Attachment 1

410012

The Pu model used: 45% of transferred Pu to bone; $T_{1/2} = 100y$ 45% of transferred Pu to liver; $T_{1/2} = 40y$ 10% of transferred Pu to other; $T_{1/2} = 0.1 y$ Daily Pu intake: 1 g/d of soil (median value 5.4 pCi/g) = 5400 fCi/d 3000 g/d of food at $4x10^{-5}$ pCi/g = 120 fCi/d Total \sim 5,500 fCi/d 1g/d soil (mean value 10 pCi/g) = 10,000 fCi/d 3000 g/d food at $4x10^{-5}$ pCi/g = 120 fCi/d Total \sim 10,000 fCi/d

Table 1. The liver and bone Pu burden for the above model conditions for various gut transfer factors (GTF) after 7 years intake at 5500 fCi/d and 2 years of no intake.^a

			Pu Burg	den, fCi		
Gut transfer	Liver	Burden		Bone Burden		
factor	Ingestion	Inhalation	Ingestion	Inhalation	Total	
10 ⁻⁴	6.5×10^2	2.1 x 10^3	6.8 x 10 ²	2.2×10^3	5.6 x 10^3	
5x10 ⁻⁴	3.3×10^3	2.1 x 10 ³	3.4×10^3	2.2×10^3	1.1 x 10 ⁴	
10 ⁻³	6.5×10^3	2.1 x 10 ³	6.8 x 10 ³	2.2×10^3	1.8 x 10 ⁴	
10 ⁻²	6.5×10^4	2.5×10^3	6.8 x 10 ⁴	2.6 x 10 ³	1.4 x 10 ⁵	
10 ⁻¹	6.5 x 10 ⁵	6.6 x 10 ³	6.8 x 10 ⁵	6.9 x 10 ³	1.3 x 10 ⁶	

^a Inhalation values are based in the model described in UCRL-53225; intake = 44.7 fCi/d.

Table 2.	The liver	and bone	Pu burder	s for the	above model	l conditions for	
various g	ut transfe	r factors	(GTF) aft	er 7 year:	s intake at	10,000 fCi/d and	i 2
years of	no intake.	a					

			Pu Bure	den, fCi		
Gut transfer	Liver Burden		Bone Burden			
factor	Ingestion	Inhalation	Ingestion	Inhalation	Total	
10-4	1.2×10^3	2.1×10^3	1.3×10^3	2.2×10^3	6.8 x 10	
5×10^{-4}	6.0 x 10 ³	2.1 x 10 ³	6.3 x 10 ³	2.2×10^3	1.7 x 10 ⁴	
10 ⁻³	1.2 x 10 ⁴	2.1 x 10 ³	1.3 x 10 ⁴	2.2 x 10 ³	2.9 x 10	
10 ⁻²	1.2 x 10 ⁵	2.5×10^3	1.3 x 10 ⁵	2.6 x 10 ³	2.6 x 10	
10 ⁻¹	1.2 x 10 ⁶	6.6 x 10 ³	1.3 x 10 ⁶	6.9 x 10 ⁶	2.5 x 10	

^a Inhalation values are based in the model described in UCRL-53225; intake = 44.7 fCi/d.

Table 3. Liver Pu burdens as a function of soil intake and gut transfer factor (GTF) after 7 years intake of 5500 fCi/d and 2 years of no intake.

			Soil inta	ake g/d ^a			
Gut transf	er	<u></u>	<u> </u>	<u></u>			<u>,</u>
factor	1	2	3	4	5	10	20
10 ⁻⁴ 5x10 ⁻⁴	6.5x10 ²	1.3x10 ³	2x10 ³	2.6x10 ³		6.5×10 ³	1.3x10 ⁴
	3.3x10 ³	6.6x10 ³	9.9x10 ³	1.3x10 ³	1.7x10 ⁴	3.3x10 ⁴	6.6x10 ⁴
10 ⁻³	6.5x10 ³	1.3x10 ⁴	2x10 ⁴	2.6x10 ⁴	3.3x10 ⁵	6.5x10 ⁵	1.3x10 ⁶
10 ⁻²	6.5x10 ⁴	1.3x10 ⁵	2x10 ⁵	2.6x10 ⁵	3.3x10 ⁵	6.5x10 ⁵	1.3x10 ⁶
10-1	6.5x10 ⁵	1.3x10 ⁶	2x10 ⁶	2.6x10 ⁶	3.3x10 ⁶	6.5x10 ⁶	1.3x10 ⁷

^a Pu concentrations in the soil = 5.4 pCi/g

	Bone		Li	Total	
Year	Ingestion	Inhalation	Ingestion	Inhalation	fCi
1	90	81	90	81	340
2	180	220	178	218	796
3	268	414	264	410	1356
4	357	657	350	647	2011
5	444	940	433	922	2739
6	530	1256	515	1226	3527
7	618	1598	596	1554	4366
8	680	1910	652	1848	5090
9	675	2165	641	2084	5565

Table 4. Pu organ burden in fCi for 7 years of intake.^a

^a Ingestion intake = 5500 fCi/d of Pu for 7 years Inhalation intake = 44.7 fCi/d GTF = 10^{-4} 45% of Pu body burden in bone; T_{1/2} = 100 y 45% of Pu body burden in liver; T_{1/2} = 40 y See model in UCRL-53225 for inhalation intake of Pu Comparison of the model results with recent observations by Moss and McInroy of LASL (see attachment 2).

