<.01	.07	<.03
110 - 120	NV	<.01	.05	36	NV .	[.15] <.007	<.01

() = Pu-240/Pu-239

<u>،</u> ،

AEC

.

• •	•	а Тар	Ч.		•	· · · ·	Α.	•
AEC						•		
\odot	146	1.45	144	• 143	142	141	140	
DEPTH (cm)				· •.				
0 - 10	38	9.0	11	117	3.8	72	6,2	•
10 - 20	[•07] 54	[.51] 3.3	20	181	.02	37	[.53] 5.0	
20 - 30	[.04] 150	. 5	45	3.4	.02	29	[.51] 2.2	
30 - 40	[.04] 83	.01	14	1.3	.01	20	3.2	•
40 - 50	[.04] . 36	.01	23	:.5	15	5.4	2.8	
50 - 60	[.09] 10	.01	55	.5	.03	2.5	4.1	
60 - 70	7.7	.01	22	.5	.05	2.9	5.6	
70 - 80	5.6	1.8	13	10	.09	2.9	4.8	
80 - 90	3.4	.001	12	34	. 6	2.1	3.7	
90 - 100	3,3	.01	10	51	.1	1.7	1.2	
100 - 110	2.7	.01	4.7	77	.2	1.4	1.5	
110 - 120.	2.9	. 02	10	10	2.2	3.0	.01	
110 - 120.	2.9	• 02	10	10	£ • £	7.0	• 0 エ	

.

. . .

. .

.

\bigcirc	139	138	137	136	135
DEPTH (cm)					
0 - 10	21	8.5	1.8	14	4.4
10 - 20	[.51] 26	[.50] 1.4	. 8	(.062) · < .04	(.070) 2.4
20 - 30	[.50]	[.18]	• 5	1.9	[.25] 1.6
30 - 40	1.8	[.18] .03	• 2	[.26] .6	[.25]
40 - 50	1.5	.02	.03	[.24]	[.24] 2.8
50 - 60	1.2	<.01	.03	.4	[.23] 3.0
60 - 70	.9	<.03	.01	.1	[.23] 4.9
70 - 80	.9	.04	.07	[.43] <.03	[.26] .3
80 - 90 .	1.4	.01	.02	.04	$\begin{bmatrix} 16\\ 1.3\\ -081 \end{bmatrix}$
90 - 100	23	<.01	.03	<.02	.4
100 - 110	3.6	<.01	.02	<.01	[.19]
110 - 120	43	<.01	.01	<:02	[.30] <.03

1,34

AEC

	•	• • • •	- 1 - 1	· .				, #		• .
2 4 1	AEC					•		ð	· .	•
	\bigcirc	134	133	132	131	130	129	128	126	125
	DEPTH (cm)			,						
	0 - 10	156	150	33	92	26	39	53	63	300
	10 - 20	[.26] 18	[.260] 8.9	(.061) 15	[.26] 98	(.061) 3.4	(.060) 18	(.059) 33	(.059) 2.8	[.05] 181
	20 - 30	[.22] 5.0	(.058) (.066) ¹	(.059) (.059)	[.26] 14	(.060)	((.060)	(.066)	[.બુક્યુ
* .	30 - 40	. 4	.1	.1	2.5	(.059) .06	(.060) .3	(.061) 26	(.080) .09	[.24] 30
	40 - 50	• 5	(.064) .07	(.050) .07	1.4	(.0G7) .03	[.22] .09	(.061)	(.114)	[.25] [2
	50 - 60	.3	(.178) .02 (.152)	(.046) ₁ (.036)	. б	(.055) <u>1</u>	[.48] .04	(.170)	(.057)	17
	60 - 70	• 8	<.02	.01	.3	.04	.04	.03	<.02	.5
	70 - 80	.4	.01	.02 (.046)	. 4	(.056) .002 (.079)	.01	.002	.001	1.0
	80 - 90	1.4	.04	.01	.03	.005	.03	.02	<.008	.3
	90 - 100		(.069)	(.104) .01	.1	(.0 <u>58</u>) .003	(:837)	(.065)	<.02	.00
	100 - 110	.2	(•056) •03	(.028) .005	.08	(.073) .001	(.068) .008	(.126) .02	<.01	NV
	110 - 120	.2	(.068) .02	(.036) .03	.1	(.027)	(.058)	.01	.01	.1

	с. :	6. 1997 - Angel 1997 - Angel Ang	•	•		· ·	e. p		
ALC			· · ·		•				
\mathbf{O}	124	123	122	121	120	119	118	117	116
DEPTH (cm)				· .					
0 - 10	52	2].	64	62	369	60	342	314	734
10 - 20	[01.] .8	(•054) •3	[.07] 51	(.055) 1.8	202	(.057)	[.02] 139	[12]	[.02].4
20 - 30	[.18]	[.20].1	[-94]	[.02]	29	[.03]	15	[.03] 250	16
30 - 40	[.19] 1.9	[.25] .09	[.22] 109	.2	3.2	.3	[.02]	[.02] 36	[.02] .1
40 - 50	[.19] .1	[.15] <.01	[.24] 3.3	.09	14	<.02	[.02] .9	[.07] 11	NV
50 - 60	[.14] .02	<.01	1.3	.1	4.1	<.02	.3	[.08] .9	.1
60 - 70	<.01	.06	.б	.03	1.4	<.02	.8	1.6	.0(
70 - 80.	.007	<.01	.3	<.01	.4	<.02	. 8	.6	NV
80 - 90	(.059) <.02	<.02	.07	<.01	. 6	.08	2.1	.6	.0]
90 - 100	.02	<.02	.03	.02	. 8	<.01	[.02]	.1	.0(
100 - 110	(.074) .07	.05	.04	.04	. 4	<.01	. 3	NV	.0(
110 - 120	.02	.04	.05	<.01	3.8	<.01	NV	.003	.0
120 - 130	(.051)						н Х	و.	
130 - 140	•							.01	

\$1.2

.

•	P	•		•		4		
AEC	115	114 .	113	112	111	110	109	108
DEPTH (cm)			,					
0 - 10	214	217	176	125	136	26	1.8	451
10 - 20	[.04]	[.02]	[.03]	128	(.055) 532	5.5	[.93]	193
20 - 30	[.17]	[.03] NV	[.02] 136	168	(.055) 20	10	[.03]	143
20 30	[.12]	. Ġ	[.03] 211	341	(.057) 182	6.2	.1	20
40 - 50	. 4	.7	[.02]	843	12	15	.02	5.9
40 = 50	9	. 4	[.02]	582	(.059)	8.9	.06	6.1
30 - 00	20	15	[.02]	840 ·	[.02]	34	.07	5.0
60 - 70	[.25]	[.03]	.05	185	[.19]	27	.1	4.6
70 - 80	[.26]		[.26]	50	[.19]	3.6	.03	4.3
80 - 90	26	9.8 [.03]	5,0	600	[.25]	. 5.3	.05	5.6
90 - 100	1.0	1.5	• 9	022	[:06]	1.8	.2	5.3
100 - 110	.05	• 5	•1	00		1 2	< 01	4.5
110 - 120	.008	2.9	.2	136	· NV	с • Л		
120 - 130				20		*		
130 - 140				30	•			
140 - 150				41				

• 1

•••••

			4 110001		· <		6.4500		3.4453	1	-0.000	· ····	61	105/115	YVONNE	
1	23.6000		5,9200		6 5050	•	11.5000		3.3825		-0.0000	-0.0000	61	115/125	YVONNE	•
•	38.90.00		5.9000	1. 14	0.9090		7.4400	•	3. 41 77	••••	-0.0000	-0.0000	61	125/135	YVONNE	1
. 1 .	24.3000		0.5100		······································	1.1	7 0 1 0 0		T. 1815			-0-0000	61	135/145	YVONHE	
<i>.</i>	8.9400		1.2100		0 2004		4 5 5 20		3. 22 94		-0.0000	-0.0000	61	145/15	YVONME	
•	4.6600		.5000	•	- 912099 6 7700		5080		7 7201		-0.0000	-0.0000	51	155/16	YVONNE	
	2.2300		•4660		9.7620		· · · · · · · · · · · · · · · · · · ·		7 1677		-0000000	-0.0000 -0.0000	61	168/17	YVONNE	· · ·
	1.8500		• 3 4 15 0		0.04640		•9370 7700		3 4031			-0.0000	61	175718	YVONNE	
	2.3000		+2660		8,6466		+0700		47 2110		-0.0000	- 4620	101	1/0/10	YVONNE -	
	2.8300	_	.3660		47 9710		1626		10.211J		-1500	. 1113	1 0 1	10/20	YVONNE	
	1.4200	۲	-1.07.0		<u>1346710</u> 6765		60020		1.0705		- 6170		101	20/30	YUDNNE	
	.0448	<	•0040		• 2014		0410		1.01.52	~	.0106	2556	101	35720	VYONNE	
	.0415	ç	.0935	>	14939 04 4007	•	1495		47 2817	•	60100	- 1060	1 1 2	0710	YVONDE	· · ·
	5.1400		•2430		21.1960		• 5 ° I U 7 L 0 1		101011		0490 6000	* 1000 RT 17	102	10220	VUONNE	<i>i</i>
	1.8800	۲	.1140	*	19+9917		10490 2020		5.5000		6278	. 3130	102	20/20	YNONNE	
	1.3400	<	.1000	>	1.0.9400	,	12910		5.1943		-1430	3446	1 1 2	30740	YNDNNE	
	.4150	<	.1050		- 3 6 9 D 6 9 	•	4270	· ·	5.1340	•	.1770	. 3272	1 6 2	40/50	YVONNE	
	.5410	<	.1030	,	カ・ビンクリー だいのかん		1025	~	7.30.01		.2500	- 3698	102	50760	YVONNE	
	.6760	<	.).350	7	2.0074		0929	Ś	4.3003		.1420	3757	1 62	60/70	YVONNE	
	.3780	¢	•1.290		2 4 7 4 0 E		1079	Ś	2.5793		. 6112	. 1497	102	1002110	YVONNE	.
	.0748	<	. 0435		10 6907		1730		10.7514		.2780	111R	10.3	0/10	YVONNE	
	1.8600		•1/40		10.0001		-0337	``	3.4125		.0250	. 2252	103	10220	YVONNE	
	•1199 405 0000	Č	104/h		12 11/78		1.7000	-	276.5363		-0.0300	-0.0000	104	0/10	YYONNE	
	365 0000		48 6000		10,8013		1.9400		188.6598		-0.0000	-0.000	1.04	10/20	YVONNE	
	356.0000		21.6000		14.6296		2.3200		136.2769		-0.6300	-0.0000	104	20/30	YVONIE	
, .	220.0000		19,1000		15.3927		1.8000		163 3333		-0.0300	-0.0000	104	30/40	YVONNE	
	294.0000		19.000		21.0000		1.7600	•	726.7045		-0.0000	+6.0000	1.04	48253	YVONNE	
			15.5000				1.3800		197.1014		-0.0000	-0.0000	104	50/60	YVONNE	
	268.0000		13.5000		19,8519		1.1000		243.6364		-0.0000	-0.0000	1 04	60/70	YVONNE	
مسلسه مم ماليا د	<u>163.00.00</u>		19.7000		22.4365		1.0600		416.9811		-8.8300	-0.0000	1 04	70200	YVONHE	
	442.0000		23.6000		18.8462		.9350		471.6578		+0-0000	-6.0000	1 64	00290	YVONUE	
	794.0000		LL 9000		17.6837		1.3200		601.5152	•	-0.0000	-0.0000	104	90/10	YVONNE	,
	57.7000		6. nonn		9.6745		1.4500		39.7931		+0.0000	-0.0000	1.04	100711	YVONNE	κ.
	35.7000		3.5800		9.7111		1.2700		28.1102		-0.0000	-0.0000	1 14	110/12	YVONNE	
	6.2300		.2350		-18.0000		2910		14.5361		.5090	. 1203	105	0710	YVONNE	
· .	412000		.5520	·••	7.4819		.3470		11.9020		4320	1046	105	19/20	YVENEF	
	3.3800	e	-1730	``	25.4135		4550		7.42.86		8240	2438	105	20/30	YVONNE	
	5 7100	•	.5270	τ.,	12.7324	•	7370		9.1845		1.6700	2489	105	30140	YVONNE	
	1.0700		.1488		7.2297		.1440		7.4306		2340	2187	105	40/50	YVONME	
	6.4400		.3930		16.3468		.5430		. 11.8600		1.3200	.2050	106	2/10	YVONNE	
	11.4000		1.0100		11.2871		1.2600		9.0476		-9.0000	- C. D0 CD	106	10/20	YVONNE	
	2.3700	<	.1190	>	19.9160		.3150		7. 52 38		.6130	.2586	105	20730	YVONNE	
	1,500	¢	0954	>	1.5723	۲	.0515	>	2.9126		•0259	.1727	106	30140	YVCNNE	
	.1060	۲	.0781	>	1.3572	<	.0439	>	2.4146	<	. 0155	< 1,1462	1 05	40/50	YVONNE	
	.0355	~	.0322	>	4319	<	.0451	>	.7701	<	.0048	< ,1344	106	50/60	VUNNE	
	.0127	<	.0338	>	.1516	<	.0415	>	.3060	<	.043	< .3409	106	60/70	YVONNE	
	.0333	· <	.0898	> 1	.3764	<	.0494	>	. 5842		.0051	•2411	106	73/80	YVONNE	
•	. 2501		7 4500		2000		· · · ·									

