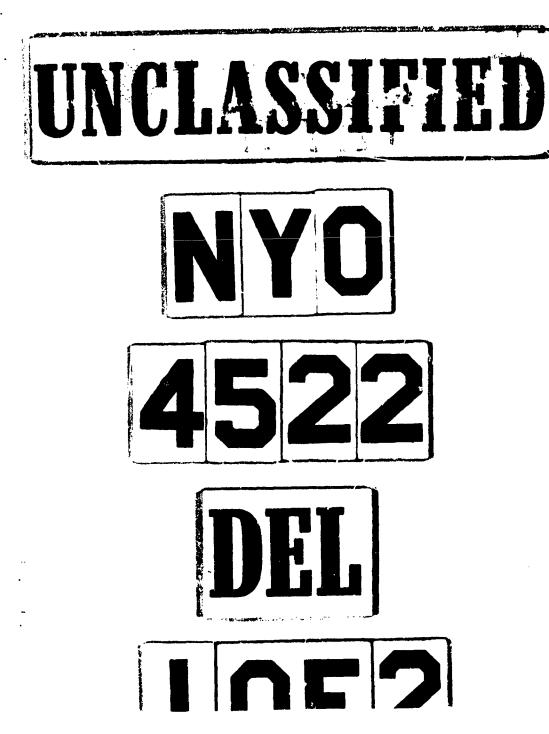
Record Number: <u>374</u>
File Name (TITLE): <u>Cadio actuil De bis fum</u>
$\frac{\partial \rho \overline{\mathcal{L}}\mathcal{U}}{\mathcal{D}}$ Document Number (ID): $\mathcal{N}\mathcal{U}\mathcal{U}\mathcal{U}\mathcal{U}\mathcal{U}\mathcal{U}\mathcal{U}\mathcal{U}\mathcal{U}U$
DATE: $\frac{1953}{2000}$ Previous Location (FROM): 2002
AUTHOR: HASL, NY Ops Officio
Addditional Information:

CyMIbox: _____

-

NYO-4522-Del


542

MOMES INTERNATIONAL

Facsimile Report

Reproduced by UNITED STATES ATOMIC ENERGY COMMISSION Division of Technical Information P.O. Box 62 Oak Ridge, Tennessee 37830

LEGAL NOTICE

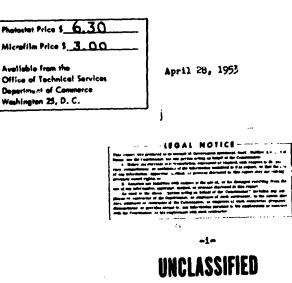
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employ1

UNCLASSIFIED


NYO-1522 (DEL.) Bifects of Atomic Weapons

MASTER

UNITED STATES ATOMIC EXERGY COMMISSION New York Operations Office

RADIOACTIVE DEBRIS FROM OPERATION IVY

Prepared by the Staff, Health and Safety Division Marril Eisenbud, Director

FOREWORD

The worldwide falicit monitoring program for Operation IVY ass succeived by the New York Operations Office at the request of the Division of Biology and Medicine. When the plan was originally devised, in the Summer of 1952, only the area beyond 500 miles from Eniwetck was assigned to NYOO. It was contemplated that Joint Task Force 132 would monitor the islands within this distance. In early September, the NYOO assignment was extended to include all of the islands of the Trust Territory except Eniwetck itself.

The monitoring program employed a worldwide network of 111 stations located on all continents but concentrated in the northern hemisphere, and a system for aerial monitoring of the western Pacific. The latter feature of the program was devised to meet the requirement for quick and reliable radiation measurements of the islands. It was necessary to design special monitoring instruments of a type which were not unywhere available in September, 1952, when the mission was assigned to MYOO.

The program has required the cooperation of a diverse list of organisations which, in addition to the Division of Biology and Medicine and Joint Task Force 132, includes the Weather Bureau, the Air Force, Mavy and Coast Guard, the Canadian Weather Service and the Atomic Bomb Casualty Commission. Most of these organisations have provided and manned the sampling stations at which our data were obtained. The Mary provided aircraft for aerial monitoring and arranged for quarters and other courtesies for Health and Safety Division personnel in the Facilie.

The Special Projects Section, U. A. Weather Bureau, furnished cloud trajectory information and forwasts as a part of our joint assistance to the photographic industry. They are analyzing the monitoring data and their findings will be reported separately.

-111-

CONTENTS

. ¢'

€,

このないないないのないないないです

10.00

-

ALL DESCRIPTION

ť

PORBNORD	111
LIST OF ILLUSTRATIONS	•
LIST OF TABLES.	vi
ADST RACT	vii
CRAFTER 1 - FIAN AND ORGANIZATION	1
1.1 The Worldwide Sampling Network	1
1.1.1 Selection of Stations	1
1.1.2 Sampling	1
1.1.5 Analysis of Samples	2
1.2 derial Monitering	2
1.2.3 Flights	2
1.2.2 Survey Instruments	2
CHAPTER 2 - FINDINGS	6
2.1 Aerial Menitoring	6
2.2 Worldwide Network	12
2.2.1 Fallout during the First Fifteen Days after MDE	12
2.2.2 Fallout during the Second	
Fifteen Days	12
2.2.3 Fallout after the First Thirty Days.	26
2.2. Sampling Precision	25
2.2.5 Padicastive Dust Concentration	
of the Air at Ground Level	26
2.2.6 Dosay Rate	27
2.2.7 Cumulative Fallout in Northeastern	-1
Zeze Vulletive Fallout in Sortheastern United States from This and	
	10
Provious Tests	30
METERENCES	30

ILLUSTRATIONS

CHAPTER 1 - PLAN AND ORGANISATION

	1.1 1.2	Scintilog and Recorder	3
		Scintilog Data	5
CPLPTER 2	PIND:	CNG-S	
	2.1	Results of Aerial Survey in Western	
	2*5	Pacific Region Following MIKE Shot	8
	2.3	Pacific Region Following E183 Shot	10
	2.4	Fallout in United States through M & 15 Worldwide Fallout through M & 15	13
	2.5	Fallout in United States, N # 15 to N # 30	<u>1</u> .
	2.6	Worldwide Fallout through H + 15 to H + 30	15 16
	2.7	Fallout in United States, M + 30 to M + 61	
	2.8	Worldwide Fallout, N + 30 to N + 61	17 18
	2.9	Fallout in United St. tes through M & 61	19
	2.10	Worldwide Fallout through M + 61	20
	2.11	Arrival of Fallout, Days after M (World Man)	21
	5.15	Arrival of Fallout, Days after M (U.S. Map)	22
	2.13	Decay of Activity in Settled Dust Samples Collected at Iwo Jims and Guam	
			28

