MARSHALL ISLANDS FILE TRACKING DOCUMENT

Record Number:
File Name (TITLE): Very Preliminary Report on the Results of
Document Number (ID): 2223
DATE:
Previous Location (FROM): <u>C</u>
AUTHOR: $TTF1/TG-7.1$
Addditional Information:

OrMIbox: _____ CyMIbox: _____

- ____

۰.

ļ . ł

ころを見たいたい

		Page
INTRODUCTI	011	Ă.C.
ART I		7 14
rogram &	Project	
1 ELAST	AND SHOCK MEASUREMENTS	
1.1a, 1.1c	1.1b, Blast Measurements	15
1.2a	Pressure vs Time (Moderate Pressures)	R 16
1.20	Pressure vs Time (High Pressures)	812
1.3	Shock Winds and Afterwinds	18.27
1.5	Acoustic Pressure Signals in Water (SOFAR)	19 7 ć
1.6	Water Wave Studies	2Ø × Y
1.7	Close-in Ground Acceleration	޶ 30
1.8	Dynamic Pressure Investigation	23 ³²
2 NUCLEA	R EFFECTS	
2.1	Total Gamma Exposure Measurement	27 36
2.2	Gamma Rate vs Time	y1 40
2.5a	Fall-out Distribution Studies	32 41
2.50	Fall-out Distribution Studies	34 43
2 . 6a	Chemical, Physical and Radiochemical Analysis of Surface Contamination	36 45
· 2.6b	Radiochemical Analysis of Surface Contamination	4×2-51
3 STRUCT	TURES	
3.1	Loading of Structures	AS 374
3.2	Crater Survey and Evaluation	48 -1
3•3	Tree Stand Studies	49 51
	·····	0
C	opled/DOE 2	2

Ę

TABLE OF CONTENTS

X av.

			Page	• •
PARI	<u>I</u> (Con	nt'd)		•
Froz	ram & F	roject		
. 6	TESTS	OF SERVICE EQUIPMENT AND OPERATIONS	_	
	6.2a	Blast, Gust and Thermal Effects on a Manned B-36 .	6 70 -	
	6.2b	Thermal Effects on B-47 Aircraft	?° 61 /	
	6.6	Ionosphere Studies	¹¹ 62 7=	
7	LONG R	ANGE DETECTION	10	
	7.1	Electromagnetic Radiation Calibration	• 6£	
	7.2	Detection of Airborne Low-Frequency Sound from Atomic Explosions	· Alu	
	7.4	Calibration Analysis of A-Bomb Debris	· 72/2	
9	SUPPOR	TING MEASUREMENTS	· čie	-
	9.1	Cloud Photography	. 76	
PART	II	TU-1 (LASL) and TU-12 (UCRL)		
J -1	10, LAS	L - ANALYSIS	. 78 27	1
	11.1 &	21.1 Analysis for Fission and Fusion Energy Yields	. 81.90	11 - 12 - 14 1949 - 12 - 14
	11.2	Cloud Sampling	. 82 91	
	11.3 &	21.3 Heavy Element Investigation.	• \$\$ 96	a particular
13	PHOTOG	RAPHY		
	13.1'	Eall of Fire Photography	. 88 77	*
	13.2	Cloud Photography	. 88 77	
	13.3	Ehangmeters	. 89 78	
17	MICROB	AROGRAPHY	• • -	
	17.1	Microbarography	• 84+ 103	or a stada - 1 . Note to state state a u
	Copied/DOE LANL, J.Div.	3	3	e wate official for the

TABLE OF CONTENTS

••

4

- -

<u>PART II</u> (Co	ont'd)
<u>Program & P</u>	Project -
_ 18 THERMA	L RADIATION
18.1	Time Interval Between Reactions
18.2	Power as a Function of Time
18.3	Spectroscopy
18.4	Atmospheric Transmission
18.5	Total Thermal Energy
21 GAS AN	ALYSIS
21.4	Gas Analysis
22 GANEX,	TENEX AND PRIMARY ALPHA EXPERIMENT
22	Ganex, Tenex & Primary Alpha
23 SCIENT	IFIC PHOTOGRAPHY
23.1	Hot Spot Time Interval Measurements
23.2	Ball of Fire Photography
24 EXTERN	AL NEUTRON MEASUREMENTS
24.1	Phonex
PART III	TU-7
TU-7	Radiological Safety
PART IV	TU-15 AND GENERAL INFORMATION
TU-15	Timing and Firing
JETTERAL INFO	DEMATION
	Shot Day Weather Table
	Pre-Shot Picture of Ground Zero 182
	Post-Shot Picture of Fround Zero 183/34
	Map of Bikini Atoll
	Distribution List
	
	7

.