A .	• • • • • • • •	``	. • • • • • • •		7	·									
•'	.0333	<	•0898	>	4 <u><</u>	0494	>	• 6342		0031	• •	• 2411	106	70/20	YVONNE
	.2590		3.1600	.082	0	.5050		• 5129		0.0010		; -0,0000	· 107	0710	YVONNE .
	1.76.00	e	1 5 1 0	3 12 482	7	3380		5.2071		.1820		.1034	: 107	10/20	YVONNE.
	1.1003	2	•1+19	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		. n 4 86		0.46.66		.078 \$	•• ••	1717	107	20/20	Y VOINE
	• 4 5 9 9	•	•0003	P - 2+100	1			2. 44 44		• • • • • •		2506 1111	107	20/30	- TADARE
	.3109	<	.0782	> 3,964	5	, (1) 4)		5.6881		.0766		+2471	107	30/40	A A O MAE
	.0277	<	.0655	> ,422	9 K	.0360	>	.7694	<	.0126		.4549	107	40/50	アインやいこ
•	451.0000		23.0000	19.608	7	1.3100		344.2748		-0.0000		-0.0000	1.0.6	0/10	YVANNE
			2010000	7 6 8 0		0100		21 0. 01 09		-0 0000		-0 0000	1 0 0	10220	YVONUE
•	193.0090		20.1000	1.005	f.,	* 9 I 90	•						100	- 10/20	IVUNITE
	143.0000		17.0000	8.411	4	.9940		149.0952		-1.0000		-0-000	1 (1 ()	20730	TVONNE
•	20.4000	•	3.0900	6.601	9	•6951		29.3525		-0.0000		-0.0000	108	30740	YVONNE
	5.9100		.4350	13,586	2 .	7,4700		.7912		-0.0000		-0.0000	108	40/50	YVONNE
	6.0800		. 6 9 1 0	12.382	۹ i	.9420		6.4544		-0.0000	÷,	-0.0000	1.0.8	50760	YVONNE
	6.0000		1.770	10 540	7	7630		5.5400		-0.0000	•	-0.0000	1 0.0	60170	Y VONDE S
	4.9900		• 47.26	10.249				C 7077		- 0 - 0 0 0 0		-0,0000	100	70400	T VONNE
	4.6400		•3150	14+730	6	•0100	• • •	2.7073		-0.0000	•	- 0.0000	106	70780	I VUNNE .
	4.2600		•2350	15,106	4	• • • • • • • • •	•	6.3677		~0.0000		-0,0000	1.08	80/90	YVONNE
11 A.	5.5900		.4170	13,405	3	9380		5.9595		-0.0000		-0.0000	108	90/100	YVONNE
	5.2500		.4710	11.146	5.	.9760		5.3791		-0.0000		-0.0000	108	100/110	YVONNE '
3 T. T. T.	6 67 00	•	2850	15.684	2	.7910		5-6511		-8-0008		-0.0000	1.0.5	1107120	YVONNE
· · ·	4 0700		6000	1 3.050	<u> </u>	1300		14.0769		.0500		. 0277	1 0 9	1210 10	Y VONNE
1 2 2 2	1,0300		10000	0.000	0 -	0,000		440 0676		2470	· · ·	0210	105	10/10	T VUNAL S
	7.2500	<	• 0 8 1 1	2 69.345	• • • •	.0009		119.0470	1.	2130	_	00294	109	10720	TVUNNE
, t	.1610	c	•067£	>): 2.399	4 <	.0544	>	2.9596	. 	•0020	. 5	• 3888	109	20/30	Y VO NN E
	.1130		-0.0:000	-0.000	0	-0.0000		-0.0000		-0.0000		-0,0000	109	33740	YVONNE
	.0259		-0.0000	-0.000	0	-0.0000		-0.0080		-0.0000		-0.0000	109	40/50	YVONNE
) j	.0617		-0.0000	-0.000	n	-0.0000		-0.0000		-0.0000		-0.0000	1 0 9	50260	YVONNE
	06.05		-0 0000	-0.000	n	i -n.agna		-0.0008		-6.0000		-0.0000	1 0 0	50771	V UO MILE
	10074			-0.000				·		00000		-0.0000	400	70/00	
	•1210		-0.0000	7 -0.000	0		1 ·	······································	· · ·			-0.0000	109	70760	TVUNGE
3	•0295		-0-0000	-0+0.00	0			-0-0000		-8-0000			169	80790	A ACIMME
	•0527		-0.0000	-0.000	0	-0.0000		-0.0000		-0.0000		-0,0008	109	90/10	YVONNE
	.2160		-0.9000	-0.000	6	0.0000	, 1 ¹ -	-0.0000	. ¹	-0.0000.		-0.0000	109	100/11	YVONNE .
3	25.5000		2.8500	8,947	4	.7070	•	36.0579		-3.0300	· · ·	-0.0000	110	0/10	YVONNE
•	5.4700		.5780	9.463	7	4980		10.9339		-0-0000		-0.0000	110	10720	H YVONUS
	0 0700	,	4 0000	0 055	•	4.2400		8.4570	•••	-0.0000		-0.0000	440	20/30	YNONNE
à	9.0700		1.0.200		5	7160		D C/ 57		-0.0000	· :•	-0.0000		20730	C Y UNVER
<i>2</i>	5.1900		.1200	0.520	6.9	•/160		0+0423		-0.0000		-0.0000	110	30/40	T V OFRIGE C
	15.0000		1.3905	10.791	4	\$0 1.4 600-	•	10.2740		-0.0000		0, 0000	110	40/50 .	YVONNE
•	8.9400		1.1800	· 7.576	3	1.2500	d	7.1520		-0.0300		-0.0000	110	50780	YVONNE
3	34.2000		2.5700	13.307	4	3,7100		9.2183		-0.0000	• • •	-0.0000	110	60/70	YVONNE
· ·	27 6000		2 7700	11.561	2	3.5500	1.1.2	7.7183		-8.0000	•	-0.0300	110	70/20	YVONNE
1		_	1200		-			47 74 24	·. ·	-0.00000			1 4 5	00100	NUCLUE
1	3.6200	۲	.1200	> 30.160	1			· 10 1121		-0.0900		-0.0000	110	00790	TVUNNE
3	- 5.2700	<	.1050	>. 51.666		•1140		46.2281		-0.0000	1	-0.0000	110	90/100	YVONNE
	1.7500		-0.0000	-0.000	0			;-0.0000	1.1.1	-0.0000	•		110	100711	YVONNE
	1.2600	•	-0.0000	-0.000	0	-0.0000		- C • 30 00	11	-0.0000	•	-0.0000	110	110/12	YVONNE
3	136.0000		9.0400	15.044	2	1.0200		133.3333		-0.0000		-0.0000	111	0/10	YVONHE
J	532.0000		9.6500	55,129	5	.7400		718,5183	,	-0.0000		-0.0000	111	10/20	YVONVE
	201.10000		1 5600	47 075		1,400		20 6616	· .	-0 0000	1 1	P ⊒o noon	4 4 4	20/70	N NONNE
÷.	20.4000		Terona	1.3+0/0	2	19970 19970	78.3	2.2.04.90.14 2.7.7.7.7.7.	4 Mer. 1			. −0+0000	114	. <u></u>	
2	182.0000		18.6000	9+184	۲.		1.15	10.0011	1	21/200	1 24	. 0314	111	30740	TVDNNE
<u>.</u>	12.2000		•6'530'	18.583	0	1,3900		2 . 8 . 77 70		-0.0000		- 0.0000	111	40750	YVONNE
				·	•	0 / 2 D		C 70 77		10594	•		4 4 4	50760	Y Y T KAYE

	P =PU239+24 AM=AM241 P 1≈PU238 EU≈EU135		Υ.										•			
											·					
•	P		AM		PZAH		EU	PJEU	P1	PTAB	LOC	DEPTH	ISLAN			
	136.0000		9.0400		15.0442		1.0200	133.3333	-0.0000	-0.0000	111	0/10	YVONNE			
	532 0000		0.650.0		55 1205		.7400	718.9189	~0_0000	-0.0000	111	10/20	YVONUE			
	20 20000		4 5600		17 8760		.9971	20.4614	- 000000 	-0.0000	444	20/30	YVONNE			
	102 0200		T*2000		-0.0000		2 6 8 0 0	77 7871		-0,0000	444	20/00	YVONNE			
	102.0000		-0.0000 5750				4 3000	13,3071			444	50740 10750	YVONNE			
	2 2000		*232U		6 C + O U - J / D - 7 C K		1.3300	0+1110	-0+0000 n/n f	-0.0000	444	50/60	YVONNE			
	¢.2000	,	• (1) 0		6 9010		+2430		1000	.1.80	111	50/20	Y NOTE			
	• 27 7 U 28 E 0	2	•U323	1	3 6076		04.28	> <u>11-000</u>	- 0536	1 881	444	70/80	VVOUNT			
	● 2 O 2 U 2 K 7 D	2	1700	Ś	4 0 0 7 0	2	0427	> 6 70 1 9	1770	2457	4 1 4	80/00	V VOINS 2			
-	+31/U 2 9500	•	40700		44 6007	Ì	1000	2 C C C C C C C C C C C C C C C C C C C	4760	0648	4 4 4	00/50				
	2.0000		•1940		14.0907		•0355	. 20.9209	•1/0U	• 0000	111	907100	TVUNCE			
- ;	125.0000		14.1000		0.0052		1.3000	90.1730	-0*0000	- 0.0000	112	0/10	YVO			
	128.0000		16.8000		7.0190		•914U 7440	140.0430	-0.0000		112	10/20	N VUSGE			
	150.0000				9.0000		•7410				112	20/30	T V GALAC			
·	341.0000		38.6000		8.8342		9.2400	. 36+9048	-0.0000	-0.0000	112	30740	YVDAAL			
. کی	843.0000		97.3000		8.0539		./320	1151.5393	÷u•uuuu	-0.0000	112	40750	YVONDE			
	582.0000		71.8000		8.1058		.5380	1081.7844	-0.0050	-8.0000	112	50/60	YVDENE			
· · ·	840.0000		93.2000		9.0129	$(A_{i},A_{i}) = (A_{i},A_{i})$.5410	1552.6802	-0.0000	-0.0000	112	60/70	AAOARE			
محل	185.0000		-0.0000		-0.0000		.5070	364.8915	-0.0000	-0.0000	112	70/80	YVORNE			
1.1	49.8000		4.7300		10.5285	4.5	•5000	99.5000	-0.0000	-0.000	112	80/90	YVORUE			
-, ·	622.0000		53.900a		11.5399		.7320	849.7268	-0.0008	-0.0000	112	90/100	A AURIE			
<u>ک</u>	55.4000		4.9500		13,2121		•1710	382.4561	-0.0000	-0.0000	112	00/110	YVONNE			
	136.0000		10.8000		12.5926		•4700	289.3617	-0.0000	-0.0000	112	10/120	Y VOMME			
-	20.1000		1.6300	· · .	12:3313	t.	4030	49.8759	-0.0000	-8.0000	112	20/130	YVONDE			
ون	30.0000		2.5600		11,2782		1.3800	21,7391	-0.0000	-0,0000	112	30/140	A AG AN E			
	41.4000		3.2700		12.6006		4.3100	9.6056	-0.0000	~0.0000	112	40/150	YVDNAE			
- 1	. 176.0000		13.3000		13.2331		1.6300	107.9755	5.2800	.0300	113	0/10	YVONNE			
s)	49.1000		16.0000		3.0687		1.0900	45.0459	•9300	.0200	113	10/20	YVONNE			
	136.0000		11.9000		11.4236		1.0900	124.7706	4.0300	.0300	113	20/30	Y VONNE .			
	211.0000		32.6000		6.4724		.7020	300.5698	4.2200	.0200	113	30/40	YVONNE			
\mathcal{L}	104.0000		6.9800	•	14.8997		•1350	778.3704	2.0100	.0200	113	40/50	YVONNE			
,	45.0000		3.4400		13.0814	< 4	.0689	> 653.1205	.9000	• 0200	113	50/60	YVONNE			
	•5950	۲	•0583	>	10.2058	<	•0339	> 17.5515	0.0000	-0.0000	113	60/70	ANORNE			
	.0523	<	.0697	>	•7504	·<	+0349	> 1.4986	-0.000	- 6. 0000	113	70/80	YVONNE			
	217.0000		4.0400		53.7129		.1300	1205.5556	4.3400	.0200	114	Û∕10	YVORNE			
	1.3900	<	.0571	>	24.3433	<	.0259	> 53.6680	•0400 ¹ · ·	.0288	114	10/20	YVONSE			
-	-0.0000	<	.0523		-0.0000	<	.0258	-0.0000	-0,0000	- 6.0000	114	20/30	YVONNE			
	.6170	<	0509	, ` >	12.1218	<	.0260	> 23.7308	-0.0000	-0.0000	1 14	30740	YVONNE			
	15.3000	۲	.0488	>	313.5246	<	.0267	> 573,0337	.4500	. 8294		60/7	YVONNE			
26.2	6178		0500	1 1 1 1	12 1218	e	0.260	>	23.7308		-0.0000	0. 0000	114	30/40	YVONNE	
------	---------------	----	-----------	----------------	-------------------	-------	-----------	-----	----------------------	-----	-----------	-------------	-------	--------	-----------	-----------------
•	45 7000		0000		74 T 5266		.0267		673.0337		.4500	. 1294		60/7	YVO'NNE .	:
	12:0000		•4400		446 9047		10207	Ĺ	271 1761		2960	.0301		80/9	YVONNE -	
	9.0400	۲.	• 0 0 2 9		TTD+2041	•	. 40417		100 1005	· •	8600	0/.02	115	6710	YVONNE	
•	21.4000		1.4700		14.9978		.2130		100+4070		10000	1676	445	. 0/20	VYOHNE	
	1.9100	.<	-0947		20.1040		.1430		13.3900		+3200	1079	115	10/20	T VOLOGE	
	2.6800	<	.0990	>	27.0707		.1240		21.6129		.3200	• 1.1.94	115	20730	YVUNGE	
	27,6000		2.1300		15,9577		3.4000		7,9769		6.9000	• 2500	115	60/70	TVONNE	
	74.30.00		6,9400		10.7061		10.4000		7.1442		19.5090	• 2598	115	70/80	YVONNE	
	2.5700		.2930		8.7713		•3330		6.4411		-0.0000	-0,0000	11.5	00/90	YVONNE	
	734.0000		57.0000		12.0772		.7000		1048.5714		14.7000	• 0 2 0 0	116	6/10	YVONNE	
	.4190		1.9205		,2182		.1020		4,1078		-0.0000	-0.0000	116	10/20	YVONNE	
	16.2000	<	.0829	>	195,4162	· · <	.0609	>	266.0099	•	.3200	•0198	116	20/30	YVONNE	
	314.0000		29.0000		10,5017		.6700		468.6567		6.2300	.0200	117	0/10	YVONNE	
	121.0000		17.6000		6.8750	· ·	.7200		168.0556		3,6300	.0300	117	10/20	YVONNE	
	250.0000		8.9100		28,0584		.9530		262.3295		5.0000	.0200	117	20/30	YVONNE	
	35.5000		3.9200		9.0561		1.2300		28.8618		2.4900	.0701	117	30740	YVONNE	
	11.4000		.8.670		13,1408	•	.3690		30.8943	· ,	.9100	.0798	117	40150	Y VONNE	
	.9460	c	1920	>	4.9271	<	.1840	~ >	5.1413		-0.0000	-0.0000	117	50/60	YVONNE	
	342.0000	-	36.5000		9.3699	<	1790	>	1910.6145		6.8400	.0200	118	0/10	YVONNE	
• •	1.3900		1.8766		.7433	<	.1580	>	8.7975		-0.0000	-0.0000	118	10/20	YVONNE	
	15,2000		1.5800		9.6203	< l	1350	>	112.5925		.3000	0197	118	20/30	YVONNE	
	7.6300		- 6'6 6 T		11.1562	<	.0214	>	347.1963		.1500	. 0202	118	30/40	YVONNE	
	8560	~	01.78	~	17.0070		. 1 2 9 2		29-3151		-0.0000	-0.0000	4 1 8	40750	YMONNE	
	+050U 7701	``	1260	-	L1450/5	-	.0176		Lb. 2511		-0.0000	-0.0000	11.8	50170	YVONNE	
	• / / 50		.1200	•	76 7664		0170		44.2014		-0.0000		110	8673	VIONNE	
	2,1000	``	• 1 2 / 7	,	70+3441		1000		11319037 515 9745		-D 0000	-0.000 	440	0075	VUONNE	
	59.5000		-0.0000			_	*T 0 9 0	_	242.0710		-0.0000		113		T VO MAE	
	,9140	۲	.1120	7	0.1697	< <	10549	2	10.7050	-	• 8341	• 4329	119	10/20	TYUNNE	
	.2050	<	• 0:434	>	4.7235	. <	.0263	>	7.7947	<	•0316	< .1541	119	20730	YVONNE	
	359.0000		39.9000		9.2481		4.8400		16.2397			-0.0000	120	0/10	YTONNE	
	202.0000		28.0000		7.2143		2.8900		69.8962		-0.0000	-0.0000	120	10720	YVONNE	
,	28.6300		3.1000		9.2258		•6900		41.4493		-0.0000	-0.0000	120	20730	YVONNE	
	3.2300		•282°		11.4539	<	• 97 04	>	45.8807		-0.000	-0.0000	120	30/40	YVONNE	
	. 13.5000		•2950		51.5267	<	.0744	>	181.4516		-0.0000	· - 0. 0000	120	40/50	YVONHE	
	4.0900	<	.0972	>	42.0782	<	.0875	>	60.5926		-0.0000	-0.0000	120	50/ED	YVONHE	
	1.4200		•1860		7.6344	. <	•0652	>	21.7791		-0.0000	-0.000	120	60/70	ANDWE	
	62.2000		4.8000		12.9583		.2020		307.9208		-0.0000	-0.0000	121	0/10	YNONNE	
	1.7700	<	.0988	>	17.9150	<	•0456	्र>	38.8158		•0360	£020 •	121	10/20	YVONNE	
	63.5000		5.6900		11.1599		2.1500		29.5349		4.4500	.0701	122	0/10	YVONNE	
	50,5000		5.1407		9+8249		1.4300		35.3147		2.0200	.0400	122	10/20	YVONNE	
	36,5000		3.0500		11.9672		3.9700		9.1940		8.0300	• 5500	122	20/30	YVONHE	
•	109.0000		9.8100		11. 1111 -	•	14.0000		7.7857		25.1600	.2400	122	30/40	YVONNE	
	3.2900	<	.2020	° 🗲	16.2371	<	.1640	>	20.0510		-0.0000 .	-0.0000	122	40/50	YVONNE	
	20,9000		1.6300		12.4405		1.5200		13.7500		-0.0000	-0.0000	123	0/10 -	YVONNE	
	.3370	<	.1850	>	1.8216	<	.1800	• >	1.8722		.0725	. 2151	123	10/20	YVONNE	
	.1350	۲,	. 0295	>	4.5763	<	.0377	>	3.5809		.0332	.2459	123	20/30	YVONNE	4. ¹
	.0919	<	.0904	>	1.0166	¢	.0564	>	1.0537		.0139	. 1513	123	30/40	Y VO NN E	
	52,3000		4.3500	1	11.9954		1.7930		29.2179		5.0000	.0956	124	0/10	YVONNE	

.