2.14 Cumulative Pallout from Weapons Tests..... 29

-1--

T

TABLES

CHAPTER 1 - PLAN AND ORGANIZATION

1.1 Indiation 3 Fost above Ground from Readings at 3 Albivades

CHAPTER 2 - FINDINGS

- 2.1 Radiation Intensity and Sattled

- EINO 11 2-4 Oumulative Pallout, United States,

ABSTRACT

During the Fa 1, 1952 atomic weapons tests (Operation IVY), data for evaluating the effects of radioactive debris on health and sensitive industry were obtained by radiolog('nal counting of daily settled dust samples from a worldwin cotwork of 107 stations, and by radiation measurements with specially designed instruments, in flights over the north Pacific islands.

The maximum aerial reading, equivalent to 1.5 mr/hr three feet above ground and to a numulative dose of 500 milli-) reentgens, was obtained over Agrihan in the Marianas, on the third day after MIKE shot.

The highest 24 hour fallout was 3,600,000 d/m/sq ft at Iwo Jima on M 4 4.

Cumulative fallout, extrapolated to January 1, 1953, is shown on maps for the first and second 15 May periods after MIRE and for the next 31 days. Dispersion of the radioactive oloud throughout the world atmosphere appears to have been essentially completed during the second two weeks.

Cumulative fallout to January 1, 1953, exceeded 10,000 d/m/sq ft at five locations and was in the hundreds or low thousands at nearly every remaining station.

Concentrations of radioactive dust, measured in air samples from 18 stations, were insignificant compared with similar data from previous surveys.

Decay rates were approximately proportional to the 1.4 power of the age of the activity, instead of the 1.2 power found during earlier series. f_{ij}

-vi-

1

CHAPTER 1

PLAN AND ODGANISATION

1.1 THE WORLIWIDE SAMPLING NETWORK

٤.

1.1.1 Selection of Stations

Sampling stations were selected according to the principles "allowed in previous surveys (1,2), modified by the leastion of the weapons tests and the pessibility that significant failout might occur in any part of the world. Less overage was provided for the United States than during resent weapons test sories but many more aff-continent stations were set up. The domestic stations are listed in Table 2.4, Chapter 2, and those ortside of the continental United States are given in Table 2.5.

1.1.2 Sampling

At each station, 24 hour samples of settled dust were collected by exposing one foot squares of gummed paper in the manner described previously (1). The standard sampling period began at 1850 WCT. Collections were in duplicate except that in some cities two stations, some distance apart, were maintained and a single daily sample was collected at each.

Filtered samples (2) of airborne dust v. s collected at Honolulu, Gann, Ponape, Truk, Midnuy, and a fee large eities in the United States, where local interest in the results was anticipated. This type of sample was collected over the standard 24 hour period and was supplemented by sampling for shorter periods at special stations set up at Kwajalein, Guan, Midnuy, and Barber's Peint, Esselulu, during the time when the cloud was known to be in the visinity of the stations. Automatic units for sampling «reborne dust were set up for MINE shot at Kusais, Ujelang, Bikini, Hajure and Kwajalein. The equipment was designed to trigger at 0.5 m/hr but this level was not reached. The units were not reset for MINE shot.

At three of the four special stations, dust was also sampled with the easeade impactor (1,2), but the activities prevel to be too low to permit accurate analysis of the particle size distributions

1.1.3 Analysis of Samples

All samples were mailed to the Bealth and Safety Division 'aboratory 'or analysis, where they were ashed and counted by automatic beta counters (1).

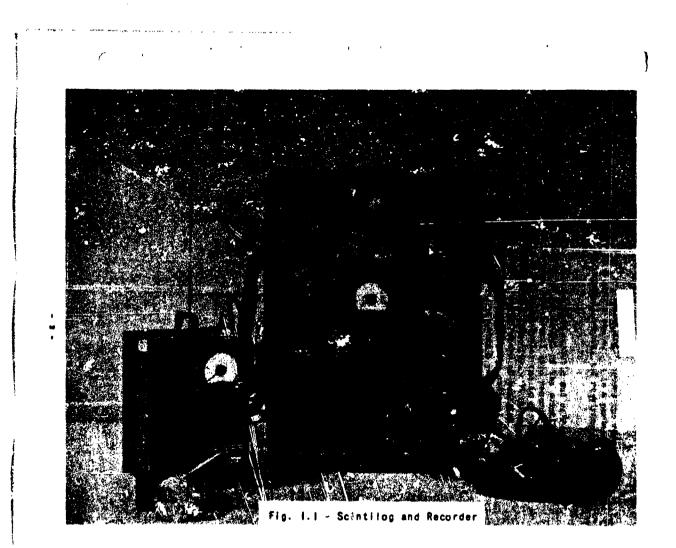
A new leature was the utilisation of IBM cards in place of the keysort system used in the earlier test series.

1.2 ABRIAL MONITORING

1.2.1 Tiigate

From bases at Kwajaloin, Guam, and Barber's Point, Honolulu, frights after MIKE were made over the Hawaiian Islands, the Marahalls, the Carolines, the Marianas, the Japanese Islands of Honshu, Shikoku and Eyushu, and the islands extending southwest from Japan to the archipelage of Mansei Shoto. This was the coverage provided for in the original survey design (3) plut additional flights to the north and northwest of the Marianas. The latter flights were undertaken on the basis of measurements made in the northern Marianas and the need to delineste the northern edge of the fallout some. The reconnaissance in this area on M plus 6 and M plus 7 accomplianed this purpose.

Following KING, a less extensive survey, limited to the Marshalls, the eastern Carolines and the Marianas was made.


Gnarts of the above flights are deferred to Chapter 2, se that the monitoring results, which form part of the subject matter of that chapter, may be presented on the same maps (Figures 2.1 and 2.2).

