[Reprinted from JOURNAL OF FOOD SCIENCE 1963, Vol. 25, No. 2, Pages 221-228]

Chemical and Radiochemical Composition of the Rongelapese Diet

410310

DIPTIMAN CHAKRAVARTI AND EDWARD E. HELD Luporatory of Radiation Biology,⁴ University of Washington, Seattle, Washington

(Manuscript received March 21, 1962)

SUMMARY

The gross chemical composition of the Rongelapese diet indicates that it is low in fat, protein, and ash but fairly high in carbohydrate. The variation in gross chemical composition of the diets examined may be accounted for by the broad variability of the different diets. The habitat of the Rongelapese probably does not demand a high-energy diet, which may partially justify the lower fat intake. Levels of calcium and phosphorus seem below the minimum required for maintenance of a proper calcium-phosphorus balance. The diet seems adequate in magnesium and potassium but slightly low in solium. The nickel, cobalt, and copper contents seem high in the Rongelap rations, manganese content is low, and iron and zine compare favorably with minimum daity requirements.

Hight levels of cohalt-50 and zine-65 are associated with each other and with rations containing local fish. The higher levels of strontiam-90 and cesium-137 are found where local fruit was consumed. Cocomit contributes little strontium-90, and pandanus the most. Rations with higher zine-65 also contain higher levels of stable zine, indicating that local sea foods may be the main source of zine in the diet. Cesium-137, strontium-90, and cobalt-60 show no definite correlation with stable potassium, calcium, and cobalt, respectively. There is probably a net addition of minerals to Rongelap soils from imported foods.

INTRODUCTION

Rongelap Atoil was contaminated with radioactive fallout resulting from the Bravo test, on March 1, 1954, to the extent that the population of 82 Rongelapese had to be evacuated. Some 200 Marshallese returned to Rongelap in June, 1957, after the area had been declared again safe for human habitation. Since 1954 several surveys have determined levels of radioactive contamination at Rongelap Atoll (Dunning, 1957). In March, 1958, a study of the ecology of the atoll relative to radioactive contamination was initiated at the request of the U. S. Atomic Energy Commission, Division of Biology and Medicine.

One of the objectives of the present investigation was to determine the amount and

*Operated by the University of Washington under Contract No. AT (45-1) 1385 with the United States Atomic Energy Commission. kinds of radionuclides and minerals ingested by the Rongelapese through foods. Fat, protein, and carbohydrate were determined to provide a basis of comparison with known diets. To our knowledge there are no published data on the diet of the Rongelapese.

273

Rongelap Atoll lies in the northern Marshall Islands, an area of comparatively low rainfall and limited variety of agricultural products. The principal plants eaten are coconut, breadfruit, pandanus, and the arrowroot, or tacca; some squash and papaya are also grown. Bananas and taro have been introduced but are not yet in full production.

Fish, clams, langusta, birds, chickens, and pigs are eaten. Of these, the most important is fish. The coconut crab, *Birgus latro*, is considered a delicacy but is the one food item excluded from the diet because of the strontium-90 content (Dunning, 1957).

The coconut, "Ni" in Marshallese, is eaten at different stages of development. The juice

[1]

BEST COPY AVAILABLE

CHEMICAL COMPOSITION OF THE RONGELAPESE DIET

from the immature nut is preferred for drinking, and only rarely is the germinated nureaten. Copra, the dried coconut meat, is a staple caten alone or mixed with other foods.

The coconatistic is collected from the cut ends of inflorescences of coconat trees set aside for this purpose in the village area. The fresh sap is partaken of by all age groups, and the fermented sap, "jekro" or "jugaroo," is consumed by adults.

Breadfruit (Ma) is eaten either baked or boiled, and also is made into a preparation referred to as "cheese." To make "cheese." the skin is removed and the pulp is placed in salt water for three days, then wrapped in breadfruit leaves and buried in the sand for at least one week before it is eaten. The Rongelapese claim that this "cheese" will keep two years or more in the sand.

Pandanus (Bop) is eaten fresh, boiled, or baked. "Jenkun," a preparation said to keep for more than live years, is prepared by baking or boiling the Pandanus keys and scraping out the pulp. The pulp is dried, usually on sheet metal, over coals until it reaches the consistency of fudge. The dried pulp is pressed into a roll and wrapped in Pandanus or coconut leaves. Slices are cut off as needed.