	.7840	<	.1860		4.2151	č	.1600	i. >	4.9000	Que e	.1450	.1849	124	10/20	у уо уур	Ч. –
•	4680	¢	.1800)	2.6000	<	.1460		3.2055	,	• 0869	.1857	124	20/30	YVONNE ·	
	1,9200		1580		12.1519		.1410		13.6170		.2530	.1318	124	30/40	A AOM IS	
الميه	.1360	<	1500.	* *	14767	<	.0632	>	2.1519		.0195	.1434	124	40/50	YVONNE	
•	.0165	<	.0900	<u>' א</u>	1 .1833	۲	.0436	>	. 3784	<	•0098	< .5939	124	50/60	YVOHNE	
	300.0000	۲	.1600	>1	875.0000	ć	.1270	>2	2362.2047		15.0000	.0500	125	0/10	YVONUE	
ز	181.0000	•	10.0000		16.7593		4.2900		42.1911		14.4500	.0800	125	10/20	YVONSE	
-	52.7000		4.1700		12.6479		5.5200		9.5471		12.6500	. 2400	125	20/30	YVDNNE	
· •	30.4000		2.7100		11,2177		3.0300		10.0330	. ·	7.6000	.2500	125	30/40	YYONNE	
الله	11.60.00		.9710		11.9464		1.0500		11.0476		-0.0000	-0.0000	125	40/50	YVONNE	
	17.4000		1.2000		14.5000		1.7100		10.1754		-0.0000	-0.0000	125	50/60.	YVONHE	
	6820		.0265	>	18.1887		.0405		11,9012		-0.0000	-0.0000	125	60/70	YVONNE	
ف	63.1000	•	4.5200	· .	13.9602		4.5900		13.7573		-0.0000	-0.0000	126	0/10	YVONNE	
•••	2.7900		.2870		9.7213		.3580		7.7933		-0.0000	-0.0000	126	10/20	YVONNE	
	45.00	· •	.0010	>	6.7930	<	.0753	<u>ک</u>	5.8433		~0.0000	-0.0000	126	29/30	YVONNE	
• •	52.7000	•	3.9700	-	13.2766	-	1.6100		32.7329		-0.00000	-0.0000	128	0210	YVONNE	
	32.7000		2.3400		13.9766		2.6900		12,1561		-0.0000	-0.000	128	10/20	YVONE	
	95 5000		8.1400		11.7322		9,4300		10.1273		-0.00000	-0.0000	128	20230	YVONNE	
2	25,9000		2.1500		12.0465		2.7600		9.3841		-0-0000	-0.0000	128	30/40	YYONNE	
~	.9417	۲	.1516	>	18.2364	<	.0456	>	20.6360		-0.0000	- 0.0000	128	40/50	YVDNUT	
	38.6000	-	3.3600		11.4581		3.6000		10.7222		-0.0000	-8.0000	129	0/10	YVONDE	
,	18.1000		1.4100		12.8369		1.5700		11.5287		-3.0000	-0.0000	129	10/20	YVONNE	
-	2.8400	c	1440	2	19.7222		3650		7.7808		-0.0000	-0.0000	129	20/20	YVONEE	
	. 3360	e	.0530	>	6.2338		.0359	. >	9.3593		.0752	. 2278	129	30/60	YVONYE	
	.0865	è	.0380	>	2.2763	<	.0250	>	3.46.00		.0419	- 4844	120	40/40	YVONNE	
-	26.2000		2.0200		12.9703		2.4200	•	10.8254		-0.0000	-0.000	130	0/10	YVONEE	
Section of the sectio	3.3600	٠	.1510	>	22.2517		.2990		11,2375		-0.0000	-3.0000	130	10/20	VNONNE	
3 (1971)	.5990	ć	1919	>	6.5897	<	.0306	>	7.4318		-0.0800	-0.0000	130	20/30	YVOUNE	
•	91,9000	-	6.4000		14.3594		10.3000		8.9223		23.8900	- 2698	171	0710	YVONNE	
	98.2000		6.3900		15.3678		9.8500		9,9594		25.5300	.2600	131	10/20	YVONNE	
3	13.9000		.9610		14.4641		1.4200		9.7887		3-6100	.2597	131	20/20	AMONINE	
	2.5100		.2140		11.7290		-2310		18.8658		-8-8000	-0.0000	171	30760	Y YORNE	
	1.4400	c	1090	>	13.2110	<	.0809	>	17.7993		-0.0300	· - 0 - 0 0 0 0	131	6 G Z FIG	YNDNYE	
G	33.1000		1,9900		16.6332		3.1500		10.5079		-0.0000	-0.0000	132	0/10	YVONDE	
5	14.9000		1.5900		9.3711		2.1800		6.8349		-0.0000	-n. 0000	132	10/20	YVONNE	
	4.0900		.3310		12.3565		.3260		12.5460		-0.0000	-0.0060	132	20/30	YVONME	
)	.0977	¢	.1010	>	.9673	<	.0776	>	1.2593		+0.0000	-0.0000	132	30260	VVONNE	
2	150.0000	-	10.4000	-	14.4231	,	13.6000		11.0296		39.1000	-0.0000	477	0/10	Y VONNE Y VONNE	
s se s pres e i si fi si fi	8.8700		1.0:100		8 7 12 2	TO TO T	³ . 1. 0200		3.6961	الدرالا المعسور			477	10/20	<u><u>v</u>von<i>bur</i></u>	
ر ا	1.0900		.1570	4.0	6 9427		.1710		6.3743	•	-0.0000	-0.0000	133	20/30	YVONNE	
2	1340	· <	.0530	>	2.5283		.0314	>	4.2675		-0.0000	0.0000	177	30740	YADNET	
•	156.0000		9.7488		16.0164		14.7000		10.6122		40.5600	200000	4.7.7	0740	VNONNE	
2	17.8000	•	1.2007		14.8333	•	1.9500		10+0122			12000	104	4 0 7 10		
2	5.0500		.3320	•	15.2108		5500		9.1918	•	-0-0000		134	20/20	YVONNE	
	.4030	¢	1050	>	3.8381	<	.0512	`>	5.5850		-0.0000	-0.0000	434	33/45	YVONNE	
_;	1.3500		1950		6,9231		.2900	-	4.6552		1730	1250	104	6019	YVONNE	
-	2.8400	<	2167	· '>	13.1481		.7180		3.9554		2330	0085		90/1	YVONDE	
-							. <u>.</u>		00.004		46000	* L J C ()		2071	4 4 4 1 4 1 4 1 4 <u>4</u>	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NE .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NE V,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NE
1.2800 .1130 11.3274 .4050 3.1605 .1080 .0844 135 80/90 YVO .3610 < .1040 > 3.4712 .1370 2.6350 .0667 .1808 135 90/100 YVO .2730 < .0905 > 3.0166 < .0554 > 4.9278 .0815 .2985 135 00/110 YVO 14.1000 1.0300 13.6893 1.4900 9.4631 -0.0000 -0.0000 136 0/10 YVO < .0384 .4950 < .0776 .7680 < .0508 < .0279 -0.0000 136 10/20 YVO 1.9000 .3420 5.5556 .3530 5.3824 .5008 .2632 136 20/30 YVO	NE .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NE
-2730 < .0905 > 3.0166 < .0554 > 4.9278 .0815 .2985 135 00/110 YVO 14.1000 1.0300 13.6893 1.4900 9.4631 -0.0000 -0.0000 136 0/10 YVO < .0384 .4950 < .0776 .7680 < .0508 < .0279 -0.0000 136 10/20 YVO 1.9000 .3420 5.5556 .3530 5.3824 .5008 .2632 136 20/30 YVO	NF State
14,1000 1.0300 13,6893 1.4900 9.4631 -0.0000 -0.0000 136 0/10 YVO <	NF
14,1000 1.0500 13,0055 1.4700 94403L -0.0000 130 150 0710 170	INF
4,950 4,950	INC
	11L 19 1
	NE
6350 < 0.025 > 7.0077 < 0712 > 0.0109 < 0.007 < 0.0101 > 0.000 < 0.000 < 0.000 > 0.0	
	IN E
1060 < 0.0847 > 1.2515 < 0.0497 > 2.1265 .0497 + 2.4292 136 50770 170	
.0362 < .0840 > .4310 < .0472 > .7510 .0148 .3950 136 80790 YV0	JN F
1.7900 < .0968 > 18.4917 .3490 .5.1289 -0.0000 -0.0000 137 0/10 YVO	NE
.8470 < .0.885 > 9.5598 .1810 4.6795 -0.0000 -0.0000 1.37 10/20 YV0	IN E
8.5100 .3860 22.0466 2.2900 3.7162 4.2400 .4982 138 0710 YV0	.(f E
1.3730 < .0274 > 50.0000 .4430 3.0580 .2490 .1818 138 10/20 YV0	NE.
.2310 < .0936 > 2.4679 < .0783 > 2.6502 .0426 .1644 138 20730 YV0	NE
21,4000 2.7400 7.8102 12,2000 1.7541 10.9100 .5098 139 0/10 YVO	NE
26,3000 1,930T 13,6269 8,5700 3,0680 13,1500 ,5000 139 10/20 YV0	JN E
1.4100 < .1930 > 7.3057	NE
1.8100 < .2000 > 9.0500 .7350 2.4526 -0.0000 -0.0000 139 30/40 YVO	NE
1,5000 < ,1840 > 8,1522 ,558D 2,2796 -0,0008 -0,0000 139 40/50 YV0	NE
1.1800 < .1460 > 8.0822 .2670 4.4195 -0.0000 -0.0000 139 50/60 YV0	NE
.9140 < .162 <i>1</i> > 5.6420 .4050 2.2568 -0.0000 -0.0000 139 60/70 YV0	NE
.9230 < .1680 > 5.4940 .3920 2.3546 -0.0000 -0.0000 139 70780 YVC	N E
1,3500 < ,1730 > 7,8035 · ,4170 3,2374 -0,0000 -0,0000 139 80/90 YV0/	HE
2.3200 < ,1850 ≫ 12,5405 ,5640 3,4940 -0,0000 -0,0000 139 90/100 YV01	NE
- 3.5800 < .3180 > 11.2579 1.5900 2.2516 -0.0000 -0.0000 139 00/110 YV0	HE
4.2500 < .2240 > 19.0179 1.1400 3.7368 -C.0000 -0.0000 139 10/120 YV0	HE
6.2200 .3680 16.9022 2.1500 2.8930 3.3000 .5305 140 0/10 YV01	NE
	NF
	NF
	NE.
	NE
	1E
	₩F
	JE
4,1/00 × ,3000 × 12,3920 1,0990 2,0999 -0,0000 -0,0000 100 1000 1000 1000 1000	1E.
	··-
1 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3	JF
· · · · · · · · · · · · · · · · · · ·	i F
	. –

