

Operation Redwing Final Report Project 2.1

GAMMA EXPOSURE VERSUS DISTANCE

P. Brown R. G. Larrick O. E. Johnson T. J. Hurley

July 1957

ST. LOUIS FRC

Regrading data cannot be predetermined.

U. S. ARMY SIGNAL ENGINEERING LABORATORIES FORT HONMOUTH, N. J.

1

1	
-	

CONTENTS

YOREWORD	
PREPACE	
CHAPTER 1 INTHODUCTION.	
1.1 Objectives	
1.2 Background	
1.3 Pheory	
1.3.1 Initial Gamph Hadiation	
1.3.2 Pestdual Games Kadiatian.	
1.3.3 Absorption in Air	
1.3.4 Hydrodynamic Effect	
Chapter 2 PROCEDURE	
2.2 Instrumentation.	
2.2.1 Photographic Dostneter.	
2.2.2 Quartz-Viber Doginators	
2.2.3 (benice) Dosinaters	
2.2.4 Heding Detector $\frac{3\pi}{3}$	
2.2 K indian Sat K/BDZ_30	
2.2.6 Charte Tiper Davies (Date Davies)	
Licio Curra-Fron Device (Ante perios)	
$\mathbf{x} + \mathbf{x} + $	
2.2.4./ Notigenical propriodianist	
2.2.8 Station Layout, Utilisation, and Construction	
2.2.7 Rechanical prop Rechanism	
2.2.7 Account dai prop Accountants	
2.2.7 Rechanical prop Rechanism	
2.2.7 Rechanical prop Rechanical	
2.2.7 Rechanical prop Rechanical	
2.2.7 Rechanical brop Rechanical	
2.2.7 Rechanical Drop Rechanical	
2.2.7 Rechanical brop Rechanism 2.2.9 2.2.8 Station Layout, Utilisation, and Construction 30 2.2.9 Co ^{CO} Field Calibration 33 2.3 Data Requirements 33 2.3.1 Initial Exposure Calibration 36 2.3.2 Residual Exposure Calibration 36 2.4 Support Facilities 40 2.4 Support Facilities 49 3.1 Shot Lacrosse 49 3.2 Shot Cherckee 49 3.3 Shot Zuni 51 3.4 Shot Dakota 51	
2.2.7 Rechanical Drop Rechanical	
2.2.7 Normanical Drop Medmanish 2.2.9 2.2.8 Station Layout, Utilisation, and Construction 30 2.2.9 Co ^{CO} Field Calibration. 33 2.3 Data Requirements. 33 2.3.1 Initial Exposure Calibration. 36 2.3.2 Residual Exposure Calibration. 40 2.4 Support Facilities 40 2.4 Support Facilities 41 CHAPTER 3 RESULTS AND DISCUESION. 3.1 Shot Lacrosse. 49 3.2 Shot Cherakee. 49 3.3 Shot Tuni. 51 3.4 Shot Flathead. 51 3.5 Shot Dakota. 54 3.6 Shot Tewa. 58	
2.2.7 Normanical Brop Acchanism 2.2.8 2.2.8 Station Layout, Utilisation, and Construction 30 2.2.9 Co ^{OO} Field Calibration. 33 2.3 Data Requirements. 33 2.3.1 Initial Exposure Calibration. 36 2.3.2 Residual Exposure Calibration. 36 2.3.2 Residual Exposure Calibration. 40 2.4 Support Facilities 40 2.4 Support Facilities 41 CHAPTER 3 RESULTS AND DISCUESION. 3.1 Shot Lacrosse. 49 3.2 Shot Cherokee. 49 3.3 Shot Trakead. 51 3.4 Shot Flathead. 51 3.5 Shot Havajo. 58 3.7 Shot Towa. 58 3.8 Discussion . 58	
2.2.7 Normanical Drop Accommission 2.2.9 2.2.8 Station Layout, Utilisation, and Construction 30 2.2.9 Co ^O Field Calibration 33 2.3 Data Requirements 33 2.3.1 Initial Exposure Calibration 36 2.3.2 Residual Exposure Calibration 36 2.4 Support Facilities 40 2.4 Support Facilities 41 CHAFTER 3 RESULTS AND DISCUESION 3.1 Shot Lacrosse 49 3.2 Shot Cherchee 49 3.3 Shot Zuni 51 3.4 Shot Flathead 51 3.5 Shot Dakota 54 3.6 Shot Tewa 58 3.7 Shot Tewa 58 3.8 Discussion 58	
2.2.7 Montaining Call Drop Medmanists	
2.2.7 Normanical Drop Astmanist	
2.2.7 Modumical Drop Meduanias 33 2.2.8 Station Layout, Utilisation, and Construction 30 2.2.9 Co ^{CO} Field Calibration 33 2.3 Data Requirements 33 2.3.1 Initial Exposure Calibration 36 2.3.2 Residual Exposure Calibration 36 2.3.2 Residual Exposure Calibration 40 2.4 Support Facilities 40 2.4 Support Facilities 40 2.4 Support Facilities 40 3.1 Shot Lacrosse 41 CHAFTEH 3 RESULTS ADD DISCUESION 49 3.1 Shot Cherokee 49 3.2 Shot Cherokee 51 3.4 Shot Flathead 51 3.5 Shot Dakota 51 3.6 Shot Tewasion 53 3.7 Shot Tewasion 53 3.8 Discussion 53 3.8 Discussion 53 3.8 Discussion 53 3.8 Discussion 53 3.8	

ST. LOUIS FRC

TABLES

1.1	Emergy Partition in Fission	• •	• •	. 12
2.1	Exposure Ranges of the Enulsions			. 20
2.2	Quarts-Fiber Dosimeter Banges			. 20
2.3	Station Layout and Utilization	• •		. 31
2.4	Station Construction			. 32
2.5	Tilm Sensitivity to Neutrons	• •		. 38
2.6	Initial Gama-Grossure Correction Factors			. 19
2.7	Residual-Gamma-inposure Correction Tactors	•••		. 42
3.i	Cherokee Data		• •	. 50
3.2	Ini Total Exposure			. 9
3.3	Suni Initial-Geame Exposure			
3.4	Flathead Yox-Complex Instrumentation and Recov	977	• •	. 5
3.5	Flathead Initial Exposure			. 5
3.6	Tinthead Guartz-Yiber Scoosure Versus Wime Dev	1		. 55
3.7	Flathead Residual Exposure.			
3.8	Daketa Instrumentation and Recovery			
3.9	Bakota Initial Exposure			. 97
3.10	O Mavaio Instrumentation and Recovery			
3.11	1 Navelo Thitisl-Gamma Strosure			60
1.12	2 Navajo Residual Exposure.			60
3.13	3 Howe Instructure Appendix	••	• •	<u></u>
2 14	4 Gave LastAnni Processe	• •	• •	
2027 2 7 2	T INTE ANTIGUES DAPATHE	• •		· • • • • • • • • • • • • • • • • • • •
J+43 3 14	JITHE INIVALIMUM AND DEVICE	•••	• •	· • • • •
J.10	O ACQUINE INIVIAN-GARME AXPOSURE	• •	• •	• • • • • • • • • • • • • • • • • • • •
	7 IIGIGS ADD HOLATIVE AIF DODSIGISS			

ST. LOUIS FRC

DALERGY ACT 3

9

TIGUERS

. . .

1.1	Samma exposure for 1-ks surface burst
2.1	Cob0 calibration curves for film types
	(Tilm in HES holder)
2.2	Co ⁶⁰ salibration surves for file types
	(711m in MBS holder)
2.3	Quarts-fiber rate device with dosimeters
2.4	Quarts-fiber rate device with dropping mechanism 28
2.5	Co ⁶⁰ calibration curves for file types
	(Film in HBS, holder)
2.6	200-surie Co ^{BO} salibration surve
2.7	Dupont 502 energy-dependence curve normalized to
	Co ^{b0} value (Film in HBS holder
2.8	Dupont 510 energy-dependence surve normalized to
	Co ⁶⁰ value (Film in HBS holder)
2.9	Dupont 606 energy-dependence surve normalized to
-	Co ⁵⁰ value (Film in NBS helder)
2.10	Quartz-71ber dosimeter energy-dependence curve
2.10	Quartz-Fiber dosimeter energy-dependence curve pormalized to Co ⁶⁰ value
2.10	Quartz-Fiber dosimeter energy-dependence curve normalized to Co ⁵⁰ value
2.10 2.11	Quartz-Fiber dosimeter energy-dependence curve normalized to Co ⁵⁰ value
2.10 2.11 3.1	Quartz-Fiber dosimeter energy-dependence curve normalized to Co ⁵⁰ value
2.10 2.11 3.1	Quartz-fiber dosimeter energy-dependence curve normalized to Co ⁶⁰ value
2.10 2.11 3.1 3.2	Quartz-fiber dosimeter energy-dependence curve normalized to Co ⁵⁰ value
2.10 2.11 3.1 3.2	Quartz-fiber dosineter energy-dependence curve normalised to Co ⁵⁰ value
2.10 2.11 3.1 3.2 3.3	Quartz-fiber dosineter energy-dependence curve normalized to Co ⁶⁰ value
2.10 2.11 3.1 3.2 3.3	Quartz-fiber dosimeter energy-dependence curve normalized to Co ⁶⁰ value
2.10 2.11 3.1 3.2 3.3 3.4	Quartz-fiber dosimeter energy-dependence curve normalized to Co ⁶⁰ value
 2.10 2.11 3.1 3.2 3.3 3.4 	Quartz-fiber dosimeter energy-dependence curve normalized to Co ⁵⁰ value
2.10 2.11 3.1 3.2 3.3 3.4 3.5	Quartz-fiber dosineter energy-dependence curve normalised to Co ⁵⁰ value
2.10 2.11 3.1 3.2 3.3 3.4 3.5 3.6	Quartz-fiber dosineter energy-dependence curve normalised to Co ⁶⁰ value
2.10 2.11 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Quartz-fiber dosineter energy-dependence curve normalized to Co ⁶⁰ value
2.10 2.11 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Quartz-fiber dosineter energy-dependence curve normalized to Co ⁵⁰ value

ST. LOUIS FRC

10

ABSTRACT

The objectives of Project 2.1 were: 1) to determine gamma exposures versus distance from the point of detonation of various high-yield thermomuclear devices; and 2) to draw conclusions from the data concerning gamm exposure contours for various types of detonations, and the validity of scaling laws.