1.2.2 Survey Instruments

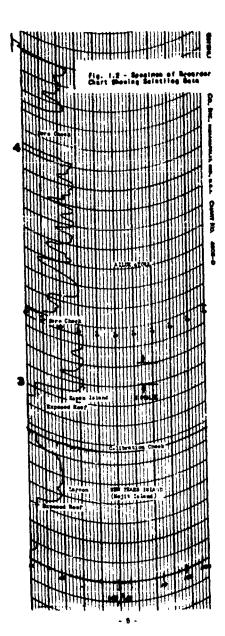
"n." aerial survey instrument illustrated in Figure 1.1, consisting of a gamma detector and a recording unit, was designed and fabricated within the Health and Safety Division.

-1-

1

Ľ

The glumma detector, "Scintilog," covers the range of 0.01 to 1000 mr/hr in a single scale. It is a periable instrument, weighing 17 pounds 14 owness, and requiring no external source of power.


ł

The recording unit is also perbable and self-powered. An andic signal, modulated by the output of the solutileg, is resorded on one channel of a two channel tape recorder. The modulation is between 600 and 3,000 sycles and is propertional to the legarithm of the radiation intensity. On the second channel, the operator makes a vecal record of position, altitude, etc. By means of a playbook attachment, the audio signal can be converted to a veltage which astuates a pen type recorder, converting the radiation intensities to a graphic record (Pigure ?.i:).

A preliminary survey at the Nevada Proving Grounds vielded calibration factors of 4 and 10 for converting readings at 200' and 500'sltitudes respectively to intensity 3 feet above the ground. These factors were shoaked in flights over the islands of Engebi, Runit and Ewsjalein. Ground level radiation intensities, obtained by direct measurement and by computation from avial readings, are listed in Table 1.1.

TABLE 1.1

Radiation 3 Foot above Ground (mr/hr) From Readings at 3 Altitudes						
ltitude	Engebi	Renit	Implein			
31	0.8	5•1	0 <u>•</u> 25			
200	0.6	2•7	هينه ٥			
500 ¹	0.6	3.3				
•						

-4-

ŧ

CHAPTER 2

FINDINGS

2,1 ABRIAL MONITORING

The flights made according to the plan described in Chapter 1 are mapped to Figures 2.1 and 2.2. The radiation intensities are shown on the maps and also, to permit identification of the islands, in Tables 2.2 and 2.3. At places where no data are given the rates are less than 0.05 mr/hr. The highest value was 1.5 mr/hr on N plus 3 at Agrihan in the Mariunas. On the basis of the decay law usually assumed, with an exponent of minus 1.2, the cumulative dose to the population of this island was estimated at 500 milliroentgens, neglecting the possibility that rain might wash away the active dust or concentrate it onto limited areas. The amount washed off cannot be guessed but the process must certainly occur and the estimate of the dose to the general population is therefore conservative. Some such process evidently reduced the interform on servative amount on H plus 5.

Settled dust sampling stations had been established at some of the islands included in the asrial survey. There were two such stations on Guam, an island on which relatively high radiation intensities were found during the week after MIKE shot. The aerial monitoring results and the duplicate settled dust data for this period at Guam are listed in Table 2.1.

TABLE 2.1

RADIATION INTERSITY AND SETTLED ACTIVITY AT GUAN

	Gamma			st Activity (d/m/sq.	
Deg	(= /br)	Anderse	on Arg	Iaval	Station
N +1		0	<u>h</u>	0	0
N + 2 N + 3	1.0	5800 310000	1400 320000	لبلب00 120000 (6 hrs)	9200 83000 (6 hrs)
. + 5	1.0			** (10 hrs) 100000 (12 hrs)	** (10 hrs) 69000 (12 hrs)
n +4	0.7 0.5	280000	27000		
H + 5 H + 6	0.5	11,000 6000	11000		
H +7	0.1	1600	0	[
				1	

"Sampling period was 24 hours, except where noted. Data are extrapolated to the day of sampling.

evelo sampling during this 10 hour period.

The similarity of the trends of radiation intensity and settled dust activity is obvious from the table. Gamma intensity should be roughly proportioned to cumulative settled activity, on the premise that the Sointilog readings were due entirely to radiation from the ground re-face, but we have no adequate basis for predicting radiation intensities from fallous data.

. .

. . .

٠

141-1-

RESULTS OF AERIAL SURVEY IN WESTERN PACIFIC REGION FOLLOWING MIKE SHOT -4 . than 0.05 -• 4.1.4

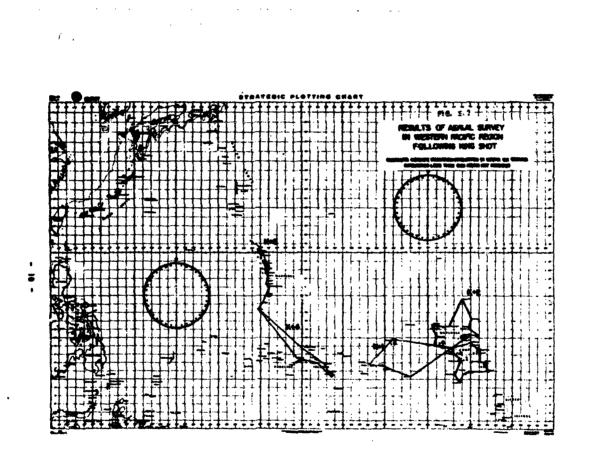
١

•

1-

STRATEGIC PLOTTING CHART

4


,

.

See Expanded Table AT END OF Inte OF ABRIAL SURVEY PO'LOWERS WIRE SHOT (mr/hr) DOCUMENT

REBULTS OF ABRIAL SURVEY FOLLOWING WIKE SHOT (mr/hr)