Tacca or arrowroot (Mokmok) tubers are washed with sea water, crushed and passed turough a sieve into a pan of sea water, and allowed to settle for three or four hours. When the starch begins to coagulate, the water is decanted. Sea-water washes are repeated several times, followed by one fresh-water wash. Finally the starch is dried and stored as a powder. The powder is mixed with water for use, and either eaten immediately as prepared or boiled or baked.

The papaya is eaten fresh, sometimes mixed with rice or grated coconut.

The fish consumed are primarily reef fish such as the goat.ish, Mulloidicthys sp., mullet, Neomywus sp., surgeon-fish, Acanthurus sp., and the siganids. The fish are eaten baked, boiled, or raw. The three fish we have observed the Rongelapese to eat raw are goatfish, mullet, and siganids. Fish are also preserved by baking and then drying in the sun. Sometimes salt is added before the fish are dried.

The langusta, spiny lobster, is eaten boiled. The clams are either boiled as a chowder or baked in the shell in a covered pit. The clam meat is sometimes also dried in the sun after baking and hept for several days.

Birds are eaten either baked or boiled, and are also dried following precooking. Bird eggs, usually hard boiled, form only an incidental part of the diet; they are used principally when the Rongelapese are visiting islands other than their main island or nearby Allinginae Atoll.

Pig and chicken are eaten primarily on special occasions.

The source of iresh water in the area is cisterns. Ground water, though potable in certain areas during the rainy season, is not ordinarily drunk.

Of the imported foods, rice, wheat flour, and canned corned beef appear to be the most important. Many other products are imported from time to time, such as sardines, C-ration, ship's biscuit, and candy. In 1958 large quantities of C-rations were consumed. Many individuals prefer the imported foods.

MATERIALS AND METHODS

The samples were collected during a single 24-hr period in September, 1959, at Rongelap Island, taking care that the composition and the amount corresponded to the composition and amount actually eaten by the individual. (Bwio Soap, former village secretary, and Neil Morriss, Trust Territory Resident Agriculturist at Rongelap Atoil at that time, or one of the authors collected each sample.) Wet weights of the samples were taken in the field. The samples were then dried at 90°C and shipped to the University of Washington, Scattle.

Cantion must be used in collecting to be reasonably sure that such daily rations are a true representation. Misunderstanding and a misguided desire to please can easily lead some Rongelapese to provide merely a collection of miscellaneous food items rather than actual daily rations of prepared food. It was felt that a few samples composed of items and portions actually seen to be consumed were preferable to many samples of uncertain origin. Consequently, some samples proffered by individuals were discarded.

Even so, there are obvious discrepancies. Sample number 3 (Table 1), for example, appears to be ridiculously low in the total amount consumed. Doubtless there must have been some "snacking," but the eating habits of the Rongelapese are irreguTable 1. Description of food rations collected at Rongelap Island in September, 1959 (each sample is a 24-hr ration).

Œ

	Sample no.		Description	Wet wt.	Total dry wil 's (
	1	a)	Pandanus paste, boiled		
			rice and baked rish		
			(mixed)	253	374.68
v		b)	Partly baked bread dough		
			with bally beer	252	
. ,		c)	Bully beel sandwiches	195	
1	2		Conserve and the second		• • • · · ·
	-		Coconut meat (green)	30	175.85
			Pandanus "pie" Buked rish	16	
			Sardines, canned	23 20	
		e)	Boiled rice w/coconut milk	249	
	3	a)	Breadfruit, baked	41	\$7.12
			Coconur and bread dough,	_	
		,	baked	24	
		e)	Dread	31	
		3)	Bully beef	17	
			Ship's biscuit	13	
		i)	Rice w, coconut milk.		
			bolled	49	
			~ .		
	+ -		Coconut, ripe	72	321.69
	1		¹ 2 papaya Disean 14 tentera	57	
		c) d)	Rice and fish mixed	306	
v		α)	Bread, local (coconut milk, not saved)	81	
			mink, not saved)	01	
	5	a)	Rice and fish mixed	243	203.16
		b)	Bread, local	\$0	
		c)	Rice	197	
			*		
	б		Breadiruit, baked	203	484.10
1			Coconut w/baked dough	203	
\checkmark			Fish, baked	126	
			Bread, local Coconut, entire	75 50	
			Rice, boiled	291	
			Sardines, canned	154	
		5)	was write of summers	104	
	7	a)	Pandanus keys, raw	115	314.90
1		b)	Goatrish, baked	26	
			Sardines, canned	101	
		d)	Rice, boiled	721	
	S	• >	Fish, baked	125	110 20
	3		Bread, local	155 145	440.50
			Bully beef	143 66	
			Sardines, canned	94	
			Rice, boiled	622	
	9		Rice and fish mixed	421	262.30
		<u>(</u> 6	Rice and rish mixed	64	

lar and it was impractical to follow each individual throughout the day. Therefore, all of the samples collected (Table 1) should probably be considered as erring toward the low side for total consumption. However, there does appear to be a reasonable agreement with quantities listed by Murai (1954) from a study at Majuro Atoll. Catala (1957) pointed out the difficulties of obtaining quantitative data in these areas.