The following types of dosimeters were used as gamma-radiation detect photographic, quarts-fiber, chemical, and phosphate-glass. Correction fawere applied to compensate for the nonlinear spectral response of the dost and for station shielding. All detectors were calibrated with Co^{60} source Photographic dosimeter film-badge service and Co^{60} calibration facilities provided to other projects as requested.

Initial gamma radiation was measured by a series of stations located about 1 to 4 miles from ground zero. Mechanisms were installed at some o these stations to shield the detectors from residual radiation. An analy of the data indicates that the initial gamma exposure at 3 miles from the Eumi, and Mavajo was about 1 r. Consequently, initial gamma radiation is little military significance to exposed personnel as compared to thermal blast damage resulting from high-yield devices.

The curves in this report vary from those published in TM 23-200 (Re ence 1). The field data fall below predictions at longer ranges, and cross to be greater than predicted at shorter ranges. This difference between predicted and field data increases with increasing yield.

ST. LOUIS FRC

For residual gamma radiation measurements, instrument stations were located on almost every island of Bikini Atoll. The amount of residual radiation exposure was a function of the fission yield. Besidual gamma radiation data points are mapped in this report for Shots Euci, Flathead, Havajo, and Term.

E

STATE S

ST. LOUIS FRC

12

-

TOHEWOHD

This report presents the results of one of the 48 projects that participated in the Military Riffects Program of Operation Debuing. The operation included 17 test detonations. Readers who are interested in other pertinent test information may refer to ITR-1344, Busmary Report of the Commander, Task Unit Three. This summary report contains the following general information:

a. An overall description of each detonation, including yield, weight of burst, ground zero location, time of detonation, and ambient stucspheric conditions at detonation for the 17 shots.

b. A discussion of all project results.

e. A summary of each project, containing objectives and results.

A. A complete listing of all reports that cover the Military Effects Test Program.

PERFACE

Acknowledg dis made to Captains Edwin York and Roger Boyd who attended this operation as Project 2.1 personnel through the ecoperation of the Air Forces Special Weapons Center. Their ansistance and suggestions contributed to the success of this project.

Appreciation is expressed for the cooperation and participation of the Department of Madiobiology, School of Aviation Medicine, USAF, and particularly for the chemical dosimeter data evaluated in the field and laboratory of 1st Lt. Sanfard C. Sigoloff, who also contributed the material for the discussion of chemical dosimeters in Section 2.2.3.

Acknowledgment is also made to: Boctors Bunham, Corsbie, and Buterhoff, for making available the ABC dogineter systems described herein; Boctors Taplin and Gassen, University of California, for their production and evaluation of the ABC dogineter systems; S. C. Bainey, of Project 2.72, for providing D2-60 phosphate-glass dogineters and 200r gamma-range quarts-fiber dogineters; C. H. Kingery, of Project 1.1, for making available the use of the "113" series of stations on Charlie-Dog Reef for Shots Cherokee and Tewa; and Majors Roy Weidler and Thomas ST. LOUIS ARC Connolly, of Headquarters, AFSWP, for technical suggestions and advice.

CHAPTER 1

IFFEDDUCTION

1.1 OBJECTIVES

The objectives of Project 2.1 were: 1) to determine gamma exposures versus distance from the point of determine of various highyield thermonuclear devices; and 2) to draw conclusions from the data concerning gamma exposure contours for various types of detonations, and the validity of scaling laws. A secondary objective was to determine the gamma exposures received in several discrete time intervals between time of arrival of the thermal pulse and one minute after time of detonation.

1.2 BACKGROUND

Initial gamma radiation may be considered as that emitted during the first 30 seconds after detonation. The initial gamma radiation output for nuclear devices with yields up to 250-kt has been well documented in previous test operations (References 2, 3, and 4). Genera-radiation measurements from high-yield nuclear devices during Operation Typ showed that the initial gamma radiation did not follow the same scaling laws that had been established for smaller devices (Reference 5). This was

!5

attributed in part to the hydrodynamic effect, which results in an enhancement of the gamma radiation. This effect is caused by the passage of the shock front, through the detector station, resulting is an inhomogeneity of the air between detector and radiating source. Section 1.3.4 gives a simplified treatment of the hydrodynamic effect.

Measurements were made during Operation Gastle by the U. S. Army Signal Engineering Laboratories to determine the empirical relation between yield and hydrodynamic emhancement (Reference 2). Some highyield Castle devices provided data points; however, it was felt that additional data were needed at a number of suitably spaced points for various yields and types of nuclear devices to determine more valid scaling laws. The present scaling laws for initial gamma rediation from high-yield thermonuclear devices were based on data from relatively lowyield fission devices (1 to 500 kt), a few data points from Operation Ivy, and the sparse data from Castle. Initial gamma rediation appeared to be of little significance compared to damage caused by blast and thermal effects.

Residual gamma radiation is here defined as that which reaches the detector 30 seconds or more after the time of detonation. Residual gamma exposure measurements have been made by various organizations at provious test operations (References 2, 3, 5, and 6). During Operation Buster-Jangle, the Signal Corps, in conjunction with MBS, made residual gamma exposure measurements of a 1-kt surface blast and a 1-kt weapon detonated ST. LOUIS COC at a depth of 17 feet (Reference 7). During Tempot the U. S. Army Signal Engin Laboratories made measurements of residual-gamma exposure resulting from

10 RESERVED DEATRA

an underground blast of a low-yield device (Reference 3).

The advent of high-yield thermonuclear weapons has resulted in a manifold increase in the radiological basard, and gamma radiation from fallout has become of greater military significance. Operation Castle demonstrated that large quantities of radioactive material could be deposited by high-yield weapons over areas of several thousand square miles. This led to a military requirement for fallout data for devices of various types and yields. Project 2.1 was charged with documenting the residual-gamma radiation exposures from the fallout at land stations at Bikini Atoll during Operation Redwing.

1.3 THEORY

ſ.

The gamma radiation emitted from a muchear detonation may be divided into two portions: initial radiation and residual radiation. The residual radiation may include radiation both from fallout and neutroninduced activity. In this report, the radiation emitted during the first 30 seconds is termed "initial radiation," and that received after 30 seconds is called "residual radiation."

1.3.1 Initial Gamma Rediction. For a fission-type device the initial radiations are divided approximately as shown in Table 1.1 (from Reference 8). The major contribution to initial gamma rediction is from the fission-product gammas and the radiation from neutron capture by \mathbf{R}^{14} (n,γ) in the EE components and air. The prompt gammas are nearly all absorbed in the device itself and are of little significance outside of the device. The fission-product gammas predominate at close distances (Reference 8). The \mathbf{R}^{14} (n,γ) gammas become increasingly important at greater distances,

11

TABLE 1.1 ENERGY PARTITION IN FISSION (Reference 8)

MECHANISM	FISSION ENERGY	TOTAL EXERCY PER FISSION
	Percent	Nev
Kinetic Energy of Fission Fragments	ຄື	162
Prompt Neutrons	4	8
Prompt Genues [®]	4	8
Pission Product Gammas	2.7	5.4
Fission Product Jetas	2.7	5.4
Fission Product Neutrinos	5.5	21
Delayed Seutrons	0.1	0.2
TOTALS	100.0	200.0
والمستجر بالمناكلين والإكارة معدا أستهيري برياك موسلون والاستجربين تؤدمي يتشابوك متعمير والاس	والمحمد والمحموم والمحمد والمحمد والمحمد والمحموم والمحموم والمحموم والمحمول المحموم والمحموم والمحموم والمحمو	

Nostly absorbed in the device

ST. LOUDE C

and eventually become the anjor contributor. This applies only to devices with yields of loss than 100 kt, in which the hydrodynamic effect is small. Figure 1.1 shows the contribution from fiscion-product gammas and $\pi^{1k}(n, \gamma')$ for a 1-kt surface burst. With respect to time, the $\pi^{1k}(n, \gamma')$ rediction is essentially emitted within 0.2 second; the fiscionproduct gammas, however, continue to contribute for the first 30 seconds.

For thermonuclear devices, in addition to gamm rediction from fission-product gammas, it is necessary to consider the interaction of neutrons from the fusion process with $\mathbb{R}^{1,k}$. The rediction due to the fusion process may vary over wide limits, depending on the design of the device. For a given yield, the number of neutrons available may be ten times as great for fusion as for fission, and therefore a large Humber of gamma photons are contributed by the $\mathbb{R}^{1,k}$ (n, \vee) reactions (Reference 9). However, because of the short half-life, this gamma rediction decays before it can be enhanced by the hydrodynamic effect. Gammas from the longer-lived fission products are the most important source of initial gamma exposure resulting from high-yield fission-fusion devices.

ST. LOUIS FRC <u>1.3.2 Residual Germa Rediction</u>. The residual germa rediction consists of findion-product rediction from fallout and rediction from neutron-induced activity. The decay rate of the residual rediction from fallout will follow approximately the expressions:

$$I_{t} = I_{1}t^{-1.2}$$
(1.1)
and $r = \int_{t_{1}}^{t_{2}} I_{t_{1}} dt = 5I_{1}(t_{1}^{-0.2} - t_{2}^{-0.2})$
where: 1

It : exposure rate at time t

In a exposure rate at unit time

t . time

r a exposure between times t, and ty, where t \geq 10 seconds.

It is expected that the decay of the residual redistion will vary with weapon design. For example, the presence of Hy^{239} would tend to decrease the absolute value of the decay expenset for a period of time.