Days artic MIRB:	2			2			3	5		<u>lı</u>	· ····	6
Likiep	0.5	Namu		о	Parall:	nde			Ulithi	0	Iwo Jima	0.5
Jemo	0.5	Ailing-			Pajar		1.0	0	Yap	õ	Hahashima	0.5
Ailuk	0.5	lapal		0	V 4. 8		0.5	0.5	Ngulu	ò	Chichishima	0.2
Mejit	0.2	Mamorik		Ô.	Asucoid	m	1.0	0	Babel-	•	fori Shima	0
Taka	0.3	Ebon		ن ن	Agrihar		1.5	1.0	thusp	0.05	Aoga Shima	õ
Utirik	0.2	K111		ò	Pagan		1.0	1.0	Loror	0	Hachigo Shima	ŏ
Bikar	0.2	desett		ō	Alamage	uri.	0.5	0.5	feleliu	ō	Miyake Shima	ŏ
Taongi	0	MILL		ō	Guguan		0.5	0.5	Quan	0.7	0 Shima	ŏ
Rongerik	0.05	Arno		ō	Sarigan	ı	0.5	ō ĺ			• ••••	v
Rongelap	0	Majuro		ō	Anataha		0	ō				
Bikini	0.05	Muloela	C	-	Farallo		-	-				
Woth	0.1	4 Aur		0.5	Medin	4114	0.5	0				
Ujao	0	Brikub		C.2			0.5	õ				
LAD	0.1	Wotje		0.5	Maian		0.5	ō				
Readal oin	0.3				Rota		0	0.5				
•					Guam		1.0	0.5				
Days after	r							,				
MIKB:	1		1,2,5	ž	<u></u>	5		5,6		7		8
Kusaie	0	Mamonuito	0	G	afernut	0	Oahu	0	Oahu	0	Honsha	0
Pingelap	0	Truk	0	F	aranlep	0	Kaua	ιo	Lanai	Ó	Shikoku	ŏ
Nokil	0	Losap	0	W	. Fam	Э	Milh	NA O	Kanool	awe0	Lyushu	ō
Ponaj-e	0	Mamoluk	Û	W	olesi	0	Neck	or 0	Hawaii	0	Tanega Shima	ō
Ujelang	0	Lamor	0	I	fø 11k	0	Layse	UI O	Maui	ō	Arawi O Shima	ŭ
-		Satawan	0		auripik	0	Midwa	y O	Holoka	ιŏ	Okinawa	ŏ
		Kuop	0	E	lato	0		•			Guam	ŏ.1
		Pulap	0	L	osctrek	0						
		-		8	atawal	0						

.

٠

.

· · · · · · ·

· ..

.

· ·

i

,

1

SEE EXPANDED TRABLE AT END OF DOCUMENT

Te	b1e	2.3	

RESULTS OF AERIAL SURVEY FOLLOWING KING

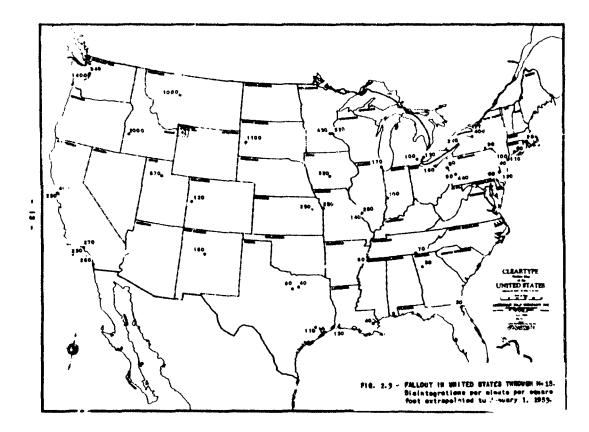
	Days after				(mr/hr	•)				
	KING:	2		1		5		1		_4
	Likiep	Ú.,	M MINU	0.1	Farallonie		Kusala	J	Namonatte	
	Jean	с	Alling-		Pajaros	0	Pingelap	0	Truc	:
	Ailuk	э	lapilop	0.1	Kaug	0.1	Nokil	0	Losep	Э
÷	Mojit	0	Namorik	0	Asunaion	0.1	Ponars.	0	Namol ak	.'
۲,	Taka	0	Ebon	0	Agrihan	0.5	Ujelang	0.3	Lukmor	Э
	Utirik	0	K111	0	Pagan	0.1	• •		Satawan	ა
	Bikar	0	Jaluit	0	Alamagan	0.1			Kuop	3
	Taongi	U	Wili	0	Guguan	0			Pulip	0
	Rongerix	0	Arno	0.1	Sarigan	0			•	
	Rongelap	0	Majuro	0	Anatahan	0				
	Bikini	0	Neloelap		Farallonde					
	Wothe	0	& Aur	0.1	Medinilla	0				
	Ujao	0	Brimb	0	Saipan	0				
	Lao	0.4	Wotje	0	Tinian	0				
	Kwajaloin	0	•		Rota	0				
	-				Guam	0				

t.,)

2.2 WORLDWIDE NETWORK

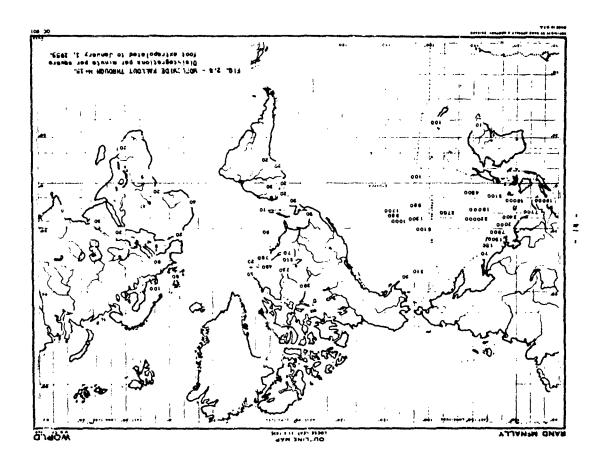
As a first step in summarising the activity data, the age was standardized by extrapolating to January lat, 1053. Since the standardized activities are additive, the results for a series of days may be totaled and this was done for each station. The maps, Figures 2.3 to 2.10 show the activity on January 1st, by station, due to fallout ensuring during the 51 days from MIRE shot to the end of the year and during each of three periods into which the 61 days were divided. The density of the network in the United States required separate maps for domestic and foreign data.

To facilitate identification of the stationa the data are also listed in Tables 2.4 and 2.5.


The spread of fallout around the globe was followe: by observing the time of the first appearance at each station " a tivity clearly greater than normal. The dates, mapped in Figure 2.11, show how the debris spread around the world. Fig. 2.12 follows the movement of radioactive debris within the United States.