The components of each sample were dried to constant weight in the laboratory at Seattle (Table 1). The entire diet for each individual was then homogenized in water with a high-speedblender, dried at 98°C, and pulverized to a fine powder. Subsamples of the powder were taken for fat, protein, carbohydrate, and radiochemical analyses. Portions weighing 40-250 g were wet-ashed with HNO₃ and H₂O₂, and the ash dried in 250-ml beakers for gamma-ray spectroscopy.

The gamma-counting equipment consisted of a 3-in, thallium-activated sodium iodide crystal used in conjunction with a 256-channel analyzer with a digital print-out. The total counts per minute under the photopeak were calculated by summing counts per minute of all channels included in the peak and subtracting the background counts. The counting efficiency for the gamma energies measured was determined by calibrating the instrument with standards with an error of $\pm 10\%$.

Following analysis by gamma spectroscopy, the ashed samples were dissolved in a known volume of 1N HNO₃. Strontium-90 was determined on an aliquot by the method of Kawabata and Held (1958), in which a combination of nitric acid precipitation and ion-exchange procedures is used.

Calcium was determined by permanganate titration of oxalic acid and confirmed by flame spectrophotometry, with the internal standard technique of Chow and Thompson (1955). Potassium was determined by flame spectrophotometry at 766-mµ wavelength, and independently confirmed with estimation of potassium by titration of the cobaltinitrite with potassium permanganate (Hibbard and Stout, 1933). Sodium was determined at 589-mµ wavelength. The standardization procedure and general function of the system have been described by Chakravarti and Joyner (1960).

In determining magnesium, an aliquot of the ashed sample was dissolved in 0.1N HCl and the solution passed through a Dowex-50 N8 100-200 resin column of precalculated capacity. Interfering anions were removed by elution with two-column volumes of distilled water. The resin was then stripped of cations with three-column volumes of 2N HCl, and the eluate was neutralized to methyl orange with concentrated NH₂OH. Calcium was removed by precipitation with ammonium oxalate followed by boiling and filtration. The filtrate was

[8]