<u>1.3.3 Absorption in Air</u>. The absorption of unscattered gamma rediction in air is exponential with distance. From a point source of monoenergetic rediction, the variation of intensity with distance is expressed as:

$$\mathbf{I}_{\mathbf{D}} = \frac{\mathbf{I}_{\mathbf{D}} \mathbf{e}^{-4/\mathbf{D}}}{4\pi \mathbf{D}} \tag{1.29}$$

where:

In a intensity at distance D

I. . source intensity

n e linear absorption coefficient (this varies with gamma energy, and is generally lower for higher energies).

D : distance

ST. LOUIS FRC

The absorption coefficient μ in Equation 1.2 is applicable for marrow-beam geometry, and a correction should be made for field conditions where the detector is approximately a $2\pi\tau$ sensing element. This is done by adding a buildup factor B to Equation 1.2, to account for the scattered radiation that will be detected. Buildup factors for different energies and distances have been calculated (Reference 19), and some values are

shown in Table 1.2. For omnidirectional detectors, the expression is:

$$I_{\rm D} = \frac{I_{\rm o} B e^{-f/D}}{4\pi D^2}$$
 (1.3)

TABLE 1.2 CALCULATED WILLDUP FACTORS

The buildup factor (B) given here is the factor B_{μ} (MgB, Eg) as computed by Buchesr Development Associates for APSNP (Reference 9).

Ber	1000 740	1500 760	1000 yes
1	16.2	29.3	85.0
3	3.85	5-35	10.2
4	2.97	4.00	T. 00
10	1.70	2.01	2.90

1.3.4 Hydrodynamic Effect. As shown in Section 1.3.3, the attenuation of gamma radiation is highly dependent on the amount of absorber between the source and the detector. For weapons of less than 100-kt yield, essentially all of the initial gamma radiation is emitted before the shock front can produce an appreciable change in the effective absorption of the air between source and detector. For high-yield devices, the velocity of the shock front is sufficiently high to produce a strong enhancement of a large percentage of the initial gamma rediation (Reference 11). The higher the yield, the larger is this percentage. A simplified treatment of the hydrodynamic effect follows. ST. LOUIS FRC

Assume a sphere that has a volume V_0 and radius R, and is filled with a gas of density ρ_0 and mass M. Then,

1

16

ATOANC ENERGY ACT O

22

(1.4)

~

Let the gas be compressed into a shell with thickness ΔR (R remaining constant). The new gas volume is expressed as V_1 with a density of ℓ_1 ($V_1 = 4 = R^2 \Delta R$). The mass has not changed; thus

$$M = Vo \mathcal{C} \circ : 4\pi R^2 \Delta R \mathcal{C}_1 (\Delta R << R)$$

$$\frac{4\pi R^2 \mathcal{C}}{R} : 4\pi R^2 \Delta R \mathcal{C}_1 \qquad (1.5)$$

$$\Delta R = \frac{1}{3} \qquad (1.6)$$

Equation 1.6 indicates that a ray originating in the center of the sphere would traverse only 1/3 of the mass in the shell model that it would in the homogeneous model. The result would be an unhancement of rediction. Once the shell of material in the shock front passes the detector, an even greater enhancement results.

As previously stated, the $H^{1,b}(n,Y)$ component of initial rediction is essentially emitted within 0.2 second. Since it takes at least one second for the shock front to reach a detector at a distance of 7000 feet (oven for devices in the order of 6 Mt), the $H^{1,b}(n,Y)$ component is not significantly enhanced. The fission-product gammas continue to contribute for the first 30 seconds. Therefore, this rediction is strongly enhanced by the shock wave.

ST. LOUIS FRC

17

23

CHAPTER 2 PROCEDURE

2.1 OFFICETORS

Project 2.1 participated in Shote Charokee, Runi, Flathend, Daketa (11.4 ted), Heraje, and Yeva. For every shot except Daketa, all possible stations were instrumented with every available type of detector of appropriate runge. For Shot Daketa, stations were loaded with photographic-type docimeters just prior to shot time, and these were recovered at the instrumentation time for Navajo. Stations were instrumented as late as possible prior to shot time and recovered as seen as Rad-Safe conditions permitted.

2.2 INTERESTATION

2.2.1 Photographic Desimpter. The primary detector consisted of film exposed in the HHS-type film holder. This consists of a bakelite container with sub.25-am wall thickness covered with a 1.07-am layer of tin and a 0.3-gm layer of load. The load and tin not as filters to suppress the lower emergies sufficiently to keep the response linear above 115 kev. Below 115 hev, the games redistion is attenuated excessively, ST, LOUIS APC and the exposure due to gammas below 115 kev is small compared to that above 115 kev (Reference 12). The thickness of bakelite was determined experimentally on the assumption that the spectrum from a 10-Nev betatrem

18

MIC ENERGY ACT OF

is similar to the initial rediction of the device (Deference 13). The electron equilibrium layer presents a source of electrons that may be scattered into the emulsion to replace those electrons produced by gamma rediction absorbed near the surface of the film and lost without being detected. In the energy range from 115 key to 10 Nev, the desimptor is considered accurate to within \leq 20 percent with the film types used on this operation (References 14 and 15).

- & much har

For Shot Cherokee, film was exposed both with and without HBS holders, to obtain an indication of the presence of low gamma-emergy components in initial radiation, since bare films show maximum sensitivity to gamma energies at about 60 key.

Two dental-size film packets, each containing from one to three of different film emilsions, can be placed in the holder. A load strip of 0.78-nm thickness was wrapped around the outer edge of the holder to cover the seam. The holder was placed in a scaled plastic can to protect the film from weather while in the field.

The primary film packets used were: Dupont 553 containing Emulsions 502, 510, and 606; and an Eastman packet containing a special microfilm (80 1112) and spectroscopic-type 548-0 double-coat film. These packets were individually scaled in polyethylene bags. In addition, Eastman spectroscopic-type 548-0 single-coat was used when very-high exposures were anticipated. Table 2.1 lists the ranges of the films, and Figures 2.1, 2.2, and 2.5 show examples of the calibration curvag. LOUIS FRC

The films were stored in a refrigerator at Site Elmer and withdrawn as needed. Sets of calibration films were exposed to the Co^{60} calibration

19 RESIDE WA

1000		
1		

Emuls	on Type	R	ang	e
		· · · · · · · · · · · · · · · · · · ·	r	
Du Pont	502	0.05	-	10
	510	1.0	-	100
	606	10.0	-	3,000
Eastman	SO 1112	50.0	-	2,500
	548-0 dc	3,000		100,000
	548-0 sc	5,000	-	100,000

TABLE 2.1 EXPOSURE RANGES OF THE EMULSIONS

TABLE 2.2	QUARTZ-FIBER-DOSIMETER	RANGES
-----------	------------------------	--------

.

Bendix No.	Range
622 610 (IM-20/PD) 686 (IM-93/UD) 803 (IM-107)	r 0 = 20 0 = 50 0 = 600 0 = 2000 0 = 200

ST. LOUIS FRC

-

source from 1/2 to 12 hours after each detonation. Films were processed about a week after each event, thereby minimizing possible errors caused by latent image fading. Variations caused by temperature, aging, and processing technique were compensated for by the calibration film. Factors that cause variation in density from event to event were the latent image fading of Restman 548-0 film and the small variation in the temperature of the developer solution. In these Dakots, Havaje and Tevm, an increase in the background density equivalent to about 200 ar was noted on the Dupont Emploien 502. The use of calibration film in Sach of these events compensated for this background density increase.

The photographic transmission density was read as an Ansco-McBeth Model 12 densitometer, with a calibrated photographic density wedge used as a standard. Exposures were determined by comparing densities of the field films with the density-versus-exposure surves for each film emulsion calibrated on the Co⁶⁰ source.

2.2.2 Quarts-Fiber Desincters. Seven ranges of quarts-fiber dosimeters, similar to the DM-93/UD evaluated by Teapot Project 6.1.1, were used (References 16 and 17). These dosincters were salibrated with the Co^{60} source and a correction was made on all readings. They were checked for leakage and faulty ones were eliminated. Table 2.2 lists the manufacturer's numbers and ranges. Project 2.72 supplied 30 dosincters with a range of 0 to 200 r. ST. LOUIS FAC

2.2.3 Chemical Dosimeters. Chemical Sosimeters furnished by the Air Force, Atomic Energy Commission, and University of California at

Los Angeles were of three main types, all based on the same principle, to wit, acid formed from the irradiation of a chlorinated hydrocarbon is a linear function of radiation exposure throughout a broad range (25 to 100,000 r) (References 6, 18, 19, 20, and 21).

All dosimeters were of the direct-reading type, accomplished by observation of color changes in the indicator dye. The color change in most instances is from red (pH 6.0 or above) to yellow (pH 5.6 or below). Since the color transition of the indicator dye is a function of exposure, the exposure doses can be estimated by color comparison with irradiated controls.

Evaluation of overexposures (pH 5.6 er below) are determined by the titration of the acid formed per millimeter of chlorinated hydrocertion with standardized 10⁻³ Hormal HaOH. The amount of base required to return the overlaying acidimetric dye to its preirradiation pH value is a measure of the acid produced by the absorbed dose. Use of predetermined data for the system in respect to sensitivity to Co⁶⁰ gamma radiation (namely the milliequivalents of acid produced per milliliter of chlorinated hydrocarbon per roentgen (beorbed) and division of these values into the acid produced by the unknown exposure yields the gamma doses in roentgens. The Air Force dosimeters from those Cherokee and Euni were read in the field by lat Lt. S. C. Signloff, UBAF, of Project 4.1. The rest of the dosimeters were forwarded to the United States for reading and evaluation by the furnishing agency.

2.2.4 Rediac Detector DT-60/FD. Project 2.72 supplied 175 DT-60's, and these were exposed to Whots Flathead and Mavajo. Those exposed to

less than 600 r were read on site, whereas the ones exposed to larger doses were read and evaluated at the Maval Medical Research Institute. (A technical description and an evaluation of this instrument is found in References 16, 17, 22, and 23.)

2.2.5 Rediac Set AN/MR-39. These instruments, calibrated with 00⁶⁰, were used to measure the exposure rate in fields of residual gamma radiation whenever these fields would affect the data. The AN/FDR-39 is a military standard, field-type, portable instrument used for detecting and measuring gamma exposure rates (Reference 24).