Using Moss and McInroy's observations from LASL: daily urine activity of Pu when multiplied by 20,000 gives the liver Pu burden. Assume BNL observation of 60 fCi/l per 24 h.

60 fCi x 20,000 = 1.2×10^6 fCi in the liver

Regardless of whether the median or mean Pu soil concentration is used, the liver burden (Tables 1 and 2) of 8.6 x 10^3 fCi or 3.3 x 10^4 , respectively, based on a GTF of 10^{-3} do not come close to the 1.2 x 10^6 fCi liver burden calculated based on the BNL 60 fCi/l per d of Pu and the empirical results observed by Moss and McInroy. Even with a GTF of 10^{-1} the results are less than reported by McInroy.

Assuming a GTF of 10^{-3} along with the above model, the quantity of soil which would have to be ingested to obtain liver burdens of Pu consistent with BNL and McInroy observations would be:

use 0-5 cm Pu concentration of 5.4 pCi/g

Intake required = $\frac{1.2 \times 10^6 \text{ fCi}}{6.6 \times 10^3 \text{ fCi}}$ 5500 fCi/d = 1.0 x 10⁶ fCi/d

Soil required to supply Pu intake = $\frac{1.0 \times 10^6 \text{ fCi/d}}{5.4 \times 10^3 \text{ fCi/g}} = 185 \text{ g/d}$

If the gut transfer were as high as 10^{-2} it would require consumption of nearly 19 g/d of soil and if the gut transfer were 10^{-4} then 1900 g/d (Table 3).

 Compare the total Pu burden (liver + bone) calculated by the model to the observed urinary daily excretion.

If 60 fCi/l per day were taken as the average rate of excretion for that year, the total quantity excreted for the year would be 60 fCi/d x 365 d = 2.19×10^4 fCi.

The body burden B in year t, where t_0 would be the time of removal from the atoll and thus B_0 would be the body burden at the end of 7 y, will be

$$B_{t} = B_{0} (0.5 e^{\lambda_{L}t} + 0.5 e^{\lambda_{B}t})$$

where λ_{L} = rate constant for removal from liver
 λ_{B} = rate constant for removal from bone
 λ_{L} = $\frac{0.693}{40} = 00173 y^{-1}$
 λ_{B} = $\frac{0.693}{100} = 0.00693 y^{-1}$

and uniform distribution is assumed between bone and liver.

$$B_1 - B_2 = 2.19 \times 10^4 \text{ fCi}$$

Thus
$$B_1 - B_2 = 0.5 B_0 [e^{-0.0173(1)} - e^{-0.0173(2)} + -0.00693(1)]$$

- $e^{-0.00693(2)} = 0.5 B_0 [0.024] = 0.012 B_0 = 2.19 \times 10^4 fCi$

$$B_0 = \frac{2.19 \times 10^4}{0.012} = 1.83 \times 10^6 \text{ fCi}$$

Thus, the body burden based on current accepted fractional deposition and turnover times that would lead to an annual excretion of 2.19 x 10^4 fCi would require intakes of soil approaching 20g and GTF's approaching 0.1 to 1. Conversely, if one assumes a daily intake of 10,000 fCi/d plus 44.7 fCi/d by inhalation, the average daily excretion rate after 7 years of intake and 2 years of no intake should be about 3 fCi/d for a GTF of 10^{-4} , 4 fCi/d for a GTF of 10^{-3} and 12 fCi/d for a GTF of 10^{-2} .

Obviously this is not a rigorous analysis and several assumptions were made which are not exact but it does put the problem in perspective.

Another approach to the current dilemma is to look at the body burden from Table 1 for a GTF of 10^{-4} . The calculated body burden from inhalation and ingestion 2 y after removal from the atoll is 5.6 x 10^3 (liver plus bone). Thus at 60 fCi/d the entire body burden would be eliminated in about 90 days. Even for a GTF of 10^{-3} where the body burden would be 1.8 x 10^4 the entire body burden would be removed in less than a year. Obviously the excretion

would not be constant but again it puts the problem in perspective because of the rapidity with which at least a major fraction of the body burden would be excreted.

BEPOSITORY PNNL
COLLECTION Marshall Islands
EOX NO. 5670
FOLDER Enewetak

DOCUMENT DOES NOT CONTAIN ECI Reviewed by De Kiesked Date 511197