\overline{G}									
			ANGELAP	ESE DIE	т				
	OMPOSITION	of the	KO.NOD		the bas	is).			
CHEMICAL C Table 2. Composition	0.111	Rong	elap Island	(dry-we	algine en				
	of rations in	om Kons	jampie no.		;	8	9		
Table 2. Composition		÷ +	š	0			45.9		
	2	, 		59.7	67.3	59.3 3.60	2.82		
Constituent (%)	.on 5	0.2 37.7		8.47	2.80	3.00 25.9	8.65		
Constitution Proximative analyses (%) 46.3	5 40.0	1.35 1.	J	23.7	14.5	6.98	35.9		,
-		11.0 9. 227 49	.05	3.57	10.9 4.54	4.28	3.71		
Fat 15 Protein 30).5 37.8	30.4	2.19 5.83	3 4.62	4.5 *				
	1.57 1.87	4.13			1.29	ù.62	4 0.45		
A 211				381 2.13	0.65	7 0.70			
composition	0.761 0.593	0.920 12	n 938 0.			2 3.2		52	
Calculti	0.804 0.797	1.13 6.20	1.97 2	.59	60 2.5	5 2.5	, ,,	.102	
ing/o	342 2.44	. 12	3.34 1	···	.358 0				
Solium	2.28 1.39		0.117	0.000	r.s 23.	1		.7	
Potassium	0.134 0.60		12.2	ل ال ال	5.4 25	•	2.2	1.7	
D. 08.0 . 0		÷.Ó	1.1	2.5	2.9	.3 .3 3	.12	<u>_</u>	
Nitroden (mg/kg)	0.0	<u>.</u> 22	2.7 .63	66.	.27	.55 7.5	ó.8	2.8	
	~ 1	.80 .30	20.	5.6		33.	71.	29. 29.	
		. 8.9	3-7.	33.	71.	37.	41.	29.	
(Dia)/***	5' L 6). 44. , 16.	13.	16.	40.		-		
(87 (g) 24. <u>1</u>	4.							
Iron Zine (mg/s	.87					igeiap I	sland.		• ·
			for a 24-hi	r period I				ÿ	-
m sia 3.	Composition	oi rations		Sample no		7	8		-
	Compension				ò		10820	485.0	
Table 0.	(g) 24. Composition				1201.0	963.0			
		2	75.0 516.0	0 520.0	100.	648.	641.	223.	
Constituent	(g) 700.0	338.0 1	75.0 516.0 87.9 194	0 520.0 . 317.	717.	648. 8.8	641. 32 13.3	223. 3 7. 22	3 S 7
Constituent Wet wts.	(g) 700.0 (g) 325.	338.0 1 162.	75.0 516.0 87.9 194 1.17 43	$\begin{array}{c} 0 & 520.0 \\ 317. \\ 3.2 & 3.3 \\ 3.2 $	717. 84 +1.0	648. 8.8 45.	641. 5 15.4 5 114	223. 3 7. 22 .8 9	38 7 .74
Constituent Wet wts. Moisture	; (g) 700.0 (g) 325. (g) 14.0	338.0 1 162. 2.88	75.0 516.0 87.9 194 1.17 43 10.1 3	$\begin{array}{ccc} & 520.0 \\ & 317. \\ 5.2 & 5.8 \\ 1.0 & 15. \\ \end{array}$	717. 84 41.0 .5 114. 8 22.	643. 8.8 45. 4	641. 5 15. 5 114 .3 18	223. 3 7. 22 .8 9 2. 22	38 7 .74 2.
Constituent Wet wts. Moisture Fat	(g) 760.0 (g) 325. (g) 14.0 (g) 56.6	2 338.0 1 162. 2.88 18.8	75.0 516.0 87.9 194 1.17 43 10.1 3 3.59	$\begin{array}{cccc} & 520.0 \\ & 317. \\ & 5.2 & 5.8 \\ & 1.0 & 15. \\ & 7.06 & 11 \\ & & 1.6 \\ $	717. 84 41.0 .5 114. .8 22. 7. 306	648. 8.8 45.7 4 14. - 246	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	223. 8 7. .8 9 2. 22	3 8 7 .74 2. 0.119
Constituent Wet wts. Noisture Fat Protein	(g) 700.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6	2 338.0 1 162. 2.88 18.8	75.0 516.0 87.9 194 1.17 43 10.1 3 3.59 72.3 2	$\begin{array}{cccc} & 520.0 \\ & 317. \\ 5.2 & 8.3 \\ 1.0 & 15. \\ 7.06 & 11 \\ -5. & 165 \end{array}$	717. 84 +1.0 .5 114. .8 22. 7. 306	648. 8.8 45. 4 14 246 03	641. 32 15.4 5 114 .3 18 5. 29. 0.407	223. 3 7. 22 .8 9 2. 22	58 7 .74 2. 0.119 0.214
Constituent Wet wts. Moisture Fat Protein	: (g) 760.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288.	2 338.0 1 162. 2.88 18.8 3.29 151.	$\begin{array}{cccc} 75.0 & 516.0 \\ 87.9 & 194 \\ 1.17 & 43 \\ 10.1 & 3 \\ 3.59 \\ 72.3 & 2 \\ 4 & 0.080 \end{array}$	$\begin{array}{cccc} & 520.0 \\ & 317. \\ 5.2 & 5.3 \\ 1.0 & 15. \\ 7.06 & 11 \\ 40. & 165 \\ 0.184 \end{array}$	717. 84 +1.0 .5 114. .8 22. 7. 306 0.077 1 0.158	648. 8.8 45. 4 14 0.3 0.531	641. 32 15.4 5 114. .3 18 5. 29. 0.407 0.207	223. 8 7. 22 .8 9 2. 22 0.275	38 7 .74 2. 0.119 0.214 0.727
Constituent Wet wts. Noisture Fat Protein Ash Carbohydrate	: (g) 760.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288. (g) 0.	2 338.0 1' 162. 2.88 18.8 3.29 151. 285 0.10 301 0.1-	75.0 516.0 87.9 194 1.17 43 10.1 3 3.59 72.3 2 4 0.080 1 0.688	$\begin{array}{cccc} & 520.0 \\ & 317. \\ 3.2 & 3.4 \\ 1.0 & 15. \\ 7.06 & 11 \\ 40. & 167 \\ 0.184 \\ 0.302 \end{array}$	717. 84 41.0 .5 114. .8 22. 7. 306 0.077 5 0.158 0.526	648. 8.8 45. 4 14. . 246 03 0.531 2.21	641. 32 15.3 5 114. 3 18 5. 29. 0.407 0.207 2.30	223. 3 7. 22 3 9 2. 22 0.275 0.335 1.42 1.30	38 7 .74 2. 0.119 0.214 0.727 0.399