2.2.6 Quartz-Fiber Device (Bate Device) for Exposure Versus Time.

This device incorporated eight quarts-fiber dosimeters connected to a battery of seroing potential. The dosimeters were activated by removal of the battery potential from the dosimeters during various intervals of the first minute after the detonation. The dosimeters recorded the radiation that arrived after they were activated.

The devices were mounted vertically in a plastic and aluminum frame (Pigures 2.3 and 2.4). A spring-loaded solenoid was below each desimeter, mounted so that it depressed the charging pin at the base of the quartzfiber dosimeter. A battery charged the dosimeters to zero reading. Upon activation, a Maydem chromometric motor programmed the operation. The latching solenoids were activated in intervals of about 2 seconds, varying with position and event. The charging potential was removed from the dosimeters, thus the dosimeters integrated the exposure that arrived after the activation time.

ST. LOJ*0: 20

Figure 2.3 Quartz fiber rate device with dosimeters.

ST. LOUIS ERC

-

Figure 2.4 Quarts fiber rate device with dropping mechanism.

ST. LOUIS FRC

-

Several dosingters were included to read the total exposure. One dosingter was activated at 58 seconds after the detonation to give an estimate of the effects of residual radiation. At 60 seconds, a solenoidrelease mothanism caused the entire instrument to drop down the 8-inch steel-pipe stations to 6 feet below the surface. Thus, the instruments were shiblded from most of the residual radiation.

The device was housed in an aluminum canister 32" high and 7-1/2" in diameter, with a 0.10-inch wall thickness. The battery pack that powered the mechanism was in the bettom half of the canister. A 6-inch space at the top of the canister was utilized for the placement of various other dosimeters, and Project 2.51 gold and sulphur meutrom detectors for Ehots Sami and Cherokee. The instrument was activated upon the melting of an extectic element by thermal radiation. The sutcetic element consists of two pieces of 0.008-inch brase shim stock, plated black with Ebanol C and soldered with Cerrolov 136, an extectic that melte at 136°T. The total activation delay from time of detomation is estimated at 1/2 second.

2.2.7 Nochamical Brop Mechanism. A mochamical drop mochamism was installed in the pipe caps of some of the 4-inch and 8-inch steel-pipe stations. These stations were instrumented with five sets of dosimeters. Three sets were suspended in the top of the station, and fell to the bottom when activated. The first set of dosimeters was suspended by a black mylon string extending from an arm attached to the cap top through a hole in the cap. The gamma data indicated that the string burned

through in about 1/2 second after the detonation. A second set of desi-

29 ATOMIC ENERGY ACT OF 1954

meters was suspended by a wire from a piece of angle iron on the top of the cap. The shock front activated this group. A third set of docimeters was suspended from a mechanical 60-second photographic timer. The timer was activated when the thermal rediction burned through a piece of black sylon string. The instruments dropped approximately 1 minute after the detonation. In addition, one set of docimeters remained fixed at the top of the station and another at the bottom.

The dosimeters were affixed in this fushion to afford an opportunity to measure the rediation up to the time of activation and then be dropped to the bottom of the pipe for shielding from residual rediation. Thus, the dosimeters integrated the dose received up to the time of arrival of thermal and shock pulses, the dose received up to 1 minute, and total rediation.

2.2.8 Station Layout, Utilization, and Construction. The station layout and utilization are given in Table 2.3. The station construction is shown in Table 2.4, since the amount of shielding surrounding the detector is of importance in the data analysis.

Series 210 stations consisted of an 18-inch open-end aluminum cylinder mounted 36 inches above the ground on a 2-inch-diameter aluminum rod. The dosimeters were retained by a bolt of each end of the cylinder.

Series 210, 211, 212, and 213 stations were constructed of steel pipe capped at both ends. The pipes were mounted vertically in the ground with the exception of Series 212, where the pipes were mounted vertically in the center of a 6-foot concrete sube, the surface of which was fluch with the ground.

TABLE 2

AN TIBIZATION

CODE :	A	-	Film	Be	dges
	В	-	Quart		Fiber

C = Chemical

-

•--

.

ı

٠

•

•••

.

U - Phosphate Glass - - Quarts Fiber Rate Versus Time F - Mechanical Dropping Device

Station Number	Location	Cherokee	Zurd	Flatnead	Dakota	Navajo	Темя
212 01	Able	ABCE	ABC	ABD		ABCD	ARC
212 02	Chaples	ALCT	ABC	1 BI)		ABCD	ABC
212.02	Dee	ADC	ARC	4 705		ABDE	ABC
×12.03	Dog	ARC	A.75.	ADODE	2	ABCD	ABC
212.04	LADY	ARC	AP	A DULY:	^	ABCDU	ABC
212.05	Fox	ABC	AP	ABCDE		ABCDL	ADC
212.06	George	ABC	ABC	ABCD		ABUD	ADC.
211.01	Dog			ABCDE	A	ABCDE	
211.02	Dog-Lasy			ABCDE	▲	ABCUL	
211.03	Easy-Fox			ABCDE	}	ABGDE	
211.04	Fox-George			ABCD		ABCDP	
213.01	Man Made 3			ADT	٨D	ADF	
213.02	Dog			AD!		ADF	
213.03	Dog-Easy			ADT		ADF	
213.04	Fox			ADF		ADF	
210.10	For						i i
210.20	George			}			
210 22	Obos Reaf		AC.				
210.22		APC	AC	ABCD		ABCD	ABC
210.23	Obce Reef	A.D.C	AC	RIGE			
210.25	Uboe Reer		AC				
210.26	Peter Reef		AC	4 222		ADOD	IPC
210.27	Peter	ABC	AC	ABCD	1	AB.	ADC
210,29	Rogar Reef		AC		ł		
210.30	Roger	ABC	AC	ABCD	1	ABCD	ABC
210.31	Roger Reef		AC.				
210.32	Uncle Reef		AC				
210.33	Uncle Reef	1	AC		1	1	
210.3/	Uncle	ABC	ÅC.	ABCD		ABCD	ABC
210 35	Uncle Reef		AC	1			
210.37	William	ABC	ABC	ABCD		ABCD	ABC
220.20	Y - 1		ADC	APCD		ARCD	ABC
210.36	IOKe	ADU	ADC	ADOD		ADCD	ABC
210.39	Zebra	ABC	ABC	ADOD		ADCD	ADC
210.40	АЦа	ABC	ABC	ABCD		ADCD	ADC
210.41	Bravo	ABC	ABC	ABCD		ABCD	ABC
210.56	Peter Reef	1	AC				
210,23'	Obce		ABCF				1
210.271	Peter	1	ABCE				
210.30	Roger	1	ABCH			İ	
210.341	Uncle		APCE				
112 01	Charlie						APC
113 01	Charlie-Dog	Ä			1	1	ABC
113 02	Charlis-Dog	AP					ABC
113.03	Charlie-Dog	AB			1	-hC	ABC
	Charlin Der	AP	ļ	1 ST 1/	3015 F	47 . L	AC
11 7 .04	OUST TIG-DOR	n.o			-		1
113.05	Charlie-Dog	AB				1	AC
113.00	Charlie-Dog	AB .				ADD	100
113.07	Man Nade 1		1		1	ACD	ADC
113.Ua	Man Made 2			1		AHD	ABC
113.09	Man Made 3					ABD	ABC
250.01	Charlie	A					
250.02	Charlie	A				i	1
250.03	Charlie	A	1	1		1	{
	1	1	1				,

Station Series	Material	Diameter	Wall Thickness	Height Above Surface	Depth Belcy Surface
210.0	Aluminum	inch 3	inch 0.25	ft 3	ft
210.27' 210.30' 211.0 212.0	Steel	8	0.45	2.5	6
210.23' 210.34'	Steel	8	0.45	2	ı
213.0	Steel	4	0.30	4	4
113.0	Steel	3	0.25	5	

TABLE 2.4 STATION CONSTRUCTION

ST. LOUIS FRC

Series 113 stations were located on the earal reef east of Site Charlie and were constructed of steel pipe. These stations were primarily for use by Project 1.1, but were utilised by Project 2.1 for Shots Cherokee and Your.

<u>8.2.9 Go⁶⁰ Field Calibration</u>. Exposures were node with a velicalibrated 4π , 200-curie Co⁶⁰ source that had an effective energy of 1.2 Nov. The source equalsted of two cylindrical Co⁶⁰ pellots with a total height of 1.58 indees and a diameter of 0.39 inches. The pellots were gald-plated and scaled in two concentric nonel capsules. The source capsule was stored in a load pig, and was forced up a nonel-metal tube by congressed air for use. The total thickness of the nonel capsules and tube was 0.33 inches. Instruments were exposed on a horizontal vectorplatform 3 inches below the level of the raised source and 2 feet above the load pig.

The source was salibrated on site using Victoreen r-chambers that had 5-am lucite eegs. These chambers were calibrated at HBS for use at 22°C and 760 nm of pressure. Corrections for pressure and temperature differences were applied to chamber readings at the time of calibration: Corrections for decay of the source were applied to calibration curves after the calibration was completed.

A 200-curie Co⁶⁰ calibration curve for exposure rate versus distance is shown in Figure 2.6.

2.3 DATA REQUIREMENTS

ST. LANTS BRC

To accomplish Project 2.1 objectives, gamma-rediction measurements were required at surveyed distances from ground zero for each of six high-

yield thermonuclear devices detonated at Bikini Atell. In order that a true masure could be made of initial gamma radiation, a requirement of the measurements was to enable separation of initial from residual gamma radiation.

Measurements of the residual gamma exposure rate and decay rate were required at known times for stations instrumented in a contaminated field, and after all shote, to allow extrapolation of residual exposure measurements to times other than recovery time. For those stations at which initial gamma data were recorded, residual-field gamma exposure rate measurements were required to allow for correction of the initial data to 100 account for the effect of the residual gamma field.