LIST OF TABLES

1

Prog	gram & Pr	oject	Page
<u>F.1.R3</u>	I		
1	BLAST A	ND SHOCK MEASUREMENTS	•
	1.2a-1	Overpressures,	8
	1.2b-1	Ground Surface Air Pressure	12
	1.3-1	Dynamic Pressure, Pitot-Static Gage	18
	1.3-2	Overpressure, Pitot-Static Gage	18
	1.7	Ground Accelerations	2 2
	1.8-1	Field Layout	25
	1.8-2	Pressure vs Distance	2 5
	1.8-3	Damage Results	26
2	NUCLEAR	EFFECTS	
	2 .1-1	Gamma Exposures	28
	2.1-2	Decay Exponents	2 9
:	2.5a-1	Radioactivity in Total Collector Bottles and on Gum Paper Collectors	33
	2.6a-1	Gross Analysis of Fall-out Material	3 7
	2.6a-2	Gamma Activity in Physical State Fractions	38
	2.6a-3	Gross Sample Decay	39
	2.60-1	Comparison of Liquid vs Solid Fall-out	42
	2.65-2	Activity Removed from Aomoen Sand by Leaching	43
6	TESTS OF	F SERVICE EQUIPMENT AND OPERATION	
	6.1-1	B-50 Positions	55
7	LONG RAN	NGE DETECTION	
	7.1-1	Preliminary Field Analysis Results	6 8

1.1

•

÷

• ••

÷

.

-

5

•

A SUCCESSION OF A SUCCESSION OF A

LIST OF ILLUSTRATIONS

.

-1

Sand and to the state of the desired .

ŧ

5 6	Proei	am & Pro	oject	Page
.	PART	I		
<u></u>	1	BLAST A	ND SHOCK MEASUREMENTS	
		1.2b-1	Ground Level Pressure vs Distance	17
#7 · `	2	NUCLEAF	R EFFECTS	
8 		2.1-1	RD ² vs D plot	30
	3	STRUCTU	JRES -	
1 - -		3.3-1	Rukoji Pisonia Stand	54
		3.3-2	Rukoji Pisonia Stand	51+
•	` 6	TESTS O	OF SERVICE EQUIPMENT AND OPERATION	
•		6.1-1	Initial Radar Scope Return	5 7
		6.1-2	Radar Scope Return, about H+12 sec	5 7
-		6.1-3	Radar Scope Return, about H+2 min	5 8
		6.1-4	Radar Scope Return showing "horseshoe"	58
	-	6.6-1	F2 Layer Virtual Height following	64
		6.6-2	F2 Layer Critical Frequency following	65
	7	LONG RA	NGE DETECTION .	:
		7.1-1	Timing Record - Parry Station	6 9
		7.1-2	Timing Record - Sweep Speed 14 µsec/cm	69
		7.1-3	Timing Record - Sweep Speed 1 µsec/cm	6 9
		7.1-4	Tining Record - Sweep Speed 34 µsec/cm	70
		7.1-5	Timing Record - Sweep Speed 320 µsec/cm	70
	PART	II		
-	11	RADIOCH	EMISTRY	
		11.2-1	Shot Cloud H+30 min	85
	Copi LAN	ed/DOE IL, J-Di v.		(0)

LIST OF ILLUSTRATIONS

4

Progr	am û Pro	ject	Page
PART	<u>II</u> (Con	t'd)	-
_ 11	RADICCH	EMISTRY (Cont'd)	
	11.2-2	Shot Cloud H+1 hr, 25 min	85
	11.2-3	Shot Cloud H+1 hr, 20 min	86
13	PHOTOGR	APHY	
	13.3-1	Ehangmeter - Mark II - 2ms pips	91
	13.3-2	Bhangmeter - Mark IV - 11.11 ms pips	91
	13.3-3	Bhangmeter - Time to Minimum	92
22	GANEX,	TENEX AND PRIMARY ALPHA	
	22-1	Detector Signal from No. 1 Primary Alpha Detector	102
	22-2	Detector Signal from No. 2 Primary Alpha Detector	103
	22-3	Gamma Flux at Detector Station . 🚍	104
	22-4	Variation of Alpha	105
	22 - 5	Variation with Time of the Ration of the Signals in the Open Pipe Channel to the Converter Pipe Channel.	106
	22-6	Measured Gamma Flux at Most Sensitive Detector . in Open Pipe Channel	107
	22 - 7	Measured Gamma Flux at Most Sensitive Detector . in Converter Pipe Channel	103
	22-8	Neutron Tenex Spectrum	109
5r	ECERIA	L HEUTRON MEASUREMINTS	
		Inergy Distribution of Protons Entering Emulsion	114
	12,1-2	Absolute Energy Distribution of Neutrons that Strike the Radiator	115