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Colcium	: (g) 760.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288. (g) 0. (g) 0	2 338.0 1' 162. 2.88 18.8 3.29 151. 285 0.10 .301 0.1- .28 0.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. 84 41.0 .5 114. .8 22. 7. 306 0.077 1 0.158 0.526 0.228	648. 8.8 45. 4 14. . 246 03 0.531 2.21 2.23	641. 32 15.4 5 114. .3 18 5. 29. 0.407 0.207	223. 3 7. 22 .8 9 2. 22 0.275 0.335 1.42 1.30 0.050	38 7 .74 2. 0.119 0.214 0.727 0.399 0.027
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Calcium Magnesium	: (g) 760.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288. (g) 0. (g) 1	2 338.0 1' 162. 2.88 18.8 3.29 151. 285 0.10 .301 0.1- .28 0.+ 0.554 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. 84 41.0 .5 114. .8 22. 7. 306 0.077 5 0.158 0.526 0.228 0.011	648. 8.8 45. 4 14. . 246 0.531 2.21 2.23 0.173	641. 32 15.3 5 114. .3 18 5. 29. 0.407 0.207 2.30 0.803	223. 3 7. 22 3 9 2. 22 0.275 0.335 1.42 1.30	38 7 74 2. 0.119 0.214 0.727 0.399 0.027 3.62
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Calcium Magnesium Sodium Potassium	$\begin{array}{c} \vdots \\ (g) & 760.0 \\ (g) & 325. \\ (g) & 14.0 \\ (g) & 56.6 \\ (g) & 15.6 \\ (g) & 288. \\ (g) & 288. \\ (g) & 0. \\ (g) & 0 \\ (g) & 1 \\ (g) & 1 \\ (g) \end{array}$	2 338.0 1' 162. 2.88 18.8 3.29 151. 235 0.10 .301 0.1- .28 0.4 0.854 0.2 0.036 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. 84 41.0 .5 114. .8 22. 7. 306 0.077 5 0.158 0.526 0.228 0.011 2.49	648. 8.8 45. . 246 03 0.531 2.21 2.23 0.173 18.3	641. 32 15.3 5 114. 3 18 5. 295 0.407 0.207 2.30 0.803 0.064	223. 3 7. 22 .8 9 2. 22 0.275 0.335 1.42 1.30 0.050 18.2 1.4	38 7 .74 2. 0.119 0.214 0.727 0.399 0.027 3.62 .45
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Calcium Magnesium Sodium Potassium Phosphorus	$\begin{array}{c} \vdots \\ (g) & 765.0 \\ (g) & 325. \\ (g) & 14.0 \\ (g) & 56.6 \\ (g) & 15.6 \\ (g) & 288. \\ (g) & 288. \\ (g) & 0. \\ (g) & 0 \\ (g) & 0 \\ (g) & 1 \\ (g) \\ (g) \\ (g) \\ (g) \\ (g) \end{array}$	2 338.0 1' 162. 2.88 18.8 3.29 151. 285 0.10 .301 0.1- .28 0.4 0.854 0.2 0.036 0.0 9.06 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. 84 41.0 .5 114. .8 22. 7. 306 0.077 1 0.158 0.526 0.228 0.011 2.49 6.7	648. 8.8 45. 4 14. . 246 0.531 2.21 2.23 0.173 18.3 2.6	641. 5 114 3 18 5 29. 0.407 0.207 2.30 0.803 0.064 7.52	223. 3 7. 22 3 9 2. 22 0.275 0.335 1.42 1.30 0.050 18.2 1.4 .99	38 7 .74 2. 0.214 0.727 0.399 0.027 3.62 .45
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Calcium Magnesium Sodium	; (g) 760.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288. (g) 0. (g) 0 (g) 1 (g) 1 (g) (g) (g) (g)	2 338.0 1' 162. 2.88 18.8 3.29 151. 285 0.10 .301 0.1- .28 0.4 0.854 0.2 0.036 0.0 9.06 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. $84 +1.0$ $5 114.$ $8 22.$ $7. 306$ 0.077 0.158 0.526 0.228 0.011 2.49 6.7 $.50$	648. 8.8 45. 4 14. . 246 0.531 2.21 2.23 0.173 18.3 2.6 1.4	641. 5 114. 5 114. 3 18 5. 29. 0.407 0.207 2.30 0.803 0.064 7.52 7.7 1.0 .10	223. 3 7. 22 0.275 0.335 1.42 1.30 0.050 18.2 1.4 .99 .05	38 7 .74 2. 0.119 0.214 0.727 0.399 0.027 3.62 .45 .45 .07
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Calcium Magnesium Sodium Potassium Micsphorus Nitrogen	; (g) 760.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288. (g) 0. (g) 0 (g) 1 (g) 1 (g) (g) (g) (g) (g) (g) (g) (g) (g) (mg)	2 338.0 1' 162. 2.88 18.8 3.29 151. 235 0.10 .301 0.1- .28 0.4 0.854 0.2 0.036 0.0 9.06 3. 0.0 .27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. 84 41.0 .5 114. .8 22. 7. 306 0.077 5 0.158 0.526 0.228 0.011 2.49 6.7 .50 0.0	648. 8.8 45. 4 14. . 246 0.531 2.21 2.23 0.173 18.3 2.6	641. 5 114 5 114 3 18 5 29. 0.407 0.207 2.30 0.803 0.064 7.52 7.7 1.0 .10 2.4	223. 3 7. 22 0.275 0.335 1.42 1.30 0.080 18.2 1.4 .99 .05 3.0	58 7 .74 2. 0.119 0.214 0.727 0.399 0.027 3.62 .45 .45 .73 .73 7.5