The initial exposure values, after correction for betatron calibilities and shielding effects, are accurate to within 30 percent, including errors due to calibration, readout, directional response of the film, and processing. This accuracy percentage is based on previous experience. In individual cases where the residual gamma contamination was propertionstely larger, the accuracy may be reduced, particularly in those cases where the residual gamma contamination was estimated. These cases are discussed individually as they appear. The photographic and quarts-fiber dosineter readings are generally recommended as being most reliable on a statistical basis, since they were put out in large numbers and in many ranges at each station location. Statistical variation for these individual detectors was within 10 percent.

The residual exposure values, after correction for shielding effects and energy response, should be accurate to within 50 percent. This

accuracy is based primarily on variations in the individual dosimeters due to response characteristics and station shielding effects. The variance of a particular type of dosimeter at a given location was 15 percent.

2.3.1 Initial Exposure Calibration. The radiation spectrum of a 10-May betatron (3.5-May effective average energy) is believed to appreximate the initial spectrum of a mumbear domention. To obtain correction factors, MBS has exposed photographic dosimeters to Co^{60} and to the Naval Orinance Laboratory 10-May betatron on Beyeral occasions in the past 5 years (References 2, 3, 4, 15, and 25). Examination of these results shows that the correction factors are a function of the particular photographic emulsion, batch, and age. Dased on previous work, the correction factors for the emulsions used during Redwing should probably vary between 0.80 and 1.00.

Air Force Special Weapons Center (AFSWC), in cooperation with Los Alamos Scientific Laboratory (LASL) and Evans Signal Laboratory (ESL) has exposed film to the Godiva bare assembly at Los Alamos in order to study the effects of neutrons on photographic emulsions. Results indicate that the film sensitivity for neutrons is relatively low. This experiment also yielded additional data on rate dependence of these emulsions in that there was no significant change in emulsion response due to a gamma rate of exposure of 1 r/sec as compared to 10^7 r/sec for equivalent total exposure.

ST. LOUIS FRC

The neutron sensitivity of film is considered to consist of two components: 1) a response to low-energy (thermal) neutrons, and 2) a

36

response to high-energy neutrons. As far as could be determined from the experiment, the two components are independent and additive. The calibratics data for neutron flux was furnished AFBNC by N-2 division at LAML. It was assumed that any perturbation in flux caused by the HDS film holders would be small. Neutron-sensitivity values are compared to the amount of Co⁶⁰ gamma rediction required to produce the sume optical density. Table 2.5 summarizes the data obtained.

For all shots except Cherekse, the relative air densities are 0.895 \pm .002. For Cherekse it was 0.847; however, the data were adjusted to a relative air density of 0.895 to permit comparison of results. He air-density adjustment was made for the other events.

In analyzing the initial data to determine the flux that existed outside the station, it is important to take into account the attenuation offered by the station and the instrumentation inside. Table 2.6 presents a list of station types and calculated shielding correction fuctors based on a 3.5-Nev gauna energy in accordance with the assumptions of Reference 25. A metual instrument-shielding correction factor for each station type was estimated and is given in Table 2.6. An experimentally determined film betatron calibration factor of 0.9 is also listed. The benkined correction factors were computed from the abovementioned factors. The betatron calibration factor applied to the film only. No betatron calibration data were available for the guarts-fiber and chemical docimeters, and a factor of 1.0 was assumed. ST. LOW

The combined correction factor was used only in the analysis of

TABLE 2.5 FILM SENSITIVITY TO NEUTRONS

See Se	ection	2.3	1.1	for	source	of	data.
--------	--------	-----	-----	-----	--------	----	-------

Packet Type	Low Energy (Gold) Neutrons	High Energy Neutron Dose		
	$n/cm^2/co^{60} r x 10^{-9}$	n rep dose/Co ⁶⁰ r		
606 -1290 606 -12 90	4.7 ± 2.4 3.9 ± 2.2	37 ± 22 31 ± 20		
553	3.4 ± 1.8	28 ± 17		
553	2.3 ± 1.4 3.2 ± 1.7	19 ± 12 26 ± 15		
	Packet Type 606-1290 606-1290 553 553 553	Packet TypeLow Energy (Gold) Neutrons $n/cm^2/co^{60}$ r x 10^{-9} $606-1290$ 4.7 ± 2.4 $606-1290$ 3.9 ± 2.2 553 3.4 ± 1.8 553 2.3 ± 1.4 553 3.2 ± 1.7		

ST. LOUIS FEC

38 ATOMIC ENERGY ACT OF 64 44

Station Series	Station Shielding	Nutual Shielding	Combined Quartz Fiber and Chemical Correction Factor	Betatron Film Calibration	Combined Film Correction Factor
210 210' Without quarts	1.05	1.05	1.10	0.90	1.0 ± 0.05
211 fiber rate 212 device	1.35	1.10	1,48	0.90	1.35 ± 0.10
210' With quartz 211 fiber rate 212 device	1.40	1.15	1.61	U.90	1.45 ± 0.10
213	1.20	1.05	1.26	0.90	1.15 ± 0.05
113	1.15	1.05	1.21	0,90	1.10 ± 0.05

TABLE 2.6 INITIAL-GAMMA-EXPOSURE CORRECTION FACTORS

ST. LOUIS FRC

the initial game exposure data in Table 3.16. Theorrected exposure values are listed in the individual shot tables in Chapter 3.

2.3.2 Residual Exposure Calibration. In order to evaluate the initial gamma exposure, it was often necessary to estimate the residual gamme exposure. Some of the dosimeters associated with the guarts-fiber device and the mechanical dropping mechanism yielded measurements of residual game rediction. Over the limited areas of interest (500 feet or less) the fallout pattern was generally continuous and experience did not very greatly, hence it was possible to estimate the exposures at stations where no specific data were available. These estimates were consistent both with calculations based on measurements of residual gamma intensity made at the time of station instrument recovery, and with integrated rate versus time measurements made by Project 2.2. Stations located on the reef and in the tidal wash area were evaluated separately. since the residual exposure in these areas may be reduced by a factor of ten, depending on the unter-land geometry and tidal wash. In cases where the estimated residual exposure exceeds the resultant initial exposure, an additional uncertainty factor must be added to the normal ST. LOUID FRC accuracy factor.

It is desirable to correct the residual exposure values obtained inside the station to those that would exist outside the station if the dosinctors were unshielded. To determine this correction factor, desinctors were wired flush to the outside of some stations where they would be exposted to survive the blast and thermal effects of the event. In some cases, four instruments uniformly spaced about an 8-inch 0.9. pipe were used.

The variation of exposure in each instrument set was due primarily to the land-water geometry. Since the station still shields the instruments from 477 radiation, the results obtained did not directly yield the correction factor. Therefore, attenuation factors were calculated based on station construction assuming 700 key as the effective energy of the residual gamma radiation (Table 2.7). These are consistent with experimental results.

Figures 2.7 through 2.11 show the energy response of Dupont Emulsions 502, 510, and 606 in MES holders, and of quarts-fiber dosimeters and the AN/MDR-39 relative to Co⁶⁰. Since the response of the guarts-fiber dosimeter has been found to be most desirable during previous operations (Reference 4), experimental factors have been evaluated to adjust the film readings to quartz-fiber equivalence. These factors are 1.15 for film in aluminum containers and 1.25 for film in 8-inch steel-pipe stations (Table 2.7). The factors in Table 2.7 are considered accurate to within 20 percent because of variations in thickness of blast shielding. Residual exposure data that appear in the individual shot reports are uncorrected. The correction factors are used only in computing information included in Figures 3.4 ghrough 3.7.

2.4 SUPPORT FACILITIES

ST. LOUDERAC

The following projects were furnished NBS photographic dosimeters in the quantities listed: Project 2.2, 100; Project 2.63, 300; Project 2.65, 150; Project 2.66, 150; and Project 2.72, 30. Small quantities were also used by Projects 2.51, 4.1, and TU 7. These dosimeters were

	I	ABLE 2.7 RES	IDUAL-GAMMA-EX	POSURE CORRECTI	ON FACTORS	
S	tation Series	Station Attenuation	Instrument Attenuation	Combined Quartz Fiber	Film - Quarts Fiber Normalisation	Combined Film
210	•	1.12	1.12	1.25	1.15	
210' 211 212	Without quartz fiber rate device	1.85	1.24	2.30	1.25	2.88
210' 211 212	With quartz fiber rate device	2.00	1.36	2.72	1.25	3.40
213	-	1.48	1.12	1.66	1.20	2.00
113		1.36	1.12	1.52	1.20	1.83

~

.

0

_

See 2. 2 March 1

ST. LOUIS FRC

40

U

processed and the results returned to the interested projects. Instruments were exposed to the 200-curie, 4 Co⁶⁰ source, and an 80-curie, collimated Co⁶⁰ source for Projects 2.63, 2.65, 2.66, 2.8, and 4.1.

48

ST. LOUIS FRC

ATOMIC E

-

CHAFTER 3

HESULAS AND DISCUSSION

This chapter presents raw data based on Co⁶⁰ calibration and discussion necessary to clarify the tables. The terms thermal, blast, 1minute, Gotal, and rate device refer to timing (Sections 2.2.6 and 2.2.7), and "down" refers to dominsters that were placed in the bottom of the pipe stations. The terms "front," "left," "rear," and "right" refer to instruments wired fluch to the subplde of the stations, with respect to an observer at ground zero facing the station. Instrumentation and recovery rates refer to residual gamma field intensities at the times of instrumentation and recovery of instruments located at an exposure station.

3.1 SHOT LACHOGEN

One piece of initial game exposure data was obtained on this event at a Project 2.65 station on Site Yvanne. Initial (total exposure) was 5.3 r, distance 8,086 feet, yield 36.5 ± 3 kt, and relative air density 0.893. Instrumentation and recovery rates were negligible.