.

Copied/DOE LANL, J-Div.

----8

.*

.

•

12:4

LIST OF ILLUSTRATIONS

1. 1.

.

Z

12.2

			Page
	Program & Pro	Ject	101.0
<u> </u>	PAPT IV		
-	A-1	Pre-shot Picture of Ground Zero	122
-	A-2	Post-shot Picture of Ground Zero	123
	A-3	Map of Bikini Atoll	124
		•	
	÷		
	·		
		. = -	
	Copled/D	DOE .	
	באמנ, זו	^α ν 9	

INTRODUCTION

The shot was detonated on Eninman Island of The device vas designed by the UCRL at Livermore to test a than that used in the previously tested devices.

At the time of firing the atmospheric conditions with respect to fall-out and sampling criteria were satisfectory, but heavy showers in the area caused serious difficulties from the point of view of test instrumentation. Records show that the light transmission conditions were such as to automatically prevent firing of the shot from about 4 A.M. until about ten minutes before shot time. At shot time the transmission from Eninman to Enyu was sufficient to allow firing, but scattering of the light by fog or rain was such as to prevent proper photography. Thus no photographs of the fireball were obtained from any station, and the early "hot spot" photography also failed even though the instrumentation operated properly. However, enough data were obtained by other means (Radiochemistry, progress of reaction studies, threshold detectors, shock arrival times) to obtain a fair picture of what went on.

The times of arrival and overpressures on Airukiraru, Airukiiji and Eniirikku indicate a total energy release of some

DELETED

FIFE with the lower number being perhaps more plausible in the light of the hydrodynamic yield. Observation of the total number of 14 Mev neutrons by means of threshold detectors suggest The first check in determining the cause of the unexpectedly **NEI ETEN** is to ascertain the operation of the The initial alpha DELETED 1. – T. . DELETED 11

Project 2.6b - RADIOCHEMICAL ANALYSIS OF SURFACE

CONTAMINATION

Project Officer - R. C. Tompkins -

Objectives

ł

The objectives of this work were to study the distribution of certain nuclides within fall-out particles and to determine some of the differences in radiochemical properties between liquid and solid fall-out.

Instrumentation

Total fall-out collectors were set up on Enyu, Rukoji, Arriikan, and Bokororyuru Islands. On account of a failure in the timing circuit, the collector on Bokororyuru operated before the shot. The collector on Enyu did not operate properly. Collectors on Rukoji and Arriikan operated properly.

Results

Since the yield **EFFT** the samples recovered were too small to size-grade. Comparisons of the aqueous and solid phases were made, however, as shown in Table 2.6b-1. Additional data will be covered in Later reports.=

]	CABLE 2.	.6ъ	-1	
COMPARISON	OF	LIQUID	٧S	SOLID	FALL-OUT

Location	Mo ⁹⁹ Acqueous/Solid Ratio
aukoj1	0.303
±rriikan	0.74
	i i i i i i i i i i i i i i i i i i i
Copied/DOE LANL J-DIV.	51

A sample of coral sand was scooped up from the ground in Aomoen Island for leaching studies to determine distribution of activities within the fall-out particles. The sample was leached once with water and then with successive portions of illute hydrochloric acid. Data are given in Table 2.6b-2. Weight of total sample was 2.1453 g.