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Calcium Magnesium Sodium Potassium Nitrogen Nickel Manganese	; (g) 700.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288. (g) 0. (g) 0 (g) 1 (g) 1 (g) (g) (g) (nug)	2 338.0 1' 162. 2.88 18.8 3.29 151. 235 0.10 .301 0.1- .28 0.4 0.054 0.2 0.036 0.0 9.06 3. 0.0 .27 .78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. 84 41.0 .5 114. .8 22. 7. 306 0.077 5 0.158 0.526 0.228 0.011 2.49 6.7 .50 0.0 1.1	648. 8.8 45. 4 14. . 246 0.531 2.21 2.23 0.173 18.3 2.6 1.4 .13	641. 5 114 3 18 5 29. 0.407 0.207 2.30 0.803 0.064 7.52 7.7 1.0 .10 2.4 10.	223. 3 7. 22 3 9 2. 222 0.275 0.335 1.42 1.30 0.080 18.2 1.4 .99 .05 3.0 31.	58 7 .74 2. 0.119 0.214 0.727 0.027 3.62 .45 .45 .73 .73 7.5
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Calcium Magnesium Socium Potassium Nitrogen Nickel Manganese Cobalt	(g) 760.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288. (g) 0. (g) 0 (g) 1 (g) 1 (g) (g) (g) (g) (g) (g) (mg) (mg) (n)g)	2 338.0 1' 162. 2.88 18.8 3.29 151. 235 0.10 .301 0.1- .28 0.4 0.854 0.2 0.036 0.0 9.06 3. 0.0 27 .78 5.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. 84 41.0 .5 114. .5 22. 7. 306 0.077 1 0.158 0.526 0.228 0.011 2.49 6.7 .50 0.0 1.1 6.7	648. 8.8 45. 414. 246 0.531 2.21 2.23 0.173 18.3 2.6 1.4 .13 11. 23.	641. 5 114 3 18 5 29. 0.407 0.207 2.30 0.803 0.064 7.52 7.7 1.0 .10 2.4 10. 12.	223. 3 7. 22 0.275 0.335 1.42 1.30 0.080 18.2 1.4 .99 .05 3.0	58 7 .74 2. 0.119 0.214 0.727 0.027 3.62 .45 .45 .73 .73 7.5
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Calcium Magnesium Socium Potassium Nitrogen Nickel Manganese Cobalt	(g) 760.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288. (g) 0. (g) 0 (g) 1 (g) 1 (g) (g) (g) (g) (g) (g) (mg) (mg) (n)g)	2 338.0 1' 162. 2.88 18.8 3.29 151. 235 0.10 .301 0.1- .28 0.4 0.854 0.2 0.036 0.0 9.06 3. 0.0 27 .78 5.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. 84 41.0 .5 114. .5 22. 7. 306 0.077 1 0.158 0.526 0.228 0.011 2.49 6.7 .50 0.0 1.1 6.7	648. 8.8 45. 414. 246 0.531 2.21 2.23 0.173 18.3 2.6 1.4 .13 11. 23.	641. 5 114 3 18 5 29. 0.407 0.207 2.30 0.803 0.064 7.52 7.7 1.0 .10 2.4 10. 12.	223. 3 7. 22 3 9 2. 222 0.275 0.335 1.42 1.30 0.080 18.2 1.4 .99 .05 3.0 31.	58 7 .74 2. 0.119 0.214 0.727 0.027 3.62 .45 .45 .73 .73 7.5
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Calcium Magnesium Socium Potassium Nitrogen Nickel Manganese Cobalt	(g) 760.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288. (g) 0. (g) 0 (g) 1 (g) 1 (g) (g) (g) (g) (g) (g) (mg) (mg) (n)g)	2 338.0 1' 162. 2.88 18.8 3.29 151. 235 0.10 .301 0.1- .28 0.4 0.854 0.2 0.036 0.0 9.06 3. 0.0 27 .78 5.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. 84 41.0 .5 114. .5 22. 7. 306 0.077 1 0.158 0.526 0.228 0.011 2.49 6.7 .50 0.0 1.1 6.7	648. 8.8 45. 414. 246 0.531 2.21 2.23 0.173 18.3 2.6 1.4 .13 11. 23.	641. 5 114 3 18 5 29. 0.407 0.207 2.30 0.803 0.064 7.52 7.7 1.0 .10 2.4 10. 12.	223. 3 7. 22 3 9 2. 222 0.275 0.335 1.42 1.30 0.080 18.2 1.4 .99 .05 3.0 31.	58 7 .74 2. 0.119 0.214 0.727 0.027 3.62 .45 .45 .73 .73 7.5
Constituent Wet wts. Moisture Fat Protein Ash Carbohydrate Calcium Magnesium Socium Potassium Nitrogen Nickel Manganese Cobalt	(g) 700.0 (g) 325. (g) 14.0 (g) 56.6 (g) 15.6 (g) 288. (g) 0. (g) 0 (g) 1 (g) (g) (g) (g) (g) (mg) (mg) (mg) (mg)	2 338.0 1' 162. 2.88 18.8 3.29 151. 235 0.10 .301 0.1- .28 0.4 0.854 0.2 0.036 0.0 9.06 3. 0.0 27 .78 5.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717. 84 41.0 .5 114. .5 22. 7. 306 0.077 1 0.158 0.526 0.228 0.011 2.49 6.7 .50 0.0 1.1 6.7	648. 8.8 45. 414. 246 0.531 2.21 2.23 0.173 18.3 2.6 1.4 .13 11. 23.	641. 5 114 3 18 5 29. 0.407 0.207 2.30 0.803 0.064 7.52 7.7 1.0 .10 2.4 10. 12.	223. 3 7. 22 3 9 2. 222 0.275 0.335 1.42 1.30 0.080 18.2 1.4 .99 .05 3.0 31.	38 7 .74 2. 0.119 0.214 0.727 0.399 0.027 3.62 .45 .45 .45 .73