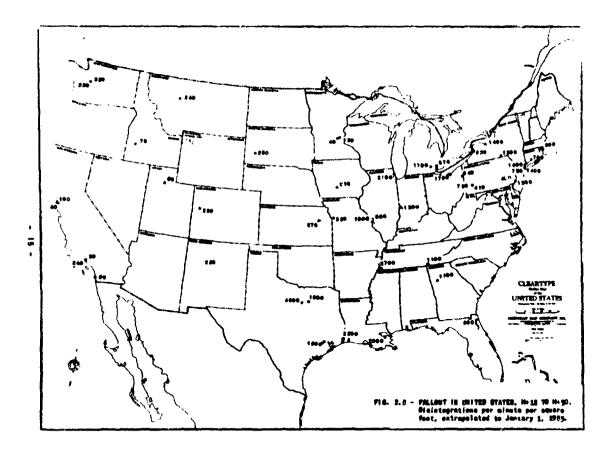
2.2.1 Fallout during the First Fifteen Days after MINE

The average fallout in the United States during this period was 290 d/m/sq ft (extrapolated to January 1st) and the worldwide average excluding the United States was 8100 d/m/sq ft. Most of the activity contributing to the latter figure fell at Iwo Jimm on the third, fourth and fifth days after MUGE. The fallout on this island was found to be 83,000 d/m/sq ft on the 3rd day, 165,000 on the 4th and 57,000 on the 5th. The figure of 165,000 d/m/sq ft on January 1st, due to fallout on the 4th day after MIKE, corresponds to 3,600,000 d/m/sq ft extrapolated to the day the fallout occurred.

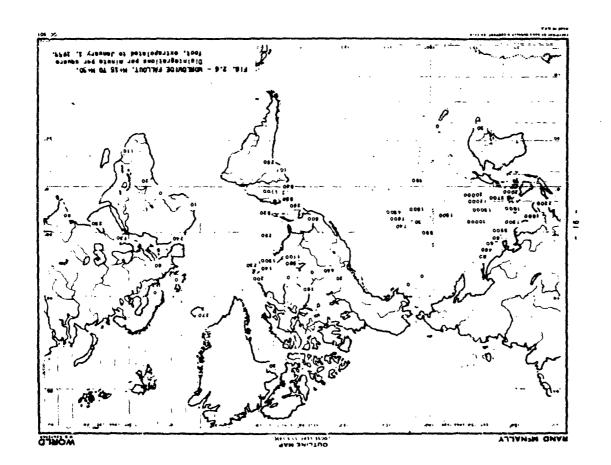

2.2.2 Fallout Curing the Second Fifteen Days

Maximum fallout in the United States occurred during this period. The average (extrapolated to January 1st) was 910 d/m/sq ft, while stations outside the United States averaged 1600. The drop in the worldwide average is due almost entirely to decreased fallout at Iwo Jima. If this island had not been included, the average for the first fifteen days would have been only 2300 d/m/sq ft instead of 8100e

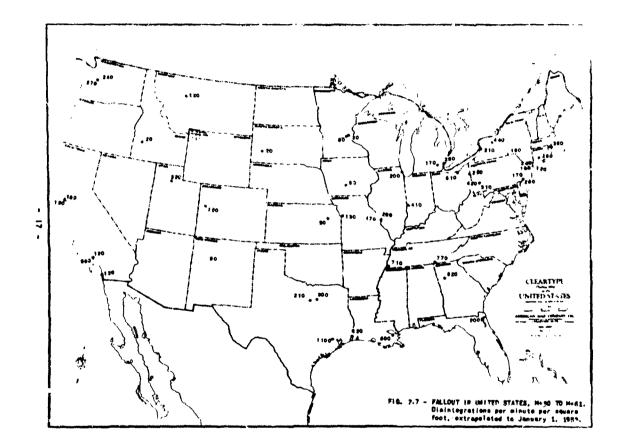
ι



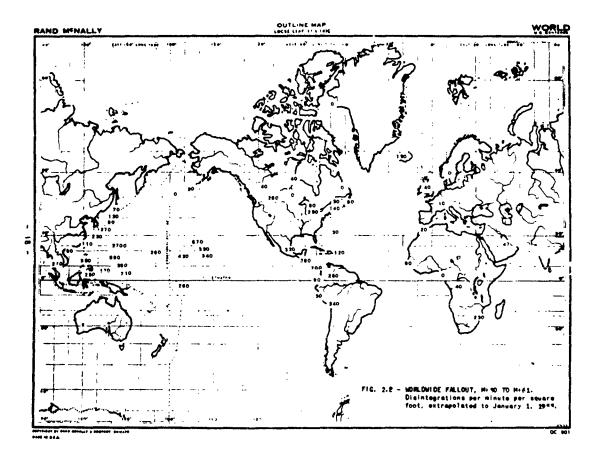
...


- ·

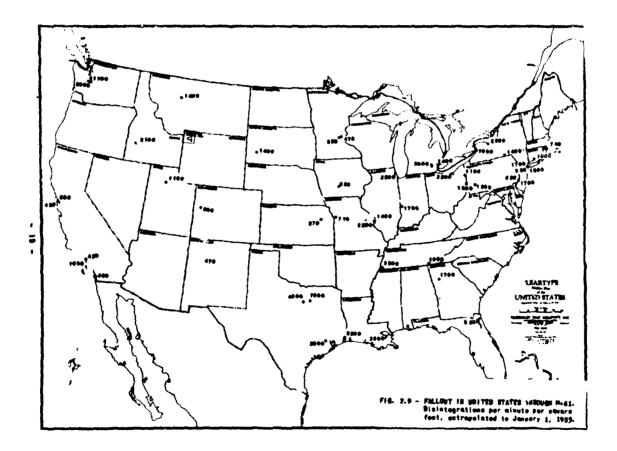
.



.