3.2 SHOT CHEROKEE

ST. LOUIS SAC

All stations other than those listed in Table 3.1 received less than 50 mr. Film at the Series 250 and 251 stations was damaged by water or sulphur foxes from damaged noutron-threshold detectors, and therefore the

49 ELECTRON COMPLETENCE

TABLE 3.1 CHEROKEE DATA

Station Number	Location	Slant Distance	Exposure in NBS Holder	Exposure no NBS Holder
		ft	r	r
112.01 113.01 113.02 113.03 113.04 113.05 113.06	Charlie C-D Reef ^a C-D Reef ^a C-D Reef ^a C-D Reef ^a C-D Reef ^a	19,980 18,360 17,860 17,100 17,300 17,970 19,120	DELET	ED

^aCharlie-Dog

e

ST. LOUID CAR

ATOMIC ENERGY ACT OF 1798

TABLE

Shot	time	VLA	0556,	28	Hay	1956	
			•		-		

*

¢

4

			-		1	otal Gamma Erron	1178
Station	Location	Date	T1	Haite	Film	Quarts Fiber	Chemical
				mar 'h "	r	r	r
212.01	Able	31 Hey	0945	, . . .).	202	221	237
212.02	Charlie	31 May	0920	rх	155	135	200
212.03	Dog	31 May	0915	1200	185	195	262
212.04	Easy	31 May	0910	1200	1 152	185	}
212.05	Fox	31 Hay	0905	1200	207	222	
212.06	George	31 May	0900	1200	118	124	92
How	How	31 May	0845	330	44	60	1
Nan	Compound	28 May	ʻ 1 400	0	0.31		
Nan	Airstrip	28 May	1430	0	0.31		
210,22	Oboe Reaf	31 May	1030	50	17.5		
210.23	Obce	29 Hay	1330	600	93		
210.23'	Oboe	29 May	1330	600	37		
210.24	Obos Reef	31 May	1030	50	1 ii l		< 50
210.25	Obce Reef	Dea	troyed				
210.26 ^a	Peter Reef	31 Hey	1030	50	25		< 50
210.26ª	Peter Reef	31 May	1030	50	69		75
210.27	Peter	29 May	1315	1200	200		220
210.27**	Peter	29 May	1315	1200	102	136	125
210.29	Roger	7 June		1	2500		í
210.30ª	Roger	29 May	1300	1300	16000		
210.31	Roger	Des	troyed				
210.32	Uncle	Dec	stroyed				
210.33ª	Uncle Reef	30 May	1,100	1 50	1800		850
210.34ª	Uncle	29 May	1230	1000	465		120
210.34**	Uncle	29 May	1230	1000	335	368	The second secon
210.35ª	Uncle Reef	31 May	1005	20	205		
210.37	William	31 May	1000	420	143	200	225
210,38	Yoke	31 May	0950	300	100	120	125
210.39	Zebra	31 May	0945	260	92	106	118
210.401	Alfa	31 May	0940	320	110	118	75
210.41	Bravo	31 May	0935	220	85	100	1 75

^aThese stations received both initial and residual radiation as shown in Table 3.3. All other exposures are residual only.

ST. LOUIS FAC

TABLE 3.3 ZUNI INITIAL-GAMMA EXPOSURE

All of the data in this table are from film at aluminum stations except those referred to in a and b .

Station Number	Logation	Distance	Total Exposure	Estimated Residual Exposure	Resultant Initial Exposure
	• · · · · · · · · · · · · · · · · · ·	ft	r	r	r
210.30	Roger	7000	16000	150	15850
210.29	Uncle Reef	8500	2500	15	2485
210.33	Uncle Reef	9420	1880	15	1785
210.33	lincle Reaf	9/20	850	15	835
210.34	Uncle	10320	465	150	315
210.35	Uncle Reef	10935	205	15	190
210.27	Peter	11270	200	150	50
210.27	Peter	11270	145 ^b	100	45
210.56	Peter Reef	11510	69	15	54
210.26	Peter Reef	12940	25	15	10

^aThese data are from a chemical dosimeter. ^bThese data are from a quartz fiber exposure versus time device in a steel station.

results are not included.

The exposures at the stations listed in Table 3.1 are possibly from initial gamma radiation. Temperature effects on the film could have caused an increase in background density. The presence of low-energy gamma components in the residual field are indicated by the higher exposures measured by films exposed without NES holders. The instrumentation and recovery rates were negligible.

3.3 SHOT ZUNI

See Tables 3.2 and 3.3. Eight-inch steel-pipe stations were installed at Stations 210.23', 210.27', 210.30', and 210.3⁴'. The rate device at 210.27' became wedged in the station and failed to drop. The initial gamma readings were obliterated by the residual radiation. The cap of 210.30' was broken by the shock, and the instruments fell inmediately.

DELETER

A third rate device at

210.34' without a dropping mechanism yielded only total exposure information.

A mechanical drop device installed in a water-filled steel pipe at 210.23' functioned properly. All of the films that dropped read less then 1 r, since the initial exposure was negligible.

3.4 SHOT FLATHRAD

ST, LOUIS FRC

XES IL

MIC ENERGY AC

See Tables 3.4 and 3.5. The disparity between the film and quartzfiber exposures at Station 212.03 is not fully understood. At Station 212.05 the 10-r thermal and blast exposures are the result of residual contamination from Shot Zuni. Film indicates about finitial exposure, and quartz-fiber dosimsters indicate about the The switches in the

Shot time was U626, 12 Jur +

٦ •

1

)

		∿atruzo⇔nta`ion			Recovery			
Station Number	Location	UB CA	'. 36 4	Rate	Date	Time	Rate	
				mr/hr			ar/hr	
213.01	MO	ຮີນຄອ	135		16 June	1430		
212.03	Dog	6 June	ا يسر 1		14 June	1545		
213.02	Dog	t June	240	j.	14 June	1530		
211.01	Dog	t June	1115	: 👝	14 June	1524	{	
213.03	Easy	8 June	1445		14 June	1518		
211.02	Easy	t June	121.5		14 June	1515		
212.04	Easy	9 June	1200	E.	14 June	1512	S	
211.03	Fax	t June	1320	ES -	14 June	1505	1 1	
212.05	Fax	6 June	1345	Ĩ	14 June	1405		
213.04	Fax	tio Record			14 June	1400	1	
211.04	George	No Record	E E		No Record		7	
211.06	George	No Record	L i		No Record	[

TABLE 3.5 FLATHEAD INITIAL EXPOSURE

			T	Tota	al Exposure		,	I	1
Station Number	Location	Position or Timing	Film	Quarts Fiber	Class	Chemical	Total Residual	Initial Exposure	Distance
			r	r	r	r	r	r	r
212.03	Dog	Thermal Blast 1 Minute Total							44,22
213.02	Dog	Total							511
211.01	Dog	Total R oar							55æ
213.03	Dog-Easy	Total							5950
213.01	Man-Made 3	Total							6605
211.02	Dog-Easy	Total Front Rear							. eesu
212.04	Fasy	Total			DET				7720
211.03	Easy-Fox	Total Front Rear			DEL				
212.05	Fax	Thermal Blast 1 Minute							10745
213.04	Tax	Total							11700
211.04	Fox-George	Total Front Rear							12650
212.06	George	Total							14920

*Container was shielded after initial exposure. The total reaidual exposure is estimated at See Station 211.02, Table 3.6. The 10 r for thermal and blast result from residual radiation from Shot Zuni from instrumentation time to detonation time.

53

4

ST. LOUIS FAC

mechanical drop devices at 213.02, 213.03, and 213.04 functioned, but the domineters did not fall below the surface because of a constriction in the pipes.

Table 3.6 and Figure 3.1 give results from the quarts-fiber rate devices for exposure versus time.

The rube device at Station 211.01 did not drop; therefore it was necessary to subtract the residual exposure of the At Station 210.02, it was assumed that the finite that arrived after 15 seconds was residual since the shielding was only 90 percent effective. The device at Station 212.04 operated in reverse, yielding only total residual information. The exposure at Station 211.03 was small and could not be resolved properly.

Table 3.7 lists installation, recovery, and residual exposure information. Project 2.2 information indicates that Stations 210.23 to 210.41 received about 1 r of fallout exposure from this shot, the remainder having came from Shot Sumi.

3.5 BEDT DAKOZA

ST. LOUIS FEC

Bee Tables 3.8 and 3.9. Eigh residual gamma exposure rates resulted from Hot Flathend at the time of the Dakota instrumentation. Therefore, it was necessary to keep the instrumentation to a minimum. The project was not aware of the change in shot coordinates at the time of instrumentation, and since the shot was moved about 1/2 mile closer to the Fox complex, the lowest initial exposure recorded was about

Desinctors were placed in two locations on Non-Made Island 3 prior to Shot Flathead. One group of domineters was found during Flathead recovery, and the second group was recovered after Dakota. A Dakota

•

•

.

. .

-

- .

et ETER

DELETED

.

61

TABLE 3.9 DAKOTA INITIAL EXPOSURE

Shot time was 0606, 26 June 1956

Station Number	Timing	Film Exposure	Calculated Preshot Residual	Estimated Postshot Residual	Initial	Distance
		r	F	r		ft
212.03	Total Blast					4422
211.01	Total Blast					5500
213.01	Total		DELL	TED	منب و	6605
211.02	Total Blast					6650
212.04	Total 1 minute					7220

^aThis result was obtained by subtracting the 1-minute value from the total value. ^bThe other estimates were based on this value. ^cThis result was obtained by subtracting the total Flathead exposure from the Flathead plus Dakota exposure

ST. LOHL MRG

data point was obtained by subtracting the Flathead exposure.

3.6 REDT HATAJO

See Explos 3.10, 3.11, and 3.12. Some ghomomenon, perhaps the sheek, caused all of the genris-fiber dosimeters in the rate devices to activate at an early time. As a result, they yielded only total exposure data. Station 211.01 was partially blown out of the ground. The rate device did not drop, time the station yielded only total exposure information. The 1-minute drop timers were corroded and did not function. Consequently, the estimates of residual exposure on Sites Bog and Easy are not nocurate.

3.7 BEDT TENA

Table 3.13 gives Yews instrumentation and recovery date, and Table ~ (3.14 shows residual exposure data. Data from the Charlie-Dog reef, including scattered initial gamma data is listed in Table 3.15.

TABLE 3.10 NAVAJO INSTRUMENTATION AND RECOVERY

.