See & at

E.

.73

7.7

Sample no.	Cაო	Zur	Mn ²⁴	Csur	Sr ⁹⁰
1	0.35 ± .12*	· 0.40 ± 0.29	-0.64 ± 0.09	61.4 ± 0.60	0.84 ± 0.07
2	$0.52 \pm .25$	$-1.03 \pm 0.53^{\circ}$	0.11 ± 0.20	14.1 ± 0.50	1.63 ± 0.16
3	$0.12\pm.52$	-2.40 ± 1.0	-0.49 ± 0.39	21.1 ± 0.87	1
÷	0.23 ± 1.13	-0.75 ± 0.28	-0.07 ± 0.10	17.6 ± 0.33	0.43 ± 0.05
5	$0.43 \pm .22$	-0.07 ± 0.45	-0.11 ± 0.16	3.6 ± 0.28	0.21 ± 0.09
ń	0.90 ± 0.3	1.70 ± 0.30	-0.23 ±0.09	16.1 ± 0.29	0.66 ± 0.66
7	0.55 ± 1.14	0.87 ± 0.35	$-0.19^{-1} \pm 0.10^{-1}$	20.0 ± 0.33	0.86 ± 0.03
8	$1.20 \pm .15$	2.50 ± 0.41	-0.21 ± 0.11	3.0 ± 0.17	0.22 ± 0.05
9	$0.33 \pm .16$	6.05 🛨 0.35	-0.003 ± 0.13	2.6 ± 0.21	0.32 ± 0.03

Table 4. Radioisotopes (disintegrations per minute per gram) in rations from Rongelap Island (dry-weight basis).

~ 0.95 counting error.