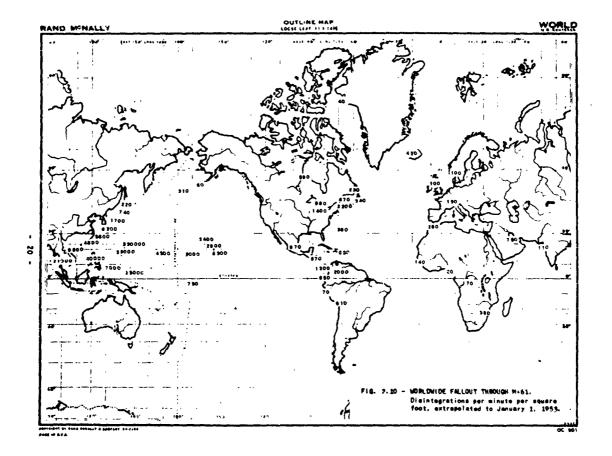

~

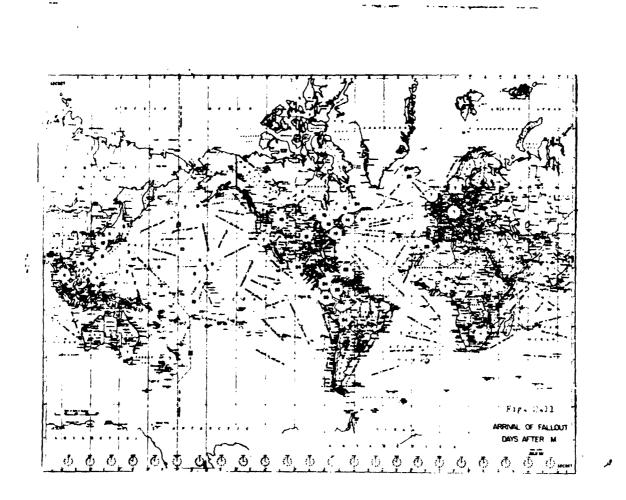
.

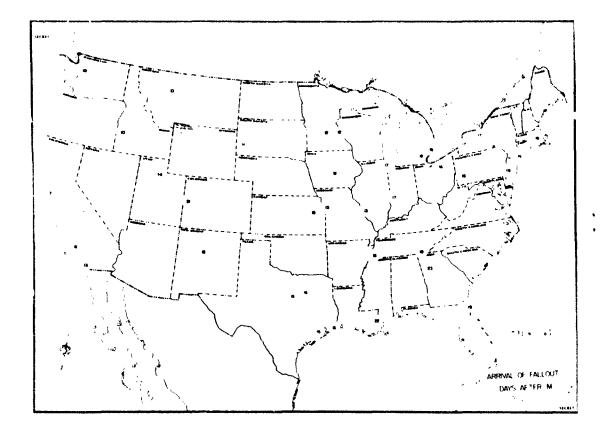

.

• •

,


.




.....

.....

. . .

,

TABLE	

CIMITATIVE FALLOUT, U.S.- EXTRAPOLATED TO JAN. 1, 1953, (d/m/sq.ft.)

From:	N	M + 15	4 + 30	M
To:	<u>M + 15</u>	<u>M + 30</u>	н + 60	<u>H + 60</u>
leveland, Ohio	160	1700	610	2500
Toungstown, Ohio	50	840	250	1100
Pitteburgh, Pa.+	440	410	310	1200
Pittaburgh, Pa.++	90	720	420	1200
Philadelphia, Pa.+	120	1300	280	1700
Philadelphia, Pa.##	60	400	170	630
lew York, N.T.++	100	1400	240	1700
New York, X.Y.*	40	750	160	950
New York, ABC	110	1400	120	1600
Providence, R.I.	90	390	260	740
Binghamton, N.Y.	90	1200	160	1400
Rochester, M.Y.	400	1400	0 بلبل	2200
Buffalo, N.Y.	210	630	210	1000
New Haven, Comm.	50	700	260	1000
Dallas, Texas	40	1600	300	1900
Fort Worth, Texas	80	4600	210	1,900
Port Arthur, Texas	130	2300	820	3200
Houston, Texas	110	1600	1100	2800
New Orleans, La.	40	2000	600	2600
Hemphis, Tenn.	80	2700	710	3500
Chattanooge, Tenn.	70	1100	770	1900
Jacksonville, Fla.	30	600	200	830
Atlanta, Ga.	50	1100	520	1700
Albuquerque, W.M.	160	220	90	470
Kansas City, Mo.	250	330	130	710
Topeka, Kansas	250	270	50	570
Minneapolis, Minn.	1,30	40	80	550
St. Paul, Minn.	320	130	20	470
Chicago, Ill.	170	2100	200	2500
Detroit, Michigan	130	970	280	1400
Ypsilanti, Michigan	100	1700	170	2000
Des Moines, Iowa	320	210	90	620
	1100	260	20	1700
Rapid City, S.U.	120	230	150	500
Grand Junction, Colo.	100	1200	410	300 1700
Terre Haute, Ind.	260	880	290	1100
St. Louis, Mo.*				2200
St. Louis, Mo.**	140 51-0	1900	170	
Seettle, Wash.*	540	320	240	1100
Seattle, Wash.##	1400	330	270	2000
San Francisco, Calif.#	100	100	180	680
San Francisco, Calif. ##	250	10	130	420
Los Angeles, Calif.*	270	30	120	420
Los Angeles, Calif.**	230	240	560	1000
San Diego, Calif.	260	80	120	460
Bo ise, Idaho	2000	70	20	2100
Salt Luxe City, Utah	670	60	320	1100
Great Falls, Mont.	1000	240	130	1,00

TABLE .5

CUMULATIVE FALLOUT WORLIWIDE EXCEPT U.S., (d/m/og.ft. on January 1, 1953)

From:	X	H + 15	M + 30	M
To:	<u>M+15</u>	<u>M + 30</u>	M + 61	<u>M+6</u>
North Bay, Ont.	310	590	80	980
Monsoonee, Unt.	230	0		
Moncton, N.B.	790	1300	Linu	2200
Deep River, Ont.	70	1100	250	1400
Seven Islands, Que.	480	140	50	670
Winnepeg, Man.		0	່ວ	
Churchill, Man.	190	160	40	590
Regina, Saskatchewan	~	LLC	2.30	
Edmonton, Alberta	-	20	. U	
Shemya, Álaska	310	0	Ū	310
Adak, Alaska	30	0	30	60
Canal Zone	20	550	700	1300
Stephenville, Newfoundland	20	230	90	340
Goose Bay, Lebrador	30	200	Q	230
La Paz, Bolivia	20	250	340	610
Quito, Bouador	20	560	90	650
Mexico City, Mex.	50	600	320	970
Bogota, Colombia	30	1700	260	2000
Lima, Peru	30	10	30	70
San Jose, Costa Rica	30	260	280	570
San Juan, P.R.	10	520	120	650
Keflavik, Iceland	20	270	130	420
Thule, Greenland	7	30	U	10
Dhahran, Saudi Arabia	30	250	470	750
Sidi Slimane, French Morocco	20	240	20	280
Bernuda	60	290	30	380
Prestwick, Scotland	60	0	40	100
Rhein Main, Germany	30	60	10	150
Praetoria, South Africa	20	110	230	360
Beirut, Lebanon	20	130		
Oslo, Norway	100	0	0	100
Dakar, Fr. West Africa	40	10	90	140
Leopoldville, Belgian Congo	8	20	Lo	70
Lagos, Ligeria	20	Ū	0	20
Tokyo, Japan	150	460	130	740
Misawa, A.B., Japan	70	80	70	220
Kadena, Okinawa	2000	3600	230	5800
Hiroshima, Japan	1500	80	90	1700
Magasaki, Japan	7900	80	270	8200
Bangkok, Siam	19000	2200	270	21000

-

TABLE 2.5 (Co	ontinued)
---------------	-----------

.