Station	1	In	strumentat	ion		Recovery	
Number	Location	Date	Time	Rate	Date	Time	Rate
				I.	•		
210.19	Fox	7 July	1530				
210.20	George	7 July	1540				
210 23	Oboe	5 July	0750				
210 27	Bates	5 July	0756				
210.27	reter	5 5445	0755				
210.30	Roger	2 100	0800				
210.34	Uncle	2 Juil	CIECIE				
210.37	William	5 July	0815				
210.38	Yoke	5 July	0822				
210.39	Zebra	5 July	0827				
210.40	Alfa	5 July	0832				
210.41	Bravo	5 July	0835				
212.01	Able	5 July	08/8				
212 02	Charlie	5 hily	0857				
	AURT.718	Jun					
113.07	H H No. 1	5 July	0905				
113.08	M H No. 2	5 July	0910				
113.09	M M No. 3	5 July	0920				
212.03	Dog	7 July	1420				
	ļ						
		1					**
212.04	EAST	7 July	1230			n n	
-					DELE		
					U-		
:							
212.05	Fax	7 July	1125				
		ļ					
212.04	C	0.1.1-	1000				
ATK.00	uearge	JULY	1000				
			}				
		1					
211.01	Dog	7 July	1400				
211.02	Dog-Easy	7 July	1335				
211.03	Easy-Pox	7 July	1340				
-							
211 04	Fort-Coortes	7 1.1-	1020				
	sor-oneste		1000				
		Ì					
213.02	Dee	7 1-1-	1/10				
	200		10/0				
		1 I I I I I I I I I I I I I I I I I I I					

Shot time was 0556, 11 July 1956

•

۰.

ST, LOUID MRC

65

59

,

PIDIE 5 11

NAVA TO INTETAL-CANNA EXPOSITRE

			Ţ	Total Do			
Station	Distance	Timing or Position	Film	Juarts Piber	Phosphets Glass	Residual	Initial
	ft		. r	r	r	r	7
212.03	7922	rear blast the <u>rnal</u> down					
212.04	10680	total					
212.05	13180	total 1 minute rear					
212.06	16180	total Fear					
211.01 211.02 211.03	8960 9810 11880	total total total l minute					
211.04	14750	total blast thermal down rear			DELETED)	
213.02	6580	total					
213.04	13820	total blast thermal down rear					Ħ
M M 1 M M 2 M M 3 210.19	16190 12900 DESTROYED 14250	total total					

^aEstimate ^bDose contributed entirely by residual radiation.

Station	Position	Film	Phosphate Glass	Quartz Fiber
		r		г
212.01	Inside Outside	105 170	152	115
212.02	Inside Front Right Rear Loft	79 99 37 32	53	40
210.23	Inside Outside	2.2		2.2
210.27 210.30	Inside Inside	2.7 3.4		3.4 3.8
210.34	Inside Outside	1.7 1.8		3.8
210.37 210.38 210.39 210.40 210.41	Inside Inside Inside « Inside Inside Outside	2.8 4.2 7.4 8 8.3 6.9		6.4 4.5 8 8 11

			11070	TESTRUMENTATION			BECOVERY		
STATION	LOCATION	POSITION	DATE	TDE	ME	DATE	TDE	RATE	
£12.01	Able	Front	15 Jul	1010	90	24 Jul	1420	ME/AF 4000	
•		Right			90			·	
Ŧ		Bear			90				
		Laft			90				
21.2.02	Charlie	Front	15 Jul	1000	32	94 Jul	1425	3000	
		Right			47				
		Near			38			~	
		Left			27				
113.01	Charlie- Dog Beef		16 Jul	1645	4	25 Jul	1750	8	
113.02	*		16 J 1	1625	3	25 Jul	1755	20	
113.03			16 M L	1600	3	25 Jul	1810	40	
113.04	51		16 Jul	1510		25 Jul	19625	18	
113.05	Ħ		16 Jul	1440	Set 0	25 Jul	BES.	ROYED	
113.07	104 Hz 1.		16 Jul	1400	90	25 Jul	1100	1000	
113.08	10: Nr 2		16 JU	1250	1.90	24 Jul	1430	2800	
113.09	MM Mr 3		16 Jul	1200	80	25 Jul	1115	3500	
21.2.03	Dog	Front	15 Jul	0945	80	25 Jul	093 0	1500	
		Right			100				
		Bear			100	• 2*	· · ·	115 FRC	
		Left			70		N 1	- · · · · · · · · · · · · · · · · · · ·	

TABLE 3.13 THWA INSTRUMENTATION AND RECOVERY (Shot time, 0546, 21 July 1956)

6/

ł

·•••

		POSTFICH	INTRO-ENTATION			RECOVERY		
	LOCATION		DATE	TDE	RATE	DATE	TDE	BATE
212.04	Basy	Front	15 ma	0950	mr/ar 60	24 Jul	1050	se/hr 2400
		Right			80			
•		Beer			1.00			
		Left			60			
212.05	Tex	Front	15 ML	0935	60	24 Jul	1 110	3000
		Right			65			
		Rear			70			
		Left			60			
212.06	George	Front	15 Jul	0925	30	94 Jul	1120	1000
	、	Right			45			
		Beer			70			
		Left			45			
210.23	Chee		15 Jul	1105	8	24 Jul	1320	6
210.27	Peter		15 Jul	1100	4	24 Jul	1.330	8
21.0.30	Roger		15 Jul	1056	9	2 4 Jul	£335	18
210.3 4	Uncle		15 Jul	1047	4	24 Jul	1342	220
21.0.37	Villige		15 Jul	1038	8	24 Jul	1350	1000
21.0.38	Yeke		15 Jul	1033	5	24 Jul	1355	1000
210.3 9	Zebra		15 Jul	1030	9	24 Jul	1400	1500
mo.ko	ALTE		15 MI	1025	8	94 Jul	1402	2200
210.41	Bravo		15 Jul	1020	7	24 Jul	1404	2200

WARLE 3.13 TEMA IMPERIMENTATION AND RECOVERY - continued -

11 **•••**. •• f

ST. GODE FRC

62

DETENDENCY ACT OF

68

۰.

C 4 A4	Exposure						
Station Number	Quartz Fiber	Position	Film	Position			
	r .		r				
210.23	3.8		2.51				
	2.0	rear					
210.27	6.5		3.67				
210.30	8.2		6.45				
210.34	9 8		82.6				
	160	rear	93.5	TOAT			
210.37	510		391				
210.38	525		454				
210.39	800		627				
210.40	1300		1045				
210.41	825		755	• •			
212,01	2300		2833	nont			
			1916	right			
			3016	TOAT			
			24,00	left			
212.02	890		823				
	2650	rear	1000	front			
			1485	right			
			1460	THAT			
			940	left			
212.03	695		610				
	1102	rear	580	front			
			920	right			
			860	TGAT			
			762	left			
212.04	510		375				
212.05	521		399				
	1027	rear	700	front			
			710	right			
			668	FOAT			
	1		640	left			
212.06	240		201				

.

TARLE 3.14 TEMA RESIDUAL EXPOSURE

ST, LOUIS FRC

3

-

STATION	DISTANCE, St	Sonal Film	DOSK, r SHEMICALS	RSTIMATED RESIDUAL, P	INITIAL, P
113.01	15,890	160	250	160 to 250	
113.02	14,300	250	250	250	
113.02	14,300 ²	400	-	400	
113.02	14,380 ^a	580		580	
113.02	14,380ª	820	***	820	
113.03	10,500	3,300	2,500	250	2,650
113.04	6,760	> 70k	3-352105	250	3.352205
113.05		DECT			
113.06		DEST	ROYED HO	T INSTRUMENTED	P -4
113.07	2,875	> 70K	6.521050	800	Yery great
113.08	5,940	> 70K	42,000 ^c	800	> 70K
113.09	10,830	1,950		800	1,150

TABLE 3.15 TEWA INITIAL-GAMMA EXPOSURE

· · · ·

⁶These films were located on the sutside of the steel-pipe stations. All other desinctors were located inside the stations.

^bExposures anticipated at this station were far above the intended range of this dosimeter, and the instrument probably saturated.

ST. LOUIS FRC

^cAs indicated in the text, this is probably in error. No explanation can be offered as to why this reading is lower than that of 113.04.

exposure was much greater than 650,000 r. There is no sound explanation for discrepancies that occur in the chemical data derived from 113.07 and 113.08, and thus the reliability of the data from 113.04 becomes questionable.

It is felt that the initial exposure data from 113.03 is reliable since the total exposure was well established and the residual estimate was valid. Data from Stations 113.03, 113,04 and 113.09 agree with results from previous events.

3.8 DISCUSSION

Table 3.16 summarises Hedwing initial gamma exposure data, and Table 3.17 gives the total yield, fission yield, and relative air density for each event. Figures 3.2, 3.3, and 3.4 are plots of the *T* Hedwing initial gamma exposure versus distance and the TM 23-200 curves for similar total yield. This method of computation neglects the effect of relative fission and fusion contributions to the total yield. Correction factors discussed in Section 2.3.1 have been applied to adjust the raw data to unshielded, betatron-calibrated exposure values. Cherokee data were adjusted to relative air density of 0.895. The initial gamma exposure from Cherokee, Bami, and Havajo at 3 miles was about 1 r. The accuracy of the initial gamma exposure data as corrected is within ± 30 perent.