						11 L L L		. <u>,</u> .			an inter a anar			MUCANNES	
•	20.1000		3,2600		.6.1656		9,1300		2.2015	_a. ~840 0	υ α	141	30740	A ANNUE.	
	5.42.00	<	. 423 0	·	12.8132		2.0000		2.7100	-0.00	00	1. 🐃 141 '	40/50	YVONNE	· · ·
	0 1 7 0 0	,	7500		7 0574	×	8751		2 8220	-0.00	nn ⁽¹⁹⁷) = 0.0000	141	50760	YVONIE	
	2.47.00		43500										r 0 + 7 0	VYONIE	-
•	2.9100	<	.3550	. *	8.1972		1.3800		2.1007	~U•U•UU		141	00770	I VONRE	· ·
	2.8500	<	.4180	>	6 ; 0 1 8 2		.7410		3.8462	-0.00	00 0,0000	141	70/80	YVONRE	·.
	2.0800	e	.4160	,	5.0000		.7970		2.6098	÷0.00	00 -0.0000	141	80790	YVONNE	1
	2.00000		1.0.1		6 1060		81.60	•	4 0748	-n.h0	0.0 -0.0000	1 44.4	00/100	YNONNE	ι.
	1.6/00	·. <		,	······································	-•				0 / 0 0		рания <u>так</u> та. 1 — н ла такта.		NUONNE	
	1.4003	<	•3890	7	2.0990	<	.3290	> .	4.2553	-0.03	00 -0,000	3.41	00/110	TYUNNE	. Y.
	3,0500	<	.4160	7	7.3317		:, 1.9600 '		. 1.5561	-0.00	00 -0.0000	141	10/120	YVONME	
	3.8400		.1.140		9.2754		2.0700	• •	1.8551	-0.00	00 -0.0000) 142	0/10	YVONNE	
	46.90		1010		1 6536		0556	>	3-0216	÷0.00	0.0 -0.0000	142	10/20	YVONNE	·
	+100U	•	11010	-	1.0074		TR 6000	•	0 01 78			4/.7	0 / 1 0	VUONNE	
	117.0000		14+4000		0,1700		20.1000		2+0100 -			143	0/10	1 VUNNE	
	181.0000		23.6000		7.6695	· · · ·	76.6000		5.3053	-0.00	00 -0.0000	143	10/20	TVONNE	
	3.4300	¢	.3930	>	8.7277		1.0500		3,2667	-0.09	uo -0.0000	143	20/30	YVONNE	
	1.3300	e	. 3310	2	6.0181	<	.2630	>	5.3629	-0.0	00 -0.0000	143	39/40	YVONNE	1.
	T#0000	•	1 2002.0		0 6767		1. 69.00		2 22 22	-0.00	40 -0.0000	1,7	70780	VUONNE	
	10.4000		1.2000		6.0007		4.0000			-0.00		140	10700	NUCHIC	
•	34.1000		2.5900		13.1660		14.3000		2.3846	-0.00	00 -0.0000	143	80790	AAAAAA	
	50.6000		5.6900		8,8928		21.8000		2,3211	-0.00	aa -0,0000	143	90/100	YVONNE	
. '	77.1000		5.8200		13.2474		22.9000		3.3668	-0.00	00 -0.0000	143	00/110	Y VONNE	· .
	10.1000		1.3000		7.7692		3.1400		3.2165	-0.00	00 -0,0000	143	10/120	YVONNE	
	10 2000		0720		45.5880		6.6600		2.3176	-9.00	0.0000	144	0710	YVONNE	
1. J.	- TA+00.00				1102000	:	7.0000		2.0110			, <u>1</u>	40710	VYONE	,
	19.9000		2.5300		- 7.0310		1.9000		2.9190	- U+ U U	00 -0.0000	144	10/20	TYUNNE	
	44.9000		4.7.100		9,5329		21,9000		2.0502	-0.00	00 -0.0000	144	20/30	YVONNE	
	14.4000		1.8100		7.9558		6.4700		2.2257	-0.00	00 -0.0000	144	30/40	YVONNE	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	27.3000		2.8200		9-5281		8.8100		2.5447	-3.03	an <u>-</u> n.aaan	1 144	40/50	YVONE	
•			5 7000		0 6 5 0 7		22 0000		2 6000	-0.00	0.0	· · · · ·	50760	VUDNUE	
	55.2000		5.7200		9.0203		23.0000		2. + 40 0 0	-0.00		144	50760		1
	21.8000		2,4200		9.0083		, 10. 0900		2.1800	-0.00	40 -6.0000	144	60770	AAGWIE	
	12,9000	<	.8460	>	15.2482		5.8300		2.2127	-0.00	00 -0.0000	144	70/80	A AOWHE	·
	11.9000		1.1600		10.2586		4.7200		2.5212	-0.00	00 -0.0000	144	80/90	YVDNME	
	10 3000		3450	~	20 8551		3.3500		3.0745	-0.00	10 -0.0000	144	002100	ANONAE	
	1010100		-04JU 7050				0500		5.040	-0.03		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	001100	NUONUE	
	4.6900	٠.	+3220	,	14.4300		10940		20 4910	-0.00			0.01 110		
	9.9900	<	.4370	>	22.8694	•	3.0100		3.3189	-0.00	00 -0+000L	144	10/120	AACUME	
	8,9500		1.1900		7.5294		5.5200		1.6232	4.57	00 - 51.00) 145	0/10	YVONNE	
	. 3.3200		.5330		6.2289		1.5500		2.0000	-0.00	00 -0.0000	145	10/20	Y VONNE	
	5050	٢	.1230	>	4.1057		.0.078		5.7517	- 0 - 0 0	0.0 -0.000	145	20130	YVONSE	
	0405		1.020		4020		077.6		45.04.	-0.00		1/15	30760	VUONNE	
1	+0100	ç	+1.0.30		• 1029	•	10140		• 1 + 2 1			142	00740		
	37.6000		5.8900		5.3837		1.6900		22.2485	2.03	00	3 146	5710	YVUNAE	
	54.1000		3.9400		13.7310	-	1.5900		34.0252	2.16	00 0399	a 146	10/20	A AO NUE	
3	150.0000		12.4000		12.0968		2.1000		71.4285	6.00	.0400	146	20/30	YYONRE	
	83.3000	•	6.6300		12.5541		1.1900		70.00.00	3.33	0.0 .04.00	146	30740	YVONNE	
	76 1000		4 6000	•	24 6786	•	4 7000		20 7752	1 20	an 0904	11.6	41/50	YVONNE	
	30.4000		1.0300		C1+2302		T+1200		204 33 32	0.20	10 10901	. 140		VUNINE	
/	10.3000		.8410		12.247.3		1.3100		2.0400	-0.00	uu - 0+0000	146	507.60	TVUNNE	
	7.6600		.4698		16.3326		1.2500		6.1280	-0.00	00 -0.9000	145	60/70	YVONNE	
	5,5900		.3430	•	16.2974		.8270		6.7594	-0.00	00 "** -0.0000	146	70/80	YVONHE	
)	3.4180	<	.1210	>	28.1A1A		.5780		5.8997	-0-00	nn ¹⁹ - n. nn n	125	80/90	YVONNE	
	3 0000	-	0707	•	44 0400		5250	•	6 1015	_ = = = = = = = = = = = = = = = = = = =		11.6	01/100	YVONNE	
	3.2900		• 2790	1	11.0102		.7170		0.1005		ບບ − 0-00000	140			
•	2.7100	. <	.1340	>	20.2239		.7780		3.4833	~0.D3:	30	145	0 J / 11 V	4 VUDNE	
											/ · · ·			X () () () () () () ()	

•				DATE	10/03/77	TIME OF DAY	09.08.06 .	u
ALLING THE SHALFASS		420000E+02 233/245/64	, = 13,1975 top 102M.	SANWERS 100 +	•			•
MEAN STD. DEV. VARIANCE MAX. X MIN. X RANGE	•	• 131995E+02 • 131995E+02 • 777718E+01 • 604846E+02 • 537129E+02 • 820000F+01 • 536309E+02				·		
SUM, X SUM, X SOUAPE		.554378 Ex 03 .979737 Ex 04						
GORRECTION TERM SUM. SHALL X SOUARE STD. DEV. (MEAN) VARIANCE (MEAN)		•731750 F+04 •247987 E+04 •120005 E+01 •144011 E+01						••••
NORMALITY TEST MEAN CEV. THIRD HOMENT FOURTH MOMENT		.435391E+01 .151142E+04 .655910E+05						
A SQRT B SUB1 B SUB2		•566617E+00 •333131E+01 •188142E+02						Х. С
MIDPOINT	FREQ.							
.250000E+01 .750000E+01 .125000E+02	2 11 18	** ********** *******						
.175000E+02 .225000E+02 .325000E+02	2 0 0	XX						· • 6
.425000E+02 .475000E+02 .525000E+02	0	×						
	42							
							•	$\sum_{i=1}^{n} e_{i}$
					29 v			• .
		· •					. •	

g. The concept of phased operations presents the opportunity to make an initial gross survey of the islands to identify those with the highest probability for soil removal. These data will greatly assist in developing working estimates of soil to be removed. 1

2

3

4

<u>5</u>

6

7

8

9

10

11

12

13

14

15

16

<u>20</u>

21

22

23

h. An ERDA aerial survey system will be fielded as early as possible (i.e., shipped in mid-June and operational shortly thereafter). This aerial system would proceed to survey the islands where soil removal possibilities exist (see Tabs A and B to Appendix 2 of Annex C).

i. The first van will be shipped approximately 1 July and become operational in mid-July, a second van, will be operational in August and both will commence with the fine surveys. By the August/September time frame, sufficient fine surveys can be completed to allow soil removal to begin in the planned mid-November time frame. As noted in 3.b above, the initial soil samples for van calibrations will be sent to McClellan AFB for analysis. The Radiochemistry Laboratory is expected to become operational on Enewetak in August.

j. A third van is expected to be on Enewetak at the end of September. <u>17</u>
 This van is intended as an operating spare replacement for the operating <u>18</u>
 vans. <u>19</u>

4. PU SURVEY CRITERIA:

Ener to to bell

a. The AEC Task Group recommendations and guidance were by design, general in nature. Subsequently, criteria have been developed by ERDA to guide the in situ soil assay.

b. A case-by-case evaluation by the CJTG (with the advice of the RCC) $\underline{24}$ of the requirements for soil removal, taking into consideration the location 25

(island), planned use, economics and the AEC/ERDA Task Group recommendations, $\frac{1}{2}$ will be required for each of the islands where contamination is found to $\frac{2}{3}$ exist. The resulting evaluation should lead to one of the four following $\frac{3}{4}$ conditions which have been recommended by ERDA.

5

<u>6</u>

<u>7</u>

<u>8</u>

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

(1) Condition A. When an assay area $\frac{1}{1}$ is determined by either direct measurement or extrapolation, to exceed 400 pCi/g (at the 67 percent confidence level $\frac{1}{2}$), the following actions will be taken:

(a) The area will be fine surveyed and isopleths drawn which define the region which exceeds local background $\frac{1}{3}$.

(b) Vertical soil profiles will be taken to evaluate the effectiveness of excavation as a means of reducing the resuspension potential $\frac{4}{4}$.

(c) An iterative excavation plan will be executed to:

<u>1</u>. Reduce the assay area average concentration below 400 pCi/g $\frac{1}{5}$.

<u>2</u>. Reduce the average concentration of the "defined region" to some lower number which shall be determined by cost-benefit considerations but will usually not be below local background.

(d) The region will be resurveyed and the results documented.

(2) Condition B. When a half hectare is determined by either direct measurement or extrapolation to exceed 100 pCi/g (at the 67 percent confidence level), the following actions will be taken:

C-2-E-5

(a) The area will be fine surveyed and isopleths drawn which define the region which exceeds local background.

1

2

3

4

5

<u>6</u>

7

8

9

10

11

12

13

14

15

16

<u>17</u>

18

<u>19</u>

20

21

22

23

(b) Vertical soil profiles will be taken to evaluate the effectiveness of excavation as a means of reducing the Resuspension Potential.

(c) An iterative excavation plan will be executed to:

<u>1</u>. Reduce the half hectare area average concentration below 100 pCi/g.

2. Reduce the average concentration of the 'defined region'' to some lower number which shall be determined by cost-benefit considerations but will usually not be below local background.

(d) The region will be resurveyed and the results documented.

(3) Condition C: When a quarter hectare is determined by either direct measurement or extrapolation to exceed 40 pCi/g (at the 67 percent confidence level number), the following actions will be taken:

(a) The area will be fine surveyed and isopleths drawn which define the region which exceeds local background.

(b) Vertical soil profiles will be taken to evaluate the effectiveness of excavation as a means of reducing the Resuspension Potential.

(c) An iterative excavation plan will be executed to:

1. Reduce the quarter hectare area average concentration 24

C-2-E-6

below 40 pCi/g.

Reduce the average concentration of the "defined 2. region" to some lower number which shall be determined by cost-benefit considerations, but will usually not be below local background.

1

2

<u>.</u>3

4

5

<u>6</u> 7

8

9

10

11

12

13

14

15

16

17

18

20

24

25

(4) Condition D: An assay area whose average Pu concentration is any 5 cm thickness of soil below the surface layer when measured $\frac{1}{2}$ (at the 67 percent confidence level) to exceed 400 pCi/g will be excavated and measured iteratively until its average Pu concentration in the new 5 cm layer is found by measurement (at the 50 percent confidence level) to be reduced in the defined region to some lower number which shall be determined by cost - benefit considerations, but will usually not be below local background.

Footnotes:

Assay Area. The field of view of the in situ detector in its normal operating position; typically a 28 meter diameter circle of 3 - 5 cm in depth. Scattered measurement can be used to estimate average concentrations between such measurements by means of a linear estimator program known as "Krigging."

 $\frac{1}{2}$ Statistically, two-thirds of the time the actual concentration will 19 be below the guide number. One-third of the time the actual concentration may exceed the number by some percentage which must be empirically deter-21 mined (up to 20-30 percent, as an estimate). This is similar to using a 22 50 percent confidence level with a numerical guide 20-30 percent (estimated) 2: lower. If a 90 percent confidence level were used with the numerical guide, the equivalent guide at a 50 percent confidence level would

C-2-E-7

Department of Energy Washington, D.C. 20545

NOV 9 1977

Col. Charles J. Treat Chairman, Conference on Runit Cleanup Field Command, Defense Nuclear Agency Kirtland Air Force Base, New Mexico 87115

Dear Col. Treat:

I appreciate the opportunity to review your draft report and the draft minutes of the October 4-5 conference. The draft report to Commander, FCDNA, is quite acceptable. I have no suggestions. I do have a measure of concern for what appears an honest difference of opinion that surfaced in the meeting on the general subject of how the Task Group's recommendations for cleanup of transuranium elements in soil are to be interpreted.

In the discussion in Las Vegas, I attempted to describe the assumptions and realizations of the Task Group as we tried to prescribe the letter and intent of the recommendations. The more important of these are:

- 1. Cleanup criteria must be flexible enough to allow judgements to be made in the field.
- 2. A prejudgement was needed that soil cleanup should be conducted above a certain contamination level.
- 3. A prejudgement was needed that soil cleanup was not required below a certain level.
- 4. For the range in between judgements made in the field caseby-case by experts were likely to be superior to any judgements that could be made in advance.
- 5. Guidance for these field judgements was presented in Appendix III pages III-8 and III-9, of the Task Group report.
- 6. The following quotes from this Appendix define the intent of the recommendations:
 - a) "Any areas or locations where soil concentrations of 239Pu are greater than 400 pCi/g should receive corrective action...." (underlining added).

Enel 7 to mell

Col. Charles J. Treat

- b) "Situations with soil levels in the 40 to 400 pCi/g range may receive corrective action" (underlining added).
- c) "Islands with soil levels in the above range may be divided into two categories, those of sufficient size for construction of permanent houses, and those that are not Removal of ²³⁹Pu contaminated soil is better justified within the range above for the larger islands such as JANET or SALLY where permanent housing may some day be located and for near surface locations on the larger islands The smaller islands may be considered of less concern"

Note: This is the only place in the guidance where an indication of relative priorities for cleanup of contaminated soil is given. The highest priority is given to larger islands and near surface locations on larger islands.

I made two statements in the meeting that were derived from the material just quoted:

- Cleanup of areas above 400 pCi/g should not be considered to be any more mandatory than cleanup in the 40 to 400 pCi/g range once a judgement (case-by-case) has been made that such cleanup is justified.
- Cleanup of levels above 40 pCi/g on Enjebi should be as high a priority as cleanup above 400 pCi/g on some small island like Boken.

I strongly urge that in the implementation and interpretation of the Task Group recommendations, the impression not be given that cleanup actions that are to be taken on the basis of case-by-case determinations in the field are of less importance and lower priority than what may be described as prejudgement actions. We must be equally prepared, if not more so, to defend case-by-case decisions to perform or not perform cleanup along with prejudgement decision and actions. Viewed in this context, statements that cleanup of islands with soil concentration above 400 pCi/g is the only mandatory action are in error. If the requirements for cleanup are to be stated in absolute terms, it must be stated instead that performing case-by-case determinations for 40 to 400 pCi/g areas is also a firm requirement and, therefore, mandatory and any associated field determination that an action is

Col. Charles J. Treat

۶.

justified in this range makes that action mandatory as well.

The "should" and the "may" previously underlined were intended to separate situations where a decision has already been made from situations where a decision is yet to be made in the field. These terms and attendant language do not establish two categories of action such as mandatory cleanup to be given priority and caseby-case cleanup to be left until last. This is a very fundamental concept we must agree upon if cleanup is to achieve the greatest good. I do not consider that anything in the EIS or Op Plan changes or supersedes the interpretation of the AEC soil cleanup criteria just outlined, and believe we must engage in a continuing dialogue to insure that interpretation of these criteria do not change with time.

My specific comment on the draft minutes, item 3, pages 1 and 2, is that the section does not adequately reflect what I said. For instance, I did not say that the priorities for cleanup above 400 and between 40 and 400 pCi/g were the same so long as resources were available. I stated that they were the same, period. Further, the statement read and used as Enclosure 4 is a very brief summary of the recommended soil cleanup criteria without the interpretative text that was provided and as such is not as good a reference as quoted above, i.e., pages 8 and 9 of Appendix III. Further, as to the FCDNA position on mandatory/priority cleanup above 400 pCi/g, I stated that in my opinion this was not a proper interpretation of the Task Group's recommendations.

The final point to be made concerns an important exchange of views not covered in the draft minutes. This was the question of whether or not the soil cleanup criteria for Enewetak apply to 239Pu alone. The position several members took was that even though the Task Group report used the terms "plutonium" and "²³⁹Pu," the criteria apply to all the transuranium elements in Enewetak soil. Also, the 400 pCi/g value comes from Jack Healy's report wherein a mix of transuranium elements in soil was assumed.

If part 3 of the draft can be revised to accommodate the comments above, my signoff can stand. Also, this letter may be included as addenda.