TABLE 2.6b-2 ACTIVITY REMOVED FROM AOMOEN SAND BY LEACHING CORRECTED TO K+12.2 DAYS

Leach No.	Weight Dissolved (mg)	Specific Ac (c/mi) Gross F.P.'	tivity of S n/mg) s Mo ^{yy}	olution Zr95	Mo ⁹⁹ /Zr ⁹⁵ at Zero Time
1	2.4	1.40×10^{4}	1.7×10^{3}	4.8×10^2	63
2	88.9	6.41 x 103	6.1 x 10^{1}	6.2 x 10 ¹	18
3	98.4	2.12 x 10 ³	2.8 x 10 ¹	1.0×10^{1}	50
4	97.3	9.15 x 10^2	9.4	5.7	30
5 -	91.0	5.61 x 10^2	Not D	etermined	
6	187.3	2.73 x 10^2	Not D	etermined	
7	187.8	1.57×10^2	9.0 x 10 ⁻²	5.1×10^{-1}	3.2
8	378.5	3.84×10^2	6.4×10^{-1}	2.0	6.0
9	179.0	4.07×10^2	Undetectab	le 4.8x10 ⁻¹	Very Low
10-14	Data not y	et available			

R-factor calibration data for this operation are not available at this time. However, some indication can be obtained from the fact that a $Mo^{99}/2r^{95}$ ratio of about 23 is usually obtained in the home laboratory for a thermal bombardment of U^{235} .

Copied/DOE LANL, J-DIV.

:1

Conclusions

والا المالية والمعالمة والمرارية والمرارية

Copied/DOE

The data of Table 2.6b-2 appear to confirm the evidence from Operation Ivy that for the detonation of a thermonuclear device on a coral surface Mo⁹⁹ tends to concentrate on the surfaces of fall-out particles, while Zr⁹⁵ does not. Further work is in progress.

įł,

26

PAGES <u>54-90</u> WERE JUDGED IRRELEVANT AND WERE NOT COPIED

;

1

•

;

\$

Project 11.2 - CLOUD SAMPLING (H. Plank)

Because of gear trouble and accidental decompression the RB-36 sampling control aircraft was replaced by the backup control B-36 with back-up control personnel. The back-up arrived in the shot area at approximately H+15 minutes with a clear view of the cloud lying above a solid cirrus layer, the top of which lay between 37 and 38 thousand feet. In addition to an opportunity to use the back-up control system, this shot also afforded the chance to try an emergency recovery of an F84G sample from the Bikini airstrip.

Although restricted from very high altitudes by the presence of the back-up control personnel, the secondary control B-36 (comprised by one of the high altitude B-36's) collected a sample at 45,000 feet after completing its control function. Blue Flight was prevented from collecting samples because of mechanical aircraft difficulties in one plane of each element. The number of fissions collected by each aircraft is shown in Table 11.2-1.

DELETED

DELETED

, Although the number of fissions collected is about a factor of ten less than in previous shots on Castle, fractionwise the present samples are similar. The high altitude B-36,

Copied/DOE

91

Floyd 1, was in the topmost layers of the cloud at 55,000 feet absolute altitude and had to come down several thousand feet to conduct sampling. A private communication from Jere Knight indicates that the topmost section of the cloud had a calcium to fission ratio approximately 1% of that at lower altitudes.

A picture of the cloud taken from the control airplane soon after shot time is shown in Fig. 11.2-1 lying above the cirrus cover. In the original print dark portions suggest that a considerable portion of the cloud lay below the cirrus in the natural weather existing up to 37 - 38 thousand feet. Figs. 11.2-2 and 11.2-3 show the cloud at later times after burst when the wind shear effects can be seen from upwind and cross-wind views respectively. The long streamer seen in Fig. 11.2-3 is the result of a wind velocity at 55,000 feet (absolute) which is approximately 17 knots slower than at the cirrus level and is an illustration that negative as well as positive velocity shear can produce the same relative effects. A dimensional analysis of this photograph shows that the length of the streamer is commensurate with this velocity shear. A notable characteristic of this cloud was that the radiation intensities observed were a factor of from five to nine lower than for previous clouds at the same altitudes and times after burst.

Copied/DOE

marini

LANL JON

		SAMPLING	TABLE 11.2- RESULTS FOR
Aircraft Code	Type Aircraft and Number	Λvg. (Hrs.	Sampling Time after Burst)
Red 1	F-84G 030		2:40
Rođ 2	F-846 037		2:30
Red 3	F-84G 033		2:30
Red 4	F-84G 051		2:55
White l	F-846 046		3:40
White 2	F-84G 053		3:40
White 3	F-84G 038		3:55
White 4	F-84G 049		3:50
Blue 1	Abort		
Blue 2	Abort		
Blue 3	Abort		
Blue 4	Abort		
Floyd l	FB-36 1086		4:35
Floyd 2	FB-36 1083		5:15 .
Wilson 1	WB-29 7269		3:10

SHOT

DIELLER

5

t y

PAGES <u>94-124</u> WERE JUDGED IRRELEVANT AND WERE NOT COPIED

;

.