1

Freat				
To:	-	M + 15	N + 30	X
	M + 15	₩ + 30	M + 61	■ 🖬 🛉 61
Bompay, India	٥	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Melbourne, Australia	10	90	20	110
Wellington, New Isaland	100	30		~~~
Hongkong	7700	0		
Tai Pei, Formosa	3400	1800	80	9600
Iwo Jima		1300	110	4500
Clark A.F.B., P.I.	320000	10000	2700	330000
Juan	38000	1900	350	10000
Johnston Island	19000	13000	890	33000
French Frigate Shoals	990	1600	430	3000
ddway	1300	300	-	
ake Island	6100	890		
	2700	1500	260	4500
anton Island	100	390	260	750
onape		15000	390	
ruk Island	4500	20000	710	35000
ap	3100	3700	170	25000
oren		2000		7000
ines	1000	740	250	
lonolulu	960	1600	670	5700
110	1700		330	2900
	#/00	1300	340	6300

For the purpose of extrapolation the activity of all samples collected during the survey was arbitrarily attributed to NIEE. Data based on samples collected after the 15th day therefore contain an element of uncertainty because of the possibility that a significant portion of the activity was due to NING.

2.2.5 Fallout after the First Thirty Days

Figures 2.7 v.d 2.6 show the fallout from M 4.50 to M 4.61. In the Unit-u States the average was 260 d/m/sq ft and in the rest of the world the average was 210. The close agreement appears to be consistent with the idea that the active particles had been dispersed throughout the world atmosphere. The impression of dispersion is reinforced by the small range of total fallout, from M to M 4.61, over the United States (Figure 2.9), and by the fact that measurable fallout occurred, sconer or later, at every domestic station and nearly every foreign station (Figure 2.10).

2.2.4 Sampling Precision

The error in estimating fallout at a collection station from an individual sample, as measured by the coefficient of variation (ratio of standard deviation to mean), computed from the first 250 pairs of settled dust samples, is approximately 30%. Studies of data from an earlier survey (L) indicated that the finding may be applied to a large region surrounding the station without serious loss of precision. The figure of 30% includes no allowance for the efficiency of the collection method or for other sources of systematic error.

Although the totals shown on the maps are more procise than the data of individual samples, they is be influenced greatly by exceptional results, such as the maximum usily fallout at Iwo Jima, discussed in Section 2.2.2, above.

2.2.5 Radioactive Dust Concentration of the Air at Ground Level

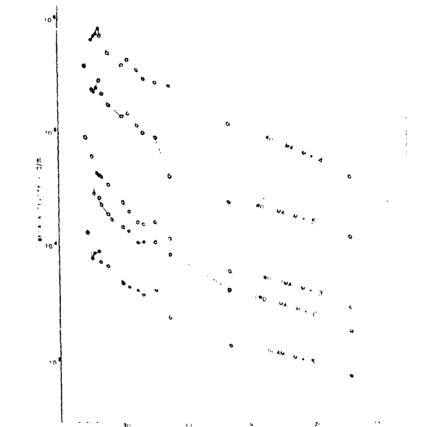
The concentration of radioactive dust in the atmosphere, as measured by counts of filtered samples, was negligible compared to the results of surveys made during continental tests. The maximum for each station is given in Table $2_{n}c_{n}$.

-25-

Station	Days after MIKE	Sampling Period (Min.)	Activity
Contraction of the local division of the loc			
Honolulu			
Airport	23	1440	6
Special	6	120	14
Guan			
Air Base	5	٥بلبلا	8
Special	3	480	100
Midway	0.7	120	50
Kwajalein	3	180	700
Truk	5	175	60
Ponape	3 5 19	وبليلد	17
Rochester, N.Y.	13	1440	2
New fork	-		
Airport	-		0
City	24	ەبلىلد	
Chicago	15	٥ينيلد	3
Detroit	16	٥بليلد	ĩ
Tpeilanti	15	1440	1 3 1 2
San Francisco			
Airport	-		0
City	11	ويليلا	1
Los Angeles			-
Airport	12	1440	1
City	12	1440	ī

TABLE 2.6

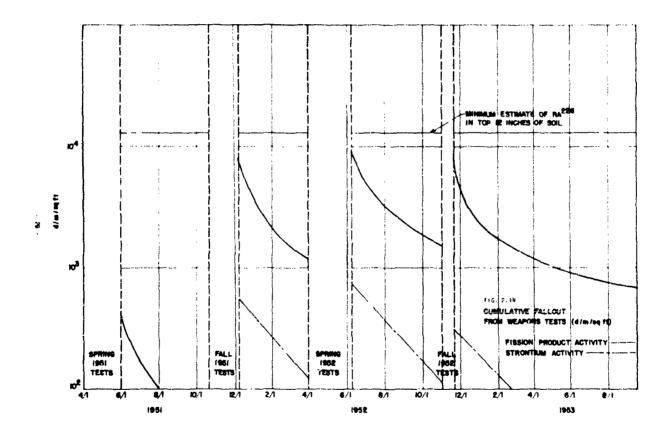
MAXIMUM RADIOACTIVE DUST CONCENTRATIONS EXTRAFOLATED TO SAMPLING DATE (d/m/M3)


2.2.6 Decay Rate

.

Decay rate data for 23 gummed paper samples yielded an average value for the exponent of the time of -1.37. The values of the decay slope calculated from counts of two filtered dust samples were -1.19 and -0.95.