Sincerely,

loumit. Mista

Tommy F. McCraw, Acting Chief Surveillance Projects Branch Division of Operational and Environmental Safety UNIVERSITY OF CALIFORNIA LOS ALAMOS SCIENTIFIC LABORATORY (CONTRACT W-7403-ENG-36) P.O. Box 0 MERCURY, NEVADA 89023

IN REPLY REFFER TO: H1-NTS-3337 MAIL STOP: 900

19 October 1977

Commander, Field Command Defense Nuclear Agency ATTN: Colonel Charles J. Treat Kirtland Air Force Base, NM 87115

Dear Colonel Treat:

Thank you for sending me the draft Chairman's Report and the draft Synopsized Minutes of the conference held in Las Vegas, Nevada on 4-5 October 1977.

I concur with both the draft report and the draft minutes with the following exceptions:

On page 4, item f, of the Chairman's Report the statement is made: "It is envisioned that this profiling effort will use the iterative 'one-half distance' techniques to establish the size of the subsurface pockets showing contamination levels in excess of 400 pCi/g PU 239/240."

And on page 3, item 6, of the synopsized minutes the statement is made: "Moving one half the distance between greater than and less than sample points iteratively should provide boundary definition of contamination areas of interest."

Both these statements could be construed to imply that the contamination can be characterized by a mathematically continuous function that can be treated by classical statistical techniques. I take exception to this concept and believe that the increased sampling points characterizes the contamination in a "shotgun effect: " i.e., that it decreases the probability that a significant amount of random contamination will be missed.

melt to mell

A brief statement of my exception is as follows:

"The use of the 'one-half distance' technique should not imply that the contamination can be characterized by a mathematically continuous function. Random discontinuities must be expected."

Sincerely yours,

filmed F. Smale

Richard F. Smale Group H-1, LASL

RFS:nr

CY: Bruce W. Church U. S. Department of Energy Nevada Operations Office Radiological Branch Post Office Box 14100 Las Vegas, NV 89114

> Harry S. Jordan, H-DO, LASL, MS-690 Jerome E. Dummer, H-1, LASL, MS-401 ISD-5, LASL, MS-150 (2) J-3 M&R, NTS, MS-900

WATER RESOURCES CENTER Desert Research Institute — University of Nevada System

4582 Maryland Parkway Las Vegas, Nevada 89109 (702) 736-2293

November 2, 1977

Commander, FCDNA (FCZ) Kirtland AFB, NM 87115

Dear Sir:

I have examined carefully the draft Chairman's Report and the draft Minutes of the Runit Cleanup Conference held in Las Vegas 4-5 October, 1977. I have one exception to the Synopsized Minutes, regarding Item 11 from the first day. The minutes indicate that subsurface sampling would consist of sidewall soil samples, one 5 cm increment in each 20 cm depth, instead of gamma scanning the sidewalls.

However, my notes indicate that the gamma scanning of the sidewalls would at least be attempted, to see if the results were reliable enough to be useful. If so, then only the "hot spots" would need to be sampled, and if not, the technique would be dropped. The "5 cm-in-each-20 cm" increment would be used to check the reliability of gamma scanning, and would become the primary sampling technique if the gamma scanning proved to be unusable.

I find the remainder of the Minutes, and the Report, to be clear and accurate.

Sincerely,

Madaline Barnes

Madaline Barnes Research Statistician Desert Research Institute

mel 9 to mell

MB: CM

Applied Ecology and Physiology Center

Human Systems Center

Department of Energy Nevada Operations Office P. O. Box 14100 Las Vegas, NV 89114

NOV 1 0 1977

Commander, Field Command Defense Nuclear Agency ATTN: Colonel Charles J. Treat Kirtland AFB, New Mexico 87115

Dear Colonel Treat:

COMMENTS ON THE MINUTES OF THE RUNIT CLEANUP CONFERENCE

Realizing the goal of the subject conference was to advise on the need and method for data collection (to gain a better definition of the RUNIT scope of work), I wish to preface my comments with two observations gained from participating directly in five Nevada-directed cleanups and from many conferences listening to other organizations who share similar experiences.

- 1. One can never gather enough prior information to prevent surprises during actual operations. To gather sufficient data becomes selflimiting in that it is more efficient to do the actual cleanup in conjunction with the data gathering process. Actual cleanup operational problems contribute greatly to this (i.e., type of equipment available, logistics, etc.).
- 2. Generally, even with what is believed to be the best available information as to scope of work, for every experience I am aware of, without exception, the planned cost and time have been different by factors when compared with the actual experience. The best advice then must be Be prepared to deal with changes in terms of factors, perhaps 2-4, or more.

The following specific comments address your numbered sections:

1-4. No comment.

Enel 10 to well

Colonel Charles J. Treat

NOV 1 0 1977

- 5. For clarity, any detector measuring ²⁴¹Am in-situ (which includes the aerial survey), will not detect material below 3cm.
- 6. The discussion by Madaline Barnes should be amplified to include the point that low density measurements or less frequent measurements result in a lower confidence in the estimate and a greater error term.

In Tom Crites' discussion the point was left out that the calculated grid size was a direct variable in relation to the chosen contamination level. This hypothetical case only applies to homogeneous distributions which we don't have on RUNIT. I also wish to reemphasize that the half-distance technique also implies a somewhat homogeneous distribution. This means the greater the distance between sample points, the less confidence and the more you have to be prepared for surprises.

I very strongly support the master grid concept, and that every sample must lie on the grid, or sub-component.

- 7-9. No comment.
- 10. I believe this method has some utility for the quick and dirty answer, but caution that it also contains high variability in individual results.
- 11-13. No comment.
 - 14. In my opinion the choice of grid size or intensity of investigation is where you really trade cost and effort of scoping against the desire to gain high confidence of estimates. One must carefully watch the data here, because the situation exists where a little effort may increase the confidence a great deal, or it may take a great deal of effort to increase the confidence a little.

15-17. No comment.

- 18,19. I believe we will all be surprised at the amount of resources it will take for the job outlined, and that there will be no such thing as minimal resource expenditure. I agree with the concern that without giving priority to the RUNIT task that it will take a very long time.
 - 20. Looking at the time spent on RUNIT during the 1972 survey, the

Colonel Charles J. Treat

time spent to gather the ERIE GZ information, I can not agree that 90 days is a reasonable target for obtaining characterization data.

21,22. No comment.

23. Agree with this section, with the exception that the curie content can probably be just as accurately established in measured areas to be excavated, as trying to gain a meaningful sample from a truckload, and will help keep the laboratory sample load down.

Enclosed are the comments from Mr. A. E. Doles, Eberline Instrument Corp., as submitted to NV.

Sincerely,

une W, Chin

Bruce W. Church, Chief Radiological Branch Bioenvironmental Sciences Division

BSDR: BWC-216

Enclosure: As stated

October 21, 1977

EI-916262

B. W. Church, Chief Radiological Branch Department of Energy Nevada Operations Office P. O. Box 14100 Las Vegas, Nevada 89114

Reference: Letter from Charles J. Treat, Colonel, USA, dated 14 October 1977 re: Conference on Runit Cleanup

Dear Mr. Church:

The following comments are submitted for your review and/or incorporation in DOE-NV's comments to the referenced letter.

Minutes of Conference:

The minutes of the conference do not reflect a considerable amount of meaning ful dialogue that I would have incorporated in the minutes.

Many exceptions were expressed to subjects that the minutes portray as agreements and consensus. Therefore, I can not agree that the "minutes accurately reflect the discussions, agreements and consensus reached during the conference." I can agree that the "minutes of the conference" are adequate t serve as a reminder to the participants of the conference as to subject matters covered and the many expressed opinions of different parties.

Chairman's Report:

Conclusions:

a. Concur

b. Concur

- c. I believe a considerable expenditure of resources will be required to define the scope of work on Runit.
- d. I would not recommend that this program be justified on the bases that i will furnish direct information to certify the radiological condition of Runit after cleanup. It's recognized that all information is beneficial but Runit may be severely restructured during cleanup so as to render the precleanup data invalid.

(continued on page -2-)

EBERLINE INSTRUMENT CORPORATION, PO. BOX 2108. SANTA FE. NEW MEXICO 875(1 TELEPHONE (505) 471-3232. TWX 910

B. W. Church, Chief Radiological Branch DOE-NV October 21, 1977 Page -2-

e. I concur with the first portion of the sentence. See d above concerning the last portion of the sentence.

f. Concur

Recommendations - a thru n

I would recommend the following steps be taken to establish a coordinated program to define the scope of work involved on Runit.

- Step I DOE-NV assume technical responsibility for this program and design a program which would include such detailed definition as to use of the IMP system, sampling locations, sampling density, sampling technique, sample analysis, data reduction and other technical parameters. In the design of this program, due consideration should be given to the recommendation of the chairman (conference on Runit cleanup) and other opinions expressed during the conference. Included in this program design should be a proposed schedule and a commitment of DOE-NV assets to support the program.
- Step II The program design should be submitted to Commander Joint Task Group (CJTG) to prepare a detailed operational plan to accomplish the program. Included in this operation plan should be a firm schedule and a commitment of existing or additional resources to accomplish the program.

This operational plan should include a clear assignment of responsibilities of the various units participating in the program.

Step III - Execution should commence upon approval of the operational
 plan by DOE-NV and Field Command Defense Nuclear Agency
 (FCDNA).

Ω.

Very truly yours,

EBERLINE INSTRUMENT CORPORATION

9 Eloler

E. Doles Vice President

AED:igs

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RADIATION PROGRAMS-LAS VEGAS FACILITY P.O. BOX 15027, LAS VEGAS, NEVADA 89114 (702) 736-2969 • FTS 595-2969

NOV 8 1977

Colonel Charles J. Treat Defense Nuclear Agency Kirtland Air Force Base Albuquerque, NM 87115

Dear Colonel Treat:

Mr. Bruce Church has provided me with a copy of your draft Chairman's Report and a copy of your draft Synopsized Minutes of the subject October 4-5, 1977, conference. Mr. Bernhardt and I have reviewed these drafts. Our comments are as follows:

General

Since there was considerable commentary on the scope and objectives of the conference, these should be clearly delineated in both documents. Presumably the objective was to determine if the existing data base is adequate to estimate the resources necessary to cleanup Runit and to delineate the initial operations plan. A secondary objective was to define what additional data should be gathered if the data base was considered inadequate. It should also be noted that the decision as to the necessity for Runit cleanup or the extent of Runit cleanup was stated to be outside the conference scope.

Summary

Page 2, Item 2.f. Delete the last sentence. Plowing or mixing should not be used. We believe that this was also the group consensus.

Page 3, Item e. For the central northern area we believe that the recommendation was to conduct two cross-island traverses. Assuming an average island width of 700 feet and sample spacing of 10 meters, this would result in about 40 samples. This should have a fairly high priority in determining the relative mass for cleanup. Suggest replacing Item e with Item k.

Page 5, Item h. Given the uncertainties associated with sampling only one 5-centimeter section out of each 20-centimeter vertical increment, samples should be removed and stored from each 5-centimeter section for potential future analysis. Believe this was suggested and at one point adopted at the meeting.

Encl 11 to mel 1

Page 5, Item i. Is it clear that samples which have a very low gamma level of contamination also have a low plutonium level, particularly in the FIG/QUINCE area? This should be verified.

Minutes

Page 3, 1st full para. It would be helpful to define "simple yes-no criteria" in a more specific manner.

Page 4, Item 8. See above comments on the summary, Item e. Our past experience with cleanup of sites also shows that simply because we are unable to find a record or reason for possible contamination in a specific area doesn't mean that that area is uncontaminated. If there were cable runs or line-of-sight pipes in the central area, then the possibility of contamination should be thoroughly investigated.

Page 5, Item 9, last sentence. It scarcely seems prudent to spread contamination once it has been gathered together. Believe that the group consensus was that this should not be done.

Page 5, Item 11, 3rd sentence. Don't really believe that averaging samples of greater depth leads to anomalous data output. It might lead to misunderstanding of the results because of a lower picocurie per gram value. Suggest this sentence be checked with Bruce Church.

Page 7, Item 14, last sentence. While it may have been the Chairman's contention that the effort should not include exploration to locate other possible subterranean pockets, don't believe that this was the group consensus.

Page 12, Item 21. See above comments on Summary, Page 2, Item 2.f.

Page 13, Item 22. Not sure that there was agreement that soil brought to Rumit could be used to fill in holes left by cleanup. This could result in recontaminating an area that had just been cleaned.

The iterative "one-half distance" technique for delineating the size of pockets of various levels of contamination is mentioned several times (e.g., Summary, Page 4, Item f and Minutes, Page 3). This technique is useful for relatively continuous areas or pockets of contamination, but may have limited utility for the heterogeneous contamination situation at Runit (contaminated material may vary from particle size to many cubic meters).

We do not agree with limiting these comments to the status of "minority reports." Rather, it would be more proper to revise the "Summary" and "Minutes" accordingly. This is especially true for the general comment (scope and objective) and the first two specific items. Unless the reports are modified, they stand as the summary and conclusion of the Chairman, not the delegates.

Sincerely yours,

I W Hendruch

Donald W. Hendricks Director, Office of Radiation Programs-Las Vegas Facility

Sand E. Benland

David E. Bernhardt Program Manager for Dose Assessment, Field Studies Branch

CRATER CONTAINMENT OF CONTAMINATED MATERIAL AT ENEWETAK

DESIGN ANALYSIS

PREPARED BY U.S.ARMY ENGINEER DIVISION PACIFIC OCEAN CORPS OF ENGINEERS HONOLULU, HAWAII

29 NOVEMBER 1976 * REVISED 16 DECEMBER 1976

A. References.

Environmental Impact Statement Vol. 1 - 1V, Defense Nuclear
 Agency, 15 April 1975.

2. Engineering Study for a Cleanup Plan, Enewetak Atoll, Marshall Islands, Vol. I - III, Holmes and Narver, Inc., April 1973 and Vol. III revised September 1974.

3. Instructions furnished by DNA meeting at DNA, Hickam AFB, dated 5 October 1976, titled, "POD Guidance for Crater Design".

4. Cleanup of Enewetok Atoll Marshall Islands, using a Joint Task Group, FCDNA, Kirtland AFB, New Mexico 87115, FCDNA CONPLAN 1-76 revised 15 September 1976.

5. Feasibility Study for Crater Containment of Contaminated Material at Enewetak, POD, 21 March 1975.

6. FCLS Memorandum, subject: PU Contamination in Vicinity of Cactus Crater, Runit Island, dated 30 September 1976.

7. Summary of the Geological, Geophysical and Material Properties Environment around Cactus and LaCrosse Crater, Runit Island. 8. Radiological Cleanup Plan for Enewetak Atoll, 23 July 1976, FCDNA.

9. Groundwater Resources Evaluation: Enewetak Atoll, the Defense Nuclear Agency, October 1976.

10. Message, 171745Z Aug 76 from HQ DNA WASH DC//OALG//, subject: "Cleanup of Enewetak".

B. Responsibilities of Corps of Engineers, Pacific Ocean Division for the Enewetak Cleanup Program. Engineering input requirements are limited to the crater encypment of the contaminated material to include the following:

1. Provide plans, details and instructions as required for the crater containment of the contaminated material.

2. Determine slurry mix for the contaminated material.

3. Determine concrete mix for key wall and concrete cap.

4. Provide descriptive data and requirements for batch plant, quarry, rock crushing, screening, and construction equipment.

5. Provide design for a salt water system for dust abatement, wash down areas, mixing plant, storage yard sprinkler system, and area around the southern lip of the crater.

(Rev. 16Dec76)

provide plans and details for a brackish water system for the
 laundry,

7. provide design for the electrical distribution system and flood lighting,

8. provide equipment list for concrete slurry placement,

9. provide design of ramp at north end of Runit for off loading dump trucks.