Figures 3.5 through 3.8 show the total residual gamma exposures plotted on maps. These exposures are corrected for station shielding and spectral response of the desimeters (Section 2.3.2). In addition, all of the values from a given shot were adjusted to the same recovery time

TABLE 3.16 MEDWING INITIAL-GAMMA EXPOSUEE

EVENT	STATION	Uncornected Initial, r	COMPLETED CORRECTION FACTOR	CORRECTED INITIAL, r	DISTANCE, ft
Cherokee ^a	113.03		·	······	17,100
	113.04	DE	LETED		17,300
	113.05				17,970
Zami	210.30	15,850	1.0	15,850	7,000
	210.29	2,485	1.0	2,485	8,500
	A0.33	835	1.0	835	9,420
	210.34	315	1.0	31.5	10,320
	210.35	190	1.0	190	10,935
	210.56	54	1.0	54	11,510
	210.26	10	1.0	10	12,940
lathead	212.03				4,422
	213.02				5,110
	811.01 ³				5,500
	21.3.03				5,950
	213.01				6,605
	\$11.02 ^b				6,650
	212.05		DELETED		10,745
a kota	212.03				4,422
	211.01				5,500
	213.01				6,605
	211.02				6,650
			116	ST. LOUT	926
			6 C		IC ENERGY AC

TABLE 3.16 REDWING INITIAL-GAMMA EXPOSURE - continued -

event	STATION	uncorrected inifial, r	COMBINED CORRECTION FACTOR	CORRECTED INITIAL, F	DISTANCE, ft			
Dakota (contd)	2 12.04				7,720			
Jevajo	£12.0 3				7,922			
	213.02				8,580			
	211.01 ^b		8,960					
	211.02 ^b							
	212.04				10,680			
	211.03 ^b				11,880 🔨			
	212.05 ^b				13,180			
Teva	113.04	3.35x10 ⁵	1.21	4.052105	6,760			
	113.03	2,650	1.1	2,915	10,500			
	113.09	1,150	1.1	1,265	10,830			

^aCherokee exposure adjusted to 0.895 relative air density.

^bStation contained a rate device.

ST. LOUIS FRC

TABLE 3.17 YIELDS AND BELATIVE AIR DEMOTILES

event	TOTAL YIELD, Mt	FISSION YIELD	RELATIVE AIR DEBSITY	
Cherokee			0.847	
Suni	3.53		0.894	
Flathead			0 .8 96	
	OFLE	TED		
Dakota	Unin		0.893	
Hava.jo			0.895	
Teva.	5.01		0.893	er (

•

ST, LOUID RED

.

74

DELETED

Figure 3.3 Initial gamma exposure versus distance for Flathend, Dakota, and Navajo.

÷Ľ

DELETED

ATOMIC ENERGY ACT OF

70 Distance 10³feet

....

Figure 3.5 Zuni 76-hour residual exposure (roentgens) 🦟

72

]}

73

:

using recovery rates, and assuming a decay exponent of -].2. Individual stations, such as the one on Site Charlie, may show a reduced amount of exposure because it is near the lagoon. The accuracy of the residual gamma data presented in this section is within +50 percent.

The data from this project are presented to indicate the approxinate magnitude of the residual gamma radiation to be expected from different types of nuclear weapons. It is felt that the objectives of the project were met, with the exception of Shot Cherokee (for which insufficient data wede obtained to form definite conclusions).

In the case of Cherokee, the burst point was approximately 4 to 5 miles in the domawind direction away from the planned ground zero; this resulted in no downwind stations to document residual redistion from fallout. The ground zero for Shot Tewa was moved from its planned location off Site Dog to a location approximately between Sites Charlie and Dog. It was therefore necessary to improvise stations at available locations on the man-made islands and the reef between Charlie and Dog. Data points were obtained at distances of about 3,000, 7,000, and 10,000 feet, where the initial could be separated from the residual redistion.

The initial gamma instrument station locations were selected with an expectation of 50 percent loss per shot; however, the losses were only about 25 percent. The residual instrumentation was nearly 100 percent effective. The secondary and improvised instrumentation for separation of initial from residual gamma radiation were only about 40 percent effective throughout the operation.

ST. LOUIS MAC

CHAPTER 4

CONCLUSIONS

Examination of the data indicates the following conclusions: 1. For surface bursts with yields to 5 Mt, and for a 4300-foot high maintain airburst, initial gamma radiation is of little military Mgnificance to unprotected personnel as compared with thermal and blast damage.

2. The amount of residual rediation exposure is a function of the fission yield.

3. The curves of initial gamma exposure versus distance obtained from Project 2.1 data vary from corresponding TM 23-200 curves. At long ranges, Project 2.1 data are below the predicted data, whereas at shorter ranges, the field data crosses over and the reverse is true. This variation between predicted and field data increases with increasing yield.

ST. LOUIS FRC

75 C ENERGY ACT

F.E.F.E.P.E.NCES

. 1. Gapabilities of Atomic Weapons; TM 23-200, prepared by AFSWP; OPNAV INSTRUCTION 003400.1A, AFL 136-4, NAVMC 1104, Department of the Army, the Navy and the Air Force, revised edition, 1 June 1955 with changes of 1 April 1956; SDCRET-RD.

2. Dempsey, R. H., Larrick, R. G., and Baraff, G. A.; Gamma Radiation Dosimetry; Project 2.1, Operation Castle, WT-912, May 1954; U. S. Army Signal Engineering Laboratories, Fort Monmouth, New Jersey; SECRET-FD.

3. Graham, J. B., and others; Gamma Exposure Versus Distance; Project 2.1, Operation Teapot, WT-1115, May 1955; USASEL, Fort Monmouth, New Jersey; SECRET-FD.

4. Larrick, F. G., Johnson, O. E., and Marmiroli, R. G.; Initial Camma Exposure Versus Distance; Project 6.8a, Operation Upshot-Knothole, WT-756, April 1955; USASEL, Fort Mommouth, New Jersey; SDC'ET-PD.

5. Malik, J. S.; Gamma Radiation Versus Time; Projects 5.1 and 5.2, Operation Ivy, WT-634, November 1952; Los Alamos Scientific Laboratory, Los Alamos, New Mexico; SIC ET-ED.

6. Harris, P. S., Hurst, G. S., Rossi, H. H., Sigoloff, S. C., and Langham, W. H.; Physical Measurement of Neutron and Gamma Radiation Dope from High Neutron Yield Weapons and Correlation of Dose with Biological Effect; Project 39.7, Operation Teapot, ITE-1167, April 1955; SECRET-RD.

7. Gamma Radiation Measurements; Operation Jangle, WT-370, April 1952; SECRET-RD.

8. Schorr, M. C., and Gilfillan, E. S.; Predicted Scaling of Radiological Effects to Operational Weapons; Project 2.0, Operation Jangle, WT-391, June 1952; Technical Operations, Incorporated, Arlington, Massachusetts; SECRET-RD.

9. Super Effects Handbook; AFSWF 351; May 1952; SECTET-RD.

10. Borg, D. C., and Eisenhauer; Spectrum and Attenuation of Initial Gamma Radiation from Nuclear Weapons; January 1955; Weapons Effects Division; AFSWP 502B; SECRET-RD.

11. Malik, J. S.; Summary of Information on Gamma Radiation from Atomic Weapons; LA-1602, January 1954; Los Alamos Scientific Laboratory; SECPET-RD.

12. Bass, R. C., Smith, L. J., and Ungar, S. H.; Gamma Radiation Spectrum of Residual Contamination; Project 2.2a, Operation Upshot-Knothole, WT-718, May 1955; USASEL, Fort Monmouth, New Jersey; CONFID-ENTIAL-RD. ST. LOUICERC

13. Gibson, H. F., and others; Scientific Director's Feport, Annex 1.2 - Delayed Ganma-Ray Measurements, Part I - Ganma-Ray Spectrum Measurements; Operation Greenhouse, WT-107 (Fef.), 1951; SLCHUT-RD.

14. Ehrlich, M.; Photographic Dosimetry of X- and Gamma-Rays; National Bureau of Standards Handbook 57, 20 August 1954.

15. Ehrlich, M.; National Bureau of Standards Report 8A107 and 8A121, Radiation Sensitivity of Photographic Emulsions.

76

C ENERGY A

. 16. Johnson, J. M., and Poyet, G.; Evaluation of Military Radiac Equipment; Project 6.8, Operation Upshot-Knothole, WT-755, June 1954; USASEL and Bureau of Ships; CONFIDENTIAL.

17. Cohen, A. E., Jachter, M. H., and Murphy, H. M., Jr.; Evaluation of Military Radiac Equipment; Project 6.1.1a, Operation Teapot, WT-1137, May 1955; USASEL, Fort Monmouth, New Jersey; CONFIDENTIAL-RD.

18. Sigoloff, S. C., Borella, H. M., and Auxier, J. A.; Biological Effects from Massive Doses of Neutron-Gamma Radiation; Dosimetry Report; USAF Report No. 55-108; School of Aviation Medicine.

19. Sigoloff, S. C.; Fast Neutron Insensitive Gamma Fay Dosimeters; The AC and ATCE Systems; School of Aviation Medicine, USAF, In Press.

20. Taplin, G. V., and others; Comparison and Evaluation of Dosimetry Methods Applicable to Gamma Radiation; Project 29.1, Operation Upshot-Knothole, WT-802, September 1953; School of Medicine, Atomic Energy Project, University of California at Los Angeles; CONFIDENTIAL-RD.

21. Taplin, G. V., and others; Measurement of Initial and Residual Radiations by Chemical Methods; Project 39.6, Operation Teapot, ITF-1171, May 1955; Atomic Energy Project, School of Medicine, University of California at Los Angeles; SECTET-RD.

22. Cryden, Joseph, and Gibson, F. P.; Evaluation of Dosimetric Materials; Project 6.1b, Operation Buster, WT-317, March 1952; USASEL and Bursau of Ships; SECRET-PD.

23. Sisk, F. J., and Nielson, D. E.; Evaluation of Military Radiac Equipment; Project 6.1, Operation Snapper, WT-532, January 1953; U. S.-Navy, Bureau of Ships and U. S. Army Signal Engineering Laboratories; CONFIDENTIAL.

24. Radiac Training Sets AN/PDR-T1...AN/PDR-39; TM 11-5514, Department of the Army technical manual, dated May 1951, with addendum, dated October 1952. Pages 2, 18, 63, and 64.

25. Wyckoff, H. O., and others;Scientific Director's Report, Annex 1.2, Delayed Gamma-Ray Measurements, Part III - Film Dosimeter Measurements; Operation Greenhouse, WT-81, 1951; Radiation Physics Laboratory, National Bureau of Standards, Washington, D. C.; SECTET-RD.

77

ST. LOUID FILC

ATOMIC LINES IN S1954