In Figure 2.13 the activities of typical samples are plotted against the age of the material (duys after MIKE). We have not discovered the cause of the regular fluctuations. We are unable to rule out the possibility that it is due to some unknown bias in the counting procedure.


The value of the decay rate exponent was the last piece of information obtained. It was not used for extrapolation which was based, instead, on the conventional exponent of -1.2.

- 28 -

1

.

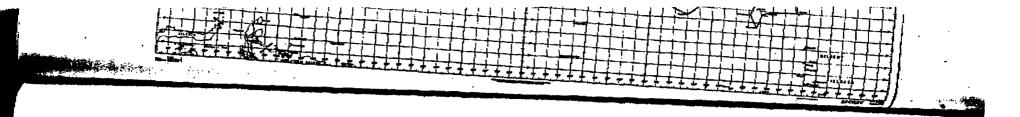
,

-

, 🗯

. .

2.2.7 Sumulative Fallout in Northeastern United States from This and Previous Tests


Figure 2.14 a is cumulative graph of settled activity, plotted against time, showing the sharp rises after each weapons test series and the subsequent falling off due to decay. It is intended to show the accumulated radioactivity on the earth's surface in the northeastern United States, neglecting redistribution due to rain. The peaks would be higher if it were practical to plot the portions of the curve corresponding to the weapons test periods.

In interpreting the curve it is useful to keep in mind that the biological or industrial effect of the fallout depends on a cumulative dose which is gimater for old fission products than for equal activity in the form of young, relatively unstable, fission products. Fluctuations in cumulative dose would have less amplitude than the fluctuations in activity shown in Figure 2.14.

References

- NYO-4505 "Radioactive Debris from Operations Tumbler and (SECRET) Snapper," - Part I, Health and Safety Division, NYOO. January 12, 1953.
- NYO-1576 "Radioactive Debris from Operations Buster and (SECRET) Jangle - January 28, 1952, Health and Safety Division, NYOO.
- Memorandum "AEC Monitoring Program," Commander Deller, (SECRET) September 10, 1952.
- 4. NYO-4512 Radiosotive Debris from Operations Tumbler and (SECRET) Snapper,³ - Part II, Special Projects Section, U. S. Weather Bureau, February, 1953.

Table	2	•2

RESULTS OF AERIAL SURVEY FOLLOWING MIKE SHOT (mr/hr)

MIKE:	2			2			35				<u> </u>		6	
Likiep	0.5 Namu O Parall		Parallo	onda			U 1:	ithi	0	Iwo Jima	0.5			
Jeno	0.5	Ailing-			Pajar	38	1.0	0	Yaj	0	0	Hahashima	0.5	
Ailuk	0.5	lapal	ар	0	Maug		0.5	0.5		ilu	ō Ì	Chichishima	0.2	
Mejit	0.2	Namorik	-	0	Asuncio	n	1.0	0		bel-		Tori Shima	0	
Taka.	0.3	Ebon		0	Agrihan	L	1.5	1.0	· 1	thuap	0.05	Aoga Shima	Ð	
Utirik	0.2	Kili		0	Pagan		1.0	1.0		ror	0	Hachigo Shima	ō	
Bikar	0.2	Jaluit		0	Alamaga	n	0.5	0.5	Pel	loliu	0	Miyaks Shima	Ō	
Taongi	0	Mi11		0			0.5	0.5	Gua	un.	0.7	O Shima	Ō.	
Rongerik	0.05	Arno		0	Sarigan	<u>.</u>	0.5 0				· •			
Rongelap	0	Majuro		0	Anataha		0 0							
Bikini	0.05	Malcola	þ		Farallo	nde								
Wotbo	0.1	& Aur	•	0.5	Medin	illa	0.5	0						
0 jae	0	Erikub		0,2	Saipan		0.5	0						
Las	0.1	Wotje		0.5	Tinian		0.5	0						
Kwajalein	0.3	Ŭ		•	Rota		0	0.5						
÷	-				Guam		1.0	0.5						
Days after	•			•										
WIKB:	1		1,2,5	į		5		5,0	5		7		8	
Kusaie	0	Namonuito	0	G	afernut	0	Oah	ι Ο	C	Jahu	O	Honshu	0	
Pingelap	0	Truk	0		aranlep	Ó	Kau	i O	. I	anai	Ō	Shikoku	õ	
Mokil	0	Losan	Ō		- Fayn	Ō	Nii)		Ĩ	ahool	aweû	Kyushu	õ	
Ponape	0	Namoluk	ō		oleai	Ō	Necl			Iawaii		Tanoga Shima	ō	
-	0	Lukonor	0	I	falik	Ō	Lay			laui	0	Amawi O Shima	ō	
		Satawan	Õ		auripik	Ō	Mid			loloka	i Õ	Okinawa	ā	
		Kuop	ō		Clato	õ						Guam	ŏ.1	
		Pulap	Ō	I	omotrek	õ								
			-		atawal	õ								

ቀ

· · · · ·

Table 2.3

RESULTS OF AERIAL SURVEY FOLLOWING KING

D	(mr/hr)								
Days after KING:	2		1		5		1		<u>.4</u>
Likiəp	0 .4	Namu	0.1	Farallonde		Kuszle	D	Namonuito	0
Jeno	с `	Ailing-		Pajaros	0	Pingelap	0	Truz	់០
Ailuk	0	lapalsp	0.1	Maug	0.1	Nokil	0	Losap	0
Mejit	0	Namorik	0	Asuncion	0.1	Ponape	0	Namoluk	Э
Taka	0	Ebon	0	Agrihan	0.5	Ujelang	0.3	Luknnor	0
Utirik	0	K111	0	Pagan	0.1		-	Satawan	Ð
Bikar	0	Jaluit	0	Alamagan	0,1			Kuop	0
Taongi	0	Mill	0	Guguan	0			Fulap	0
Rongarik	0	Arno	0.1	Sarigan	0			-	
Rongelap	0	Majuro	0	Anatahan	0	•			
Bikini	0	Maloslap		Farallonde					
Wotho	0	& Aur	0.1	Medinilla	0				
Ujae	0	Ericub	0	Saipan	0				
Lao	0.4	Wotje	0	Tinian	0				
Kwajalein	0	w.		Rota	0				
-				Guam	0				

note: "zero" means less than 0.05 mr/hr

UNCLASSIFIED

UNCLASSIFIE

.

¥