C. Description of Work.

Encrypment of Contaminated Material. The volume of contaminated material will vary from 70,000 cy to 200,000 cy. Drawings have been prepared to show the configuration to contain this variable volume. The concrete slurry mix which is placed under water may require from
 8 bags of cement per cubic yard. The amount of cement required will be determined by Waterways Experiment Station (WES). The concrete mix of the contaminated material placed above water will be approximately 2 bags of cement per cubic yard. This mix will be compacted by a vibrator roller to obtain a stable compact mass.

and/or windrow mixing. The method used will be determined in the field. Encrypment of the contaminated material will be at the Cactus Crater site with the mound adjusted to accommodate the volume of contaminated material generated by the cleanup operations. Consideration has been given to the use of LaCrosse Crater in addition to Cactus Crater <u>but is not recommended</u> since more time, materials and costs will be incurred under this scheme. See Appendix A.

a. Recommended sequence of contaminated material placement is as follows:

(1) Dump large pieces of radioactive material into bottom of crater. Material should be well dispersed to preclude subsequent material from "hang-up". Scrap metal should be cut up into pieces to prevent voids. The dispersion should be monitored to assure optimum placement of concrete slurry.

(2) Place concrete slurry with concrete pump and barge as shown on the drawings. Concrete slurry shall be placed up to the top of the tidal level (approximate elevation +5.0).

4

(3) During the slurry placement the keywall on the north end of the crater on the exposed reef can be constructed. It is estimated that 1/2 of the keywall on the north (seaward) side of the crater will be anchored 1'-0 into firm coral reef and the remaining 1/2 of the key wall will be embedded to a maximum of 8'-0 into factured coral reef and where no reef exists. The applicable keywall to use will be determined in the field.

(4) The amount of contaminated materia may be known by this time and the configuration of the mound determined. The location of the keywall should be staked out and all surrounding material within the containment area removed to the elevation of the existing coral reef located on the north end of Cactus Crater.

(5) Complete construction of the enclosing keywall.

(6) Placement of the contaminated concrete mix above the water

line shall be compacted by vibrator roller and shaped to receive the concrete cap.

b. Keywall. The concrete keywall will be constructed completely around the encrypted material. The pace data (reference 7) indicates

5

(Rev. 16Dec76)

there is a coral reef on the north side of Cactus Crater. In this area the keywall will be tied one foot into the existing coral reef. In areas where no coral reef existed or where the reef has been fractured the keywall will be constructed to a depth 8'-0 below the top of the adjacent coral reef. This wall can be constructed by driving sheet piling, excavating the space between the piling, dumping concrete below the water line and terminating with conventional concrete placement above the water line. The wall can also be constructed by excavating, placing forms, pouring concrete as described above and then backfilling. A precast concrete option has been indicated on the drawing. The depth of this 8'-0 embedment will preclude scouring and undermining of the keywall from tidal waves and severe storm wave action. See Appendix C.

c. Concrete Cap. The contaminated material will be encapsuled with a 18" thick concrete cap. The cap will be poured in maximum 20' x 20' panels (22 cy) to reduce shrinkage cracks. Concrete with a strength of 3000 psi at 28 days will be used. Keys will be formed at slab joints to prevent differential movement between slabs.

(Rev. 16Dec76)

d. Quarry, rock crushing, screening and central mix batch plant operations and equipment lists. See Appendix B.

e. Landing ramp. A ramp will be required on the lagoon side of Runit close to the storage area to unload dump trucks laden with contaminated material from outlying islands. The ramp site will be graded to a maximum slope of 10%. A leveling course of gravel will be placed prior to placement of precast concrete slabs. The ramp will be 40'-0" wide to accommodate LCU landing craft. Coral heads will be removed by explosives. The Navy shall verify suitability of the elevation of the toe of the ramp for the operation of the craft used.

f. Water Supply.

(1) A brackish water supply will be provided for the laundry. The skimming well will be located near the test pits contained in reference 9. The location is close to the end of the runway which will provide a good recharge surface area to replenish the fresh water supply. Waste water will be disposed of by utilizing a seepage pit. See Appendix D.

(Rev. 16Dec76)

(2) A salt water system will be provided for the sprinkler system at the storage yard area, fill station and wash down area. Water will be drawn from a pit located near the shoreline on the lagoon side adjacent to the landing ramp. The fill station will provide water for the water trucks for dust abatement of the roads.

Another salt water system will provide salt water for the batch, mixing plants, and crater area. The source of water will be LaCrosse Crater. Cast iron pipe will be placed and anchored with precast concrete blocks.

Each water system will utilize engine-driven pumps with a spare * provided for backup.

g. Mole Construction. The requirements for the mole construction are shown on the drawings. See Appendix F.

h. Electrical Requirements. Floodlight for night operation will be furnished utilizing light sets and generator sets available through Army TOE. See <u>drawings</u> for additional electrical requirements. *

i. Quantity Estimates and Cost Data. See Appendix E.

APPENDIX A

POD Form 115 1 Jul 70

U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

PROJECT TITLE	SH NO OF	SHS
LOCATION	SECTION	
DRAWING (S) NO		
COMPUTED BY DATE CHI	ECKED BY DATE_	
DESIGN ANA	LYSIS	
CEMENTUSED FOR SI	LUIZIZY (LACROSSE)	>
2 BAGMIX × 103,59	31/03 = 207,186 BM	G S
4 BAG MIX × 103,59	$3 (0^{2} = 414, 372 $	
6 BAG MIX X 103,59	3 403 = 621,558 "	
8 BAG MIX × 103,5°	13'703 = 828,744 "	
$\frac{\text{TOTAL CEMENT REGID FO}}{\text{CAP} + \frac{1}{2}}$	<u>к 103593 уб енсечрт</u> SLURRY 27186 = 259106 ВА	MENT.
(4 BAG) = 11 + 41	4,372 = 466,292	•
(6 BAG) = " + 6	21,558 = 673,478	4
(BBAG) = " + B	28,744= 880,664	•1
20D Form 115		$\overline{\bigcirc}$

्रि

ų

3

ι
U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

PROJECT TITLE		SH	NO OF SHS
COMPUTED BY	DATE	CHECKED BY	DATE
	DESIGN	ANALYSIS	
TOTAL CEP	NENT REQ	'D USING B	OTH CIZATERS
	LACROSSE	+ CACTUS	
2 BAGMIX =	259106	+ 142580 =	401,686 BAGS
4 ⁿ	466292	+246414 =	712,706 "
6 ''	673478	+350248 =	1023,726 "
8	880664	+ 4 5 4 0 8 2 =	1,334,746 "
Conclusio	NI :		
ITISN	ot econo	MICALLY FI	EASIBLE TO
LITILIZI	E THE LAC	LIZOSSE CIZ	ATER AS PART
OF THE	E TOTAL V	IOLUME FO	DR ENCRYPT-
MENT	of conta	MINATED	WASTE. THE
ACCON	PANYING	GRAPHS	HOWSTHAT
THE O	UANTITY	OFCEMENT	REQ'DIS ALL-
WAYS	MOREW	HEN"LACRO	OSSE IS USED,
IN AD	DITIONO	THER EXP	ENSES WOULD
BE IN	JOLVED	SUCH AS	THE CONSTRUC-
TION	OFTHE	MOLEZC	AUSEWAY ETC.

POD Form 115 1 Jul 70

Design Huslips Nov '26

APPENDIX B

18 November 1976

PODED-G

CENERAL GUIDELINE FOR DRILLING AND BLASTING CORAL REEF FOR ARMOR STONE AT ENEWETOK ATOLL, M.I.

A. PURPOSE

1. Based on the Corps drilling and blasting experience in the Marshall Islands provide guidance in the planning and execution of a coral reef quarry operation. Under the best controlled drilling and blasting methods the approximate yield of armor stone size pieces remains low, or about 15 percent. Consequently, to be successful in mining armor stone the quarry operation must be rigidly controlled.

B. ASSUMPTIONS

.

1. Fully qualified individuals with proven experience shall provide the supervision or technical direction.

2. Control drilling and blasting techniques will be used.

3. Safety and accident prevention planning and protection will be closely followed.

C. ITEMS TO CONSIDER

1. Drilling and loading can be successfully done <u>only</u> at times of low tide levels. Only four to five days out of <u>every other</u> week will low tides occur during the daylight hours.

2. A potential armor stone quarry is generally located in thick reef crusts on the ocean side of the atoll. Visually the quarry site should be selected where the reef is widest and surface elevations are highest. The reef rock will be thickest near the ocean and thinning toward dry land. The higher the reef crust is above low tide the greater is the depth of calcification and hardening.

3. The reef structure decreases in hardness with depth and grades into unconsolidated clastic sediments (silt, sand, gravel & cobble size particles) suitable only for concrete aggregates and fill materials.

4. Freshly mined armor stone pieces are soft and tend to break and crumble on handling. Exposure of rock pieces to air for several days causes further calcification and strengthening (like case hardening). To minimize breakage, armor stone should be quarried and the individual pieces temporarily stored on the adjacent reef surface. PODED-G

1

General Guideline for Drilling and Blasting Coral Reef for Armor Stone at Enewetok Atoll, M.I.

5. To recover armor stone sized rock it is necessary that controlled blasting merely fracture the reef crust to just the extent necessary that proper excavation equipment can break off the required size of stone. Consequently a carefully planned excavation technique must be developed together with the blasting procedure.

6. Powder to rock ratios will range from less than one pound to more than two pounds per cubic yard. Where the hard reef crust layers are less than four to five feet thick excess energy (more than one pound per cubic yard) is either absorbed in the more porus underlayers or is vented (wasted) at the reef surface. Excess energy occuring where hard reef crust layers exceed five feet will cause crumbling or shattering and must be avoided in blasting for armor stone.

7. For coral reef blasting, contractors have used a five minute delay train with two detonating cord trunk lines and a non-electric fuse lighter.

8. Shot holes should be sounded with a calibrated blasting stick to insure no caving has occurred prior to loading. Shot holes should be loaded immediately after drilling. Rising tides can carry sand into open holes unless the top of holes are closed (stoppers).

9. Drilling and loading will be done under increasing depths of water within the drill hole. All loaded shot holes will be detonated the same day of loading.

10. Team work and close coordination is necessary to efficiently use the short daylight work period.

D. INVESTIGATIONS

1. Investigations are to outline and define the thickest and hardest reef crust layers for mining 1500 to 3000 pound armor stones.

2. Select widest reef area on ocean side for a quarry site.

3. Within the widest reef area select the highest elevated reef crust for inital investigations.

4. Sand and rock rubble may cover portions of the selected reef area. Clearing exploration paths through the rubble is required to expose the reef surface and for keeping test shot holes open. PODED-G

General Guideline for Drilling and Blasting Coral Reef for Armor Stone at Enewetok Atoll, M.I.

5. Horizontal survey controls are necessary for locating exploratory paths and positioning exploratory and shot holes to be drilled to measure and map the coral reef crust thickness and hardness. Exploratory paths (lines) can be laid out on about 100 feet centers normal to dry land or reef front. Locate preliminary investigative shot holes on approximately 50 centers. Decrease the distance between shot holes if correlation between holes is not apparent.

E. INVESTIGATIVE OBSERVATIONS AND MEASUREMENTS.

1. Thickness of reef crust can be determined by exploratory and shot holes by measuring the depth where the hole caves when the bit is removed. Caving normally is where underlying loose sand prevents deepening by a percussion drill due to the increase energy needed to blow the hole clean.

2. Hardness of the reef crust will vary with the sound and response of the drill.

3. Timing the rate of drilling and comparing with investigative rock excavation will provide experience in siting a quarry area. Strips painted on drill steel aids in making estimates of drilling rates. Comparing the rates of drilling for bit sizes $2\frac{1}{2}$ ", 3" and 4" can be used to plan drilling and blasting arrays.

4. Uniformity in drilling operations is necessary when comparing results. To minimize variations in percussion drilling the compressor must maintain a constant CFM volume at controlled pressure and the sequence of drilling and blowing should be nearly uniform.

5. The success of observations and measurements depends on the experience and ability of the drill operator.

F. BLASTING DESIGN

1. Criteria for blasting design can be found in TM 5-332 - Pits and Quarries, EM 1110-2-3800 - Systematic Drilling and Blasting for Surface Excavation.

2. Shot hole arrays will depend on the thickness of the reef crust layer. Vary hole spacing and powder-rook ratio as necessary to obtain desired results. (The anticipated yield is about 15%).

3. The following general criteria will aid in planning initial test blasting:

PODED-G.

General Guideline for Drilling and Blasting Coral Reef for Armor Stone at Enewetok Atoll, M.I.

a. Drill $2\frac{1}{2}$ -inch diameter holes in reef crust layers less than six feet thick beginning with a $5\frac{1}{x5}$ array in a rectangular pattern. Drill 3 and 4 inch diameter holes where the reef crust is more than six feet thick. The hole array will exceed $5\frac{1}{x5}$.

b. Use 40 or 50 percent weight strength, water resistant, straight gelatin dynamite with instant caps and prima cord. The powderrock ratio should be between 1.0 and 1.6 pounds per cubic yard depending on hardness of rock. A smaller charge is used in harder (slower drilling) rock.

c. Experience and trial and error under controlled conditions will furnish additional guides as work progresses.

4. The amount of blasting energy used per hole should be no more then necessary to crack the reef crust. If heaving and distortion occurs the powder-rock ratio should be reduced or the shot hole spacing increased or combination of both.

5. The best recovery (percentage yield) of armor stones will be obtained by excavating the pieces from the cracked reef crust.

6. A quarry should be developed to provide two or more faces which helps to relieve blasting stresses and makes excavation of large pieces easier. A sigzag (angled) quarry layout would provide the greater number of working faces.

7. Joints, cracks and surge channels in the reef crust should be considered free faces when planning shot holes.

8. Solution sinks, pot holes and cavaties will absorb blasting energy and should be avoided in planning shot holes.

9. Blasting formulas referenced in paragraph 1, hereinbefore, lists the many additional items and variables effecting blasting techniques. The culmination of experience in the field will ultimately dictate the most successful blasting procedure.

17 November 1976

PODED-G

QUARRY, ROCK CRUSHING, SCREENING AND CENTRAL MIX BATCH PLANT OPERATIONS FOR CLEANUP OF ENEWETOK ATOLL, M.I.

A. INTRODUCTION

1. PURPOSE:

a. Identify only significant types of equipment considered essential for practical completion of the designed containment of contaminated debris and soil.

b. Show types of equipment and number of each for the assumed operational-production rate. (If any operation is not scheduled simulta-neously with another then common equipment need not be duplicated.)

c. The size of equipment is limited by the recommended capacity or equivalent shown. (Operational production dictates the size of equipment.)

d. Denote availability of equipment through either the Army "Table of Organization and Equipment (TOE)", Navy, or commercial.

e. Indicate equipment requiring a long procurement lead time.

f. Show the approximate continuous horsepower demand for electrically powered equipment.

g. Provide estimated area requirements for quarry and/or borrow sites, aggregate stockpiles, and crushing, screening and batch plant operations.

2. BASIC ASSUMPTIONS:

a. All required support maintenance tools and repair parts essential for satisfactory performance of equipment shall be the responsibility of the service organization.

b. The tasked <u>organization</u> shall contain teams of trained equipment * operators, maintenance personnel and helpers to insure an efficient equipment operation.

3. ASSUMED MINIMUM PRODUCTION REQUIREMENTS:

a. Crushing plant shall process a minimum of 60 tons per hour.

b. Screening and washing unit shall process a minimum of 60 ton per hour.

c. Central mix batch plant shall process a minimum of 60 cubic yards per hour.