.

;

•

\$

4

· 7.

ASK UNIT 7 - J. D. Servis, Maj, USA

RADIOLOGICAL SAFETY

=

(J. D. Servis)

A partial Rad-Safe survey was conducted on day with incomplete atoll results. Results of this survey did indicate that Bokobyaadaa, Namu, Enirikku, Bikini, and the Yurochi - Aomoen chain were materially contaminated. Reentry and recovery were accomplished to a large degree on shot day. No secondary fall-out was detected as having resulted from this shot.

Lagoon contamination was restricted to a V shape pattern with apex at Eninman and tips covering the Bokobyaadaa - Aomoen area. A reading of 100 mr/hr was obtained over the Eninman anchorage at H+4 hours. Enyu anchorage was clear of contamination while Bikini anchorage showed traces of contamination at H+4 hours.

	TABLE TU-7-1 SUMMARY (r/hr)					
Island	H+4 hrs Extrapolated	D+1 day	D+7 days	Pre-shot Background		
Enyu	•03	.03	.03	.03		
<u>Bikini</u> .	5.0	.67	.07	.10		
Aomoen	20.0	2.5	1.6	• 35		
Romurikku	10.0	1.6	.80	.50		
<u>Vorikku</u>	5.0	1.0	.60	•47		
Yurochi	5-2	1.0	.60	.45		
Namu	250.	30.0	16.0	1.5		
<u>Bokobyaadaa</u>	600.	;	16.0	9.0		
<u>Ourukaen</u>	.60	.08	.02	.012		
Arriikan	•50	.07	.01	.008		
Eniirikku	210.0	2.4 T	1.8	.008		
Eninman			•02	.010		
Airukiiji	•02	•02	.02	.018		
Crater	5000.	50.*	60.			

T - Reading at 100 feet

* - Reading at 200 feet

Underlined islands indicate islands contaminated by shot.

Copied/DOE LANL J-Div.

12

<u>Task Unit 15 - TIMING AND FIRING</u> (H. Grier) (H. Grier)

* ~ • •

world Time

The world time as measured by the world time clock on 1954. This figure is not corrected for transit time from the signal generators in Hawaii to the receiver at Station 70.

Timing System

÷

The operation of the timing system including radio signals was normal.

129

1

35

Copied/DOE LANL, J-Div.

ž

	. TABLE A-1						
WEATHER	(BIKINI	ATOLL)	\mathbf{AT}	0620M,	7	APRIL	1954

-

Surface Pressure 1009.7 mb Surface Temperature 81°F Surface Humidity 82%								
ltitude (ft)	Wind Direction (degrees)	Velocity (knots)	Pressure (mb)	Temp. (°C)	Dew Pt. (°C)	Relative Humidity		
Surface	0+0	20	1009.7	81	75	79		
1000	07 0	17	973	23.5	22.0	• •		
1500			958	22.4	21.2			
2000	06 0	16	940	21.1	20.4	82		
3000	090	08	90 9	19.7	19.0			
4000	120	07	87 8	18.4	17.5	80		
500 0	150	08	848	17.1	16.2			
6000	170	12	819	15.8	14.9	78		
7000	170	17	789	14.3	i3.5	:		
9000	190	14	. 760	12.7	12.2			
9000	200	14	733	11.2	10.9			
10,000	210	14	705	9.6	9.5	75		
12,000	180	17.	655	6.5	5.6			
14,000	200	08	60 8	3.0	-0.9	69		
16,000	190	10	563	-0.3	-10.4	67		
13,000	200	10	522	-3.8	-12.9	64		
20,000	220	04	483	-7.8	-23.6	24		
25,000	190	20	396	-18.0	-29.6	24		
30,000	210	22	322	-27.5	-32.9	42		
37,000	210	28	258	-39.3	U — * F	-		
-0,000	230	34	205	-51.8				
-5,000	280	24	161	-63.8	•			
50,000	240	35		U 1				
50 <u>00</u> 0	230	39						

Copled/DOE LANL, J-DIV.

٠

.

[120

3. 36