(Rev. 16Dec76)

PODED-G .

17 November 1976

Quarry, Rock Crushing, Screening and Central Mix Batch Plant Operations for Cleanup at Enewetok Atoll, M.I.

4. SPECIFIC ASSUMPTIONS: Assumptions for various studies are shown hereinafter in the respective analyses.

B. EQUIPMENT MATERIALS LIST

1. QUARRY OPERATIONS:

- Dozer, crawler-mounted with blade and single а. One Each tooth ripper. Cat D-8 or larger. Supplier - Army b. Dragline, crawler-mounted, minimum capacity 40 tons and minimum bucket size 2 cu.yd. Supplier - Army One each Crawler loader, minimum bucket size with digging c. teeth $2\frac{1}{2}$ cu.yd. Supplier - Army Two each Dump trucks, ten wheeled, 20 ton d. Supplier - Army Five each е. Trac-drill with extendable boom, Joy Model Ram-hammer VCR 260 or equal Supplier - commercial One each f. Portable compressor, 800 CFM @100 PSI, Quite Model Joy RPQ800 or equal Supplier - commercial One each (Army has portable compressor, 600 CFM @100 PSI which will operate a wagon drill, but not a trac-drill.) Flatbed truck, bed size to be modified to g. accommodate mounting trac-drill and 800 CFM compressor. Approx bed size $8'^{\pm}$ W x 20'^{\pm} L, load weight 8[±] tons. Supplier - Army One each (To mount a wagon drill on a flatbed truck and maintain versatility in operating positions is not possible.) h. Miscellaneous (Supplier - Army) (1) Drill Bits - $2\frac{1}{2}$ ", 3" & 4" diameter with
 - Two bits of each size

er Regener (* 19

replaceable teeth, extra teeth

PODED-G 17 November 1976 Quarry, Rock Crushing, Screening and Central Mix Batch Plant Operations for Cleanup at Enewetok Atoll, M.I.

(2)	Drill steel - 12' [±] , 16' [±] , & 20' [±] lengths	Two lengths of each size
(3)	Jack-hammer with pavement breaker point, chisels and cutter bits	One each
(4)	Portable compressor, 200 CFM @90 PSI	One each
(5)	Blasting machine to handle a minimum of 20 caps	One each
(6)	Galvanometer for testing blast circuits	One each
(7)	Blasting caps, standard instant delays	One each
(8)	Wire and reel for firing. Average depth of holes 5' - 10', approx 2000 ⁺ holes	
(9)	Explosives, water resistant, 50% or stronger weight strength, gelatin dynamite. Estimated quantity	60,000 lbs
CRUSH	ER, SCREENING AND WASHING OPERATIONS:	
a.	Primary crusher, 75 ton per hour capacity Supplier - Army	One each
Ъ.	Secondary crusher, 75 ton per hour capacity Supplier - Army	One each
с.	Screening and washing unit, 75 ton per hour capacity. Washing unit should include as a minimum spray bars and screw type dehydrator Supplier - Army	One each
d.	Wheel loaders, minimum bucket size 2½ cu.yd. with digging teeth. Supplier - Army	Two each
e.	Water Pump (for washing unit) minimum pump capacity 500 GPM @25 PSI. Supplier - Army	One each
f.	Portable aggregate belt conveyors, 24" minimum X 50' Supplier - Army	Six each

2.

 γp

PODED-G

*

17 November 1976

Quarry, Rock Crushing, Screening and Central Mix Batch Plant Operations for Cleanup at Enewetok Atoll, M.I.

3. CONCRETE AND SLURRY BATCHING: Mobile central mix batch plant with self erecting mixer. а. Minimum plant capcity of 60 cu.yd. per hour. Minimum mixer capacity of 6 cu.yd. Automatic batching with option of dial or beam type scales. Supplier - Navy One each b. Closed bucket or skrew conveyor with hopper for filling cement bin of batch plant. Supplier - Navy? Commercial One each c. Wheel loaders, minimum bucket size 2^{1/2} cu.yd. with digging teeth. Supplier - Army Two each d. Pnuematic tired fork lift, minimum capacity 5000 lbs. Supplier - Army One each Transit-mix trucks, minimum capacity 6 cu.yd. е. Supplier - Navy Four each f. Flatbed truck with tarps (transporting cement sacks on pallet boards) Supplier - Army One each 4. CONCRETE AND SLURRY PLACEMENT: Pnuematic tired crane, minimum capacity 20 tons a. Supplier - Army Two each Garbro type concrete bucket, minimum capacity b. 2 cu.yd. Supplier - Army or Navy Two each Concrete pump, minimum capacity 60 cu.yd. per c. hour. Pipeline to transport slurry, a maximum of 800 feet. Pumping head equal to or less than the point of discharge from the pump. Two each Supplier - Navy Dozer, crawler-mounted with blade. Cat D-7 or d. equal. Supplier - Army One each

4

(Rev. 16Dec76)

17 November 1976 PODED-G Quarry, Rock Crushing, Screening and Central Mix Batch Plant Operations for Cleanup at Enewetok Atoll, M.I. Motorized heavy road grader. e. One each Supplier - Army Self-propelled vibratory steel drum roller, f. static weight approx 10 tons One each Supplier - Navy g. Electric concrete vibrators Four each Supplier - Navy 5. EXCAVATOR FOR FOOTINGS: Crawler-mounted or wheel type backhoe, bucket a. size 1/2 cu.yd. or larger Supplier - Army One each 6. REMOVAL OF OVERSIZE AND DEBRIS FROM CONTAMINATED MATERIALS: Portable grizzly capable of processing a a. minimum of 60 cu.yd. per hour One each Supplier - commercial С. PRIORITY EQUIPMENT PROCUREMENT. 1. Crusher, screening and washing units. 2. Mobile central mix batch plant. 3. Transit-mix trucks. 4. Concrete pump. 5. Self-propelled vibratory steel drum roller. 6. Trac-drill. 7. Portable compressor, 800 CFM ESTIMATED AREA OF QUARRY SITE FOR ARMOR STONE. D. 1. Determine approximate area for armor stone quarry site. Stone sizes 1500 to 3000 pounds. 2. Assumptions: Estimated quantity of armor stone 2000 cu.yds[±] (neat line) a.

5

(Rev. 16Dec76)

17 November 1976

Quarry, Rock Crushing, Screening and Central Mix Batch Plant Operations for Cleanup at Enewetok Atoll, M.I.

b.	Estimated bulking factors for in-place stone	35% ±
с.	Percentage of yield from controlled quarry blasting and excavating	15%+
d.	Average thickness of hard reef rock	2 feet ±
е.	To insure a minimum buffer width of 100 feet between the reef front and seaward edge of the quarry site and a similar landward buffer zone of 100 feet from the shoreline high water mark, use 250 feet for the average width of quarry.	
3. Est	imated quarry surface area.	
a.	Equivalent excavated rock volume	
	2000 c.y./1 + bulking factor = 2000/1.35 = 1	,482 cu.yd.
b.	Total volume of excavation to yield 1,482 cu.yd.	
	1482 cy/yield factor = $1482/0.15 = 9880$ cu. yds.	
с.	Length of borrow site using an average depth of 2 feet and width of 250 feet $\frac{(9880 \text{ c.y.})(27 \text{ c.f./c.y.})}{\text{Length} = (2 \text{ ft}) (250 \text{ ft})} = 534 \text{ feet}$	
d.	An experience factor has indicated a multiple of 1.5 should be used for estimating the required surface area of a potential coral ledge quarry site.	
e.	The approximate surface area dimensions for the armor shore quarry are 250 feet x 534 feet (1.5)	
	USE 250 feet width x 800 feet length	
ESTIMAT	ED AREA OF BORROW SITE FOR CONCRETE AGGREGATE	
1. The the sto of	borrow for concrete aggregates shall be obtained from disturbed undersized coral rock remaining after armo ne quarry operations. Crushing, screening and washin borrow materials will be required.	m r g
	6	

E.

17 November 1976

PODED-G Quarry, Rock Crushing, Screening and Central Mix Batch Plant Operations for Cleanup of Enewetok Atoll, M.I.

2. Assumptions:

Sand

a. Estimated quantity of concrete aggregates

12,000 cu.yd. - (In concrete)

Estimated proportions by volume to yield a workable ь. mix design. (Final mix design shall be established in the field.)

> 45%+ 3/4" to No. 4

> > 55%+

c. Coarse aggregate placed in stockpiles will bulk and handling of aggregates will result in losses. The estimated percentages of bulking and losses are:

Bulking	+ 35% -
Losses	<u>- 5% +</u>

Total Correction factor +40% ±

d. The approximate proportions by volume of the yield from crushing, screening and washing operations are:

3/4" to	No.	4	23% ±
Sand			72% ±
Losses	from	washing	5% ±

3. Estimated surface area required for concrete aggregate borrow.

a. Determine total volumes of coarse and fine aggregates required for the estimated concrete mix.

3/4" to No. 4	(12000 cy)(45%) =	5400 c.y. (mix)
Sand	(1200 c.y.)(55%) =	6,600 c.y. (mix)

PODED-G

17 November 1976

Quarry, Rock Crushing, Screening and Central Mix Batch Plant Operations for Cleanup of Enewetok Atoll, M.I.

b. Determine total volumes of coarse aggregate to be stockpiled.

3/4" to No. 4 (5,400 c.y.)(1 + total correction factor)

(5,400 c.y.)(1 + 40%) = 7,560 c.y. (stockpiled)

c. The low yield for producing 3/4" to No. 4 size coarse aggregate shall dictate the quantity of material required for processing. Estimated quantity of material from borrow is:

7560 cy/23% = 32,870 cy

<u>USE 32,900 c.y</u>.

4. The approximate surface area dimensions for the aggregate borrow area using an average depth of 8 feet and width of 250 feet is:

Length = $\frac{(32,900 \text{ c.y.})(27 \text{ c.f/c.y.})}{(250 \text{ ft})}$ = 444 ft. <u>USE 250 feet width x 450 feet length</u> (within limits of proposed quarry site)

- F. <u>REQUIRED AREA FOR CRUSHING</u>, SCREENING AND WASHING OPERATIONS; AGGREGATE STOCKPILING, WASTE STOCKPILING
 - 1. Assuming the primary and secondary crushers are separate units and the screening and washing units are a common plant and all units are located in tandem and connected by conveyors, the area required for siting and conveyor off loading shall be approximately

110 feet wide x 250 feet long

- 2. Stockpiling Coarse Aggregate:
 - a. Quantity of 3/4" to No. 4 coarse aggregate stockpile equals approximately 7,560 c.y.
 - b. Recommend providing a nearly rectangular shaped stockpile
 100 feet wide x 150 feet long. lleight is approximately 10 feet
 clear and level 12 feet beyong the periphery.
- 3. Stockpiling Fine (sand) Aggregate:
 - a. Quantity of sand aggregate stockpile is approximately 6,600 c.y.

PODED-G 17 November 1976 Quarry, Rock Crushing, Screening and Central Mix Batch Plant Operations for Cleanup of Enewetok Atoll, M.I.

- B. Recommend providing a nearly rectangular shaped stockpile 100 feet wide x 150 feet long. Height is approximately 8 feet.
 Clear and level 12 feet beyond the periphery.
- 4. Stockpiling waste aggregate (predominately sand) resulting from aggregate processing operation.

Washing Loss $(32,400 \text{ c.y.})(5\%) = 1,650^{+} \text{ c.y.}$

Stockpile approximately 17,100 c.y. of excess sand in a nearly square area 150 feet on each side. Height is approximately 13 feet.

Stockpile approximately 1,650 c.y. of washed fines in a nearly square area 60 feet on each side. Height is approximately 10 feet.

5. Generalized layout of aggregate processing area to establish <u>overall</u> area requirements. (Conservative estimate)

Scale: 1" = 200'

Recommend a site encompassed by a 530 feet diameter circle be designated as an aggregate processing area.

17 November 1976

PODED-G

Quarry, Rock Crushing, Screening and Central Mix Batch Plant Operations for Cleanup at Enewetok Atoll, M.I.

G. REQUIRED AREA FOR CENTRAL MIX BATCH PLANT

- 1. Assumptions:
 - a. Batch plant will be located in proximity to the proposed site for encapsulation. Batch plant will be portable.
 - b. Dry storage area adjacent the plant should have sufficient capacity to store three days cement supply.
 - c. Cement to be procured in sacks in lieu of large rubber bladders. (cement filled rubber bladders would weigh approximately 4000 lbs each and require special equipment for handling.)
 - d. A closed bucket or screw elevator with hopper will transfer the cement to the batch plant bin.
 - e. Loaders will feed the aggregate or contaminated materials into the batch plant bins.
 - f. Nominal concrete aggregate storage area will be required adjacent the batch plant.
- 2. Central mix batch plant: (Minimum capacity 60 c.y. per hour)
 - a. A portable batch plant with self erecting mixer can, generally, be contained in a 20 feet wide x 70 feet long area.
- 3. Cement dry storage area:
 - a. A wooden dry storage shed approximately 20 feet x 50 feet can store about 3600 cement sacks or roughly three days supply of cement.
 - b. A closed bucket or screw elevator will lead from the shed to the batch plant cement bin. A hopper type feed would be placed in the shed.

17 November 1976

PODED-G

Quarry, Rock Crusher, Screening and Central Mix Batch Plant Operations for Cleanup at Enewetok Atoll, M.I.

4. Generalized batch plant layout:

A site encompassed by a 160 feet diameter circle would provide a conservative area for locating the batch plant, cement storage shed and interim aggregate storage area.

- H. <u>ESTIMATED CONTINUOUS ELECTRICAL HORSEPOWER DEMAND FOR CRUSHERS, SCREENING,</u> WASHING AND CENTRAL MIX BATCH PLANTS:
 - 1. Aggregate processing plant: (Capacity min. 60 c.y. per hour)
 - a. Jaw crusher 160 HP^{\pm}
 - b. Roller crusher 160 HP^{\pm}
 - c. Screening and washing units 125 HP[±]
 - d. Conveyors (Five 10 HP motor) 50 HP[±]
 - e. Where crushers are a combined unit approximately 200 HP[±] would be required.
 - f. If crushers operate by diesel engines the horsepower demand would be less.
 - g. Bigger the plant the larger the horsepower demand.

PODED-G . 17 November 1976 Quarry, Rock Crusher, Screening and Central Mix Batch Plant Operations for Cleanup at Enewetok Atoll, M.I. 2. Central mix batch plant: (Capacity min. 60 cu.yd per hour) a. Batch Plant plus exterior cement conveyor 140 HP[±] REFERENCES I. 1. Engineer Troop Organizations and Operations FM 5-1, Jul 1971 2. Engineer Construction and Construction -Support Units FM 5-162, Mar 1973 3. Pits and Quarries TM 5-332, Jul 1960 4. Roads and Airfield TM 5-250, Aug 1957 Use of Road and Airdrome Construction Equipment 5. TM 5-252, Jan 1945 6. Army (TOE) 1975

7. Navy

Additional Recommended Equipment (Army TOE)

MAINTENANCE EQUIPMENT

- 1. Truck Wrecker, 10T
- 2. Grader road mtzd ded 12' blade
- 3. Welding shop trlr mtd, 300 amp
- Tool kit welders Torch outfilt cutting/welding
- 5. Welding equip elect cc-cp type
- 6. Welding set are inert gas shield DC 115V
- 7. Lubricat serv unit power oper trlr mtd
- 8. Shop equip contact maint trk mtd
- 9. Shop equip gen purpose repair strlr mtd
- 10. Tool outfit pioneer portable elect tools
- 11. Semi trlr van repair parts storage, 6T
- 12. Saw power hack ptbl
- 13. Saw circular table type, 20' blade
- 14. Truck cargo, 5T
- 15. Saw chain gas driven, 18"
- 16. Truck tank fuel servicing

LIGHT EQUIPMENT

- 1. Survey set gen purpose
- 2. Drafting equip set bn
- 3. Test set concrete
- 4. Auger earth skid mtd 9' bore depth
- 5. Flood light set elec ptbl 6 light 5KW 120V/208V
- 6. Diving equipment set, SCUBA
- 7. Water pump 125GPM
- 8. Water pump centrifugal whl mtd, 1500 GPM, 60' head
- 9. Outboard motor, 25 HP
- 10. Boat landing inflat asscelt 15 mcn
- 11. Winch drum pnue driven, 1T
- 12. Winch drum diesel driven, 5-3/4T

HEAVY EQUIPMENT

- 1. Hammer, pile driven self powrd dsl driven, 7000 lb (min capacity)
- 2. Distributor water trk mtd, 1000 gals (min)
- 3. Semi trailer low bed, 25T
- 4. Harrow, disc, hydraulic lift control
- 5. Scraper towed, 18 cu. yd. (need tractor)
- 6. Mixer conc trlr mtd, 16 cu. ft.
- 7. Barge assembly: 3x7, 5x12, or 6x18
 - 8. Propelling unit outboard, 165 BHP

APPENDIX C

U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

PROJECT TITLE _	Enewetak	Cleanup	. SH NO	1	OF	2	_ SHS
			SECT	10N	<u></u>	<u></u>	
COMPUTED BY	KVK	DATE 15Nov 76 CHECKED BY			DA1	ΤΕ	

DESIGN ANALYSIS

1. ASSUMPTIONS.

a. No catastrophic movement in the coral reef structure ($^+$ 5 feet horiz or vert) which will result in disastrous effects (major faulting) is predicted for the next 2,000 years.

b. The mean sea level will vary from 1 foot lower to 5 feet higher than existing MSL over the next 2,000 years.

c. Reef material is not removed or excavated (by nature or man) in the
 vicinity of the crater or seaward of the crater for a distance of 1,200 feet.
 2. DESIGN SWL.

a. Max wave will occur when sea level is 5' higher than present elev. Rise in H_2^0 level + Existing high water level 5' 4.4 = 9'

Under this sea level condition, waves will wash completely over the island and there will be a very small wave and wind setup. The combined effect is estimated to be 1 foot. The rise in water surface due to atmosphere pressure drop is estimated to be about 2 feet for a major storm.

b. Based on the above the design SWL will be 9+1+2=12'.

3. DESIGN WAVE.

Based on controlling depth criteria for waves having periods between 15 and 20 seconds, the design wave height will be:

12 ÷ 1.27 = 9.5'

4. SCOUR.

a. From the report recently provided by the Navy Command, the ground surface around the crater has been severely fractured and the beach rock in this area is a very thin surface covering over coral debris and sand.

POD Form 115 1 Jul 70

U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

PROJECT TITLE Enewetak Cleanup	SH NO:.	2	OF	2	SHS
LOCATION	SE	CTION.			
DRAWING (S) NO					
COMPUTED BY KVK DATEL SNOV76 CHECKED BY			D <i>i</i>	ATE	

DESIGN ANALYSIS

b. This is contrary to our previous assumption. Based on present information on foundation material, the design wave condition would be expected to produce scour at the toe of the cut-off wall. It is estimated that the depth of scour could be as much as 5 feet. It is not anticipated that scour will be progressive rather material would be expected to be returned to the scour areas by natural processes over a period of time following the occurrence of major storms.

5. DESIGN RECOMMENDATIONS.

a. Extend cut-off wall 8 feet below existing ground surface.

b. Backfill to existing ground elevation around cut-off wall.
Use coral pieces 6" to 18" in diameter for backfill.
6. OTHER CONSIDERATIONS.

If biological and chemical processes which promote cementation of coral are sufficiently well understood, measures to promote the cementation process in the backfill material around the outside of the cut-off wall might be considered.

POD Form 115 1 Jul 70

APPENDIX D

۰.

947. 1

- 1

U. S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

PROJECT TITLE CRATER CONTAINMENT - ENEMETAKSH NO. 1 OF Y SHE
LOCATION KUNIT ISL - SKIMMWE WELL SECTION
COMPUTED BY DATE 12/11/16 CHECKED BY DATE
DESIGN ANALYSIS
1. References.
a. USGS report, "Ground-water Conditions on Enewetok Atoll, with Comments on the Effects of Use of Conventional Explosives," by F. C. Koopman, May 1973 (Incl 1).
b. Hawaii Institute of Geophysics Report, "Groundwater Resources Evaluation: Enewetak Atoll," by R. W. Buddemeier and R. C. Jansen, October 1976 (Incl 2).
 2. 'Ref a states (pg 16) "The island of Runit does not have a shape favor-able to the formation of a fresh-water or slightly saline-water lens. It is a long narrow island and the distance from its axis to the ocean is generally less than 300 feet, which does not make it a prospect for freshwater accumulation under prevailing precipitation and other hydrologic conditions." 3. Ref b states (pg 50-51) " the available water will normally be at the states of the states (pg 50-51).".
 least 25% seawater and may rise above 50% during dry seasons." Again under "C. Conclusions and Recommendations 1. ' Actual salinities may range from a low of 20% seawater to a high value well in excess of 50% seawater." 4. It should be pointed out that 25 percent seawater means a chloride content of about 9,000 mg/l. This is far in excess of anyone's definition
of freshwater. Note table I Quality Standards of same report shows permis- sible chloride content of 250 mg/1. Hence, 25 percent seawater is 36 times saltier than the "permissible" "standard."
test data in two reports. However, statements and estimates on page 50 of ref b may be easily misinterpreted if taken out of context of the whole report, since in three places it refers to "total freshwater inventory" or "total freshwater equivalents." This inventory and these equivalents are
actually highly saline brackish water. 6. The potential user must be cautioned that clothest laundered in 50 per-
cent seawater will be salty when dried, and will be uncomfortable if worn for extended periods.

POD Form 115 1 Jul 70

 \mathcal{C}

.....

U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

PROJECT TITLE	RUMIT	- 5KI	METHIC	WFLL	. SH NO		0F <u>3</u>	SHS
LOCATION					SEC			
DRAWING (S) NO	W. I.M.	DAT	E 10+ 76	CHECKED BY_	20.76	1073014	DATE	<u> </u>

DESIGN ANALYSIS

SKIMMING WELL AT RUNIT

The estimate of recharge given on page 50, ref b, beginning on line 8 of third paragraph is significantly overoptimistic. It fails to follow even the guidelines given on page 10 of the same report. "Light rains falling on dry soil may be completely lost to evaporation, plant uptake and soil moisture uptake." In addition rain falling within 100 feet of the shoreline generally contributes little or no fresh water to the lens. It is noted that the 100m radius centered at Y-3 intersects the lagoon shore. A more conservative estimate of recharge estimate is as follows:

Consider the maximum circle whose perimeter does not extend closer than 100 feet to the shoreline; ie, a 500 ft diameter circle whose center is about 350 feet from either shore, and about **220** north of centerline of air strip:

500" diam circle = 196,350 ft² area

annual recharge = $25\% \times 57.88$ inches $\div 12 \times 196,350$ = = 236,764 cµ ft x 7.48 = $1.77 \times 10^{\circ}$ gal/yr $\div 365$ = 4,850 gal/day Required Capacity = 3,000 gal/day

The ground water level at center may be expected to be only about 0,2 feet above lagoon level at mean tide. The tidal efficiency may be expected to be about 0.10, that is the tidal range of the ground water may be expected to be about 0.4 feet.

The well will consist of a 12" diam corrugated metal pipe about 12 feet long, securely sealed at the bottom with a 1/4" plate welded watertight. The collector pipes will be 5-60 feet long, 2 inch diam corrugated polyethylene drainage tubing. This tubing is Commercial Standard CS 228-61 is available from several sources including Hancor Inc., PO Box 1047, Findlay, Ohio 45840, and Advanced Drainage System, Inc., PO Box 489, Pomona, CA 91769. The 2-inch collector tubes will radiate equally spaced at about 72°. The collector tubes must be precisely placed at the level of 1.0 ft below the mean ground water elevation. The latter criterion is extremely important because of the very thin brackish waterlines.

The pump will be 1/2 hp 230 volt single-phase submersible pump rated at 10 gpm. This pump is available from Sears and other sources. It is very important to avoid using an oversized pump, in order to prevent excessive drawdown. A windmill can be substituted: 27' tower, 8' diam fan, 2-3/4" x 12" x 24" pump cylinder rated at 6,000 gpd @ 15' lift: Aeromotor or equal.

POD Form 115 1 Jul 70

ŗ

1

¢Ë,

U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

.

- <u>- -</u> -

U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

APPENDIX E

an a gangan tang ang kanang a

	ONC	A A C		A M	65 OF 6	「下言がしこ	REQ'L			44.74	1 PATS 0		に図れるし
STOARGE	P in C	×	KEVIJAIL	2 PD	ABOVE	ে ি ি	FY JELO		(J7.H)	1775	15.75	USING	じょうコ
E S S S S S S S S S S S S S S S S S S S		1- 11_	PER YU	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11 11 11 11 11 11 11 11 11 11 11 11 11		4 9 4 0	0 3 9 0 0 1 2 2 0 1 2 2 2 0 1 2 2 2 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	い 11/11/2 11/11/2	SCURRY	2440 2440 2440 2440 2440	
1-1-20-1-1 1-1-20-1-1	0		50.25	3: 0-0	02622		() () () ()	こならならた	+-1050	32320	502310	422274	11-046
1 C 2 +	<u> </u>			8-000	- 30/2-	-			=	2217 202	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4:280	1000
113216	- 22			36238	0000	=	=	-	-	22223	ういい	ひじていのや	5
26610	::			56-172	2:232	=		-	:	+	363 UF	-100000	クリカシンクシ
441.211	- ;			36780	-2570	=		-		10 2 2 1 4	327532	505505	622266
115.173	- 56		3064	40104	10014	12-33-1		いたいで	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 · · · · · · · · · · · · · · · · · · ·	602 204	524+37	5-1505
7 -5-5-	=		3230	7-6-7	30 821	125321	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	510121	サンシュ	+ : 5662	473060	740.402	2-31:00
133,077 4	= 0		3377	06267	20801	10 10 10 10 10		1++ 1++ 2++ 1++ 2++ 2++ 2++ 2++	201 305		622477	569577	526763
140 550	-	8:12 11:12	W 400	12 J	5326-	126732	117 117 117 117 117 117 117	10000000	1-1-202	655 355	462732	1127/26	1.000
150.00	=	53.53	4 1 1 1 1 1 1 1 1	3708-	171260	128740	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	い い い い い	5 4 760	10 10 10 10 10 10 10 10 10 10 10 10 10 1	うったらっ	6 5 2.56	7-101-15
160.000	=	54.72	-085	6.630	159256	576251	30120	27:265	222976	385471	561215	640220	-82775
170.000	-	10 10 10	3528	66222	207250	01:1281	265500	062306	531000	1 000	0262-5	675680	5,8430
120.001	-	12765	0 7 7	70758	225246	134754	21 1300	404141	237016	-3-30+	367638	217702	8:2160
170 000	=	120.12	4273	75260	2+25+2	136748	2723 6	10:04	1 1 1 1 1 1 1 1 1 1 1 1 1		516301	733169	569907
= 000 002	=	210.55	4430	うさんじん	261218	135762	725/227	10 10 10 10 10 10	しいいの	-8-356	623118	701880	2-2000

•

-

 .

, . , .

APPENDIX F

.

U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

AWING(S) NO DMPUTED BY Design Storm - assume	DATE 10/1 DESIGN	4/76HECKE	ED BY		DA	TE
DMPUTED BY <u></u> Design Storm - assume	DESIGN	ANALYS	ED BY SIS		DA'	TE
Design Storm - assume	DESIGN 10 year stor	ANALYS	SIS		والدحب والكافعان والكاف	
Design Storm - assume	10 year stor			1	1	
		m	,	1		
u .	• • •		i.		;	
$^{11}B = 10^{11}$				ł	ŕ	
r = 12 seconds					1	میں بیشر کی ان
S tillwater elev = S	e + S + Sw +	-Sap ⊨	7.6', w	ind setu	ignore	ed
Se + Sk - k/l				F		1
Sap = 1.5'	• • • • • • •		r a trad	< ∲_1_1_1 	⊉Est ¥	جهد لاستنداد الم
Sw 1.7						
7.6'	t e		÷	•	· · · · •	
fidal Data Range						
Mean D	enssed spring	м. :	fide Lev	el		
2.7	3.9'		2.6'			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4.4'				•	4	
	e de la culta		* . * å . å	-		• •
0.50 0.5'	MLW Sprin	ng		:		
					I	
-tonious (control) (Reef surface approx +	k +an ko ko saks<u>a</u>⊴ ⊾g1	in dia seta di seri di sene I	al a tractorial North	narstertente (°s. de. 1	nter terreter and	
Supplies the set of t	6 -2 = 5.6'		k eret k eree 1 / / /	- ++		
$H_{b}^{+} = 5.6 \pm 1.28$	= '4.3'	$\{ i \in \mathcal{I} \mid i \in \mathcal{I} \}$	i i i	1 1	• • •	•
Use 4' design wave	height				1	
leef with zero slope	extends about of SPM Fig 7	1400''se	eaward o	f crater	, theref	lore
	or orn 14g. 7	-2 01 1-1				· ·· -
- It would call the second detection to first the second	the private states	national teacher and	lation (nation) Anno (nation)	re find and		a series and the
		· · · · · · · · · · · · · · ·	· _ 1			- A
			1 · · ·	_ _ !		· · ·
170						$\left(\right)$
		\$ECTIO)N			
--	---	-------------------------------	---			
COMPUTED BY KVK	DATE 10/14/76CHECKED E	θΥΥ	DATE			
* <u>, , , , , , , , , , , , , , , , , , , </u>	DESIGN ANALYSIS	,				
Armor Stone Weight $W = \frac{Wr H^3}{K}$ (Sr - 1)	1) ³ cote (from FM&S)	H = cote = Wr = Sr =	$\begin{array}{r} 4' \\ 1.5 \\ 150 \\ \underline{150} \\ 64 \end{array} = 2.34 \end{array}$			
$W = \frac{150 \times 4^3}{1.6 (1.34)^3}$ use 0.75T to 1.5 (1500 <i>ii</i> to 3000	x 1.5 ≠ 1700# - ton stone	KO = 1. KO = 1 s	6 .6 selected for single layer not groin in SPM.			
Runup $\frac{d}{L_0} = \frac{5.6}{5.12 \times 12^2}$ $\frac{H}{H_0} = 1.531$	$H_0^1 = \frac{4}{1.531} = 2.6$	51 La La				
$\frac{H_{0}}{gT^{2}} = \frac{2.6}{32.2(127)}$ $\frac{ds}{H_{0}} = \frac{5.6}{2.6}$ $\frac{R}{H_{0}^{1}} = 2.6^{1}$ interp	= 0.0056 = 2.15 olated value = 2.4	i . i . i . i .	Jake & Alice & Hornfrie & Latter & Alice			
$\frac{R}{H_0} = 2.2$ unconut $K = 1$	tid runup = 2.6 x 2.4 = 1.'07' x 6.'25' = 6:7'	= 6.25'				
DD Form 115 Jul 70		<u></u>				

- L

· · · ·

U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

. .

U.S. ARMY ENGINEER DIVISION, PACIFIC OCEAN CORPS OF ENGINEERS

د د مهمر پخت