*Negative values are given to indicate that there are errors in addition to the counting error which cannot be specifically accounted for.

made basie with 1.V NH,OH; 5% (NH,0.20, was added until a precipitate formed, and an excess of NH,019 was then added during constant staring. The precipitate, magnesium ammonium, phosphate, was allowed to settle overnight, remover by filtering, dissolved in 6 drops of concentrate. HLSO, and made to volume with water. Indirasium was determined by titrating an allouot of this solution dealast a standard EDTA solution using the indicator. Briechrome Elack T.

Total phosphorus was determined by the colorimetric method of Fleischer et al. (1958).

The transition elements nickel, manganese obbalt copper, iron, and zine were netermined coloriparticulty by methods described by Sanceli (1959). The elements were initially separated by selectice elution of their chloride complexes from an anionexchange resin. Kraus and Moore (1955) have shown that the chloride complexes of the transitional elements nickel through zine are adsorbed onto a strongly basic anion-exchange resin. Dowex 17 and are selectively eluted at different molarities of HCL. Following the same principle, Joyner and Chakravarti (1960) suggested techniques that were applied to these samples.

Protein nitrogen was determined by the Kjeldahl method.

Fat was determined by a modification of the Johnson method (Winton and Winton, 1945). Methylene chloride was the extracting solvent.

Ash content was determined as the nitrate form by drying an aliquot of the ashed sample to constant weight.

Moisture content was calculated from the wetweight to dry-weight ratio.

Total carbohydrate and like substances were estimated by subtracting moisture, fat, protein, and ash from the total solids and calculating the carbohydrate content by difference.

RESULTS AND DISCUSSION

Table 1 lists the components of the 24-hr food rations collected at Rongelap Island. Tables 2 and 3 show proximate composition and trace-element content of the rations, and Tables 4 and 5 present levels of radioisotopes. Results are given on a percentage or unit weight basis (Tables 2 and -) and as amount for total diet (Tables 3 and 5). The former basis permits comparison of the relative composition of individual rations and facilitates evaluation of the contributions made by specific items in each diet; the latter basis shows the actual amounts consumed in a 24-hr period.

In evaluating the chemical constituents consumed by an individual in a 24-hr period, the gross weight of the total diet is of much importance. By comparing the proximate chemical composition on a percentage basis with the published chemical composition of some of the items constituting the samples, it is possible to account for the variation in moisture, fat, protein, carbohydrate and ash content of the different diets.

Since information on the nutritional aspects of the Rongelapese diet is limited, comparison of the data with data for other areas is probably not meaningful. The gross percentage composition indicates that the diets are generally low in fat, protein, and ash but fairly high in carbohydrate content.

When the data in Table 3 are compared with the recommended daily dietary allowances published by the Food and Nutrition Board of the National Research Council, the

[0]

CARDIVAL COMPOSITION OF THE ROBBELAPESE DIET.

24-hr milions of the kongeliquese appear to be generally below the level recommended for protein. Since fat allowances are based more on food mabits than on physiological requirements, no definite conclusion can be drawn about the apparent low fat content of these diets. The habitat of the domain passe probably does not demand a high-sugrey lifet, which may partially justify the lower fat make.

The calcium coment of the 24-17 station secus to be much lower than the suggestal formular requirement. (Nutritional sound), 1958 a sum the same casis, the magneshim avers seen to be adaptite out the plassphorus levels are far below what is hard sstry to maintain a project enclude-phosphorus binance in a good diet. The soliton levels appear to be slightly below the normal suggested intake levels, although the information is available as to the minimum scriptequirement of scaling. The parasium level is lower than the soliton concert, as fear is generally the case in most diets.

Kont and clocklass (541) have suggested that an ordinary adult diet will supply sulsifting of meker sadige the die basis of these values, the dieled content of the dieler diencelepese rations appears to be higher data usual in some cases. Nickel sats frequently gain access to food from corrosion of dieled vessels, and small quantities of dieled may also be found in various manufactured foods. It also may be that some of the native food components are high in dieled content.

Dasu and Malakar (1940) have suggested that 4.6 mg of manganese are required per

day to keep an adult male in manganese balance. On this basis, the Kongela (ise food appears to be low in manganese. The average adule diet of good quality supplies 0.005-0.6/8 mg of cobait daily (Harp and Scoular, 1952); in comparison the Rongelanese food appears to be fairly high in colait content. Tomsett's (1934) balance experiments with adult humans indicate a manimum copper te girement as low as 0.6 mg daily. The estimate of Chou and Adolfah (1935) is 1-2 ing duly. The Rongelapese diet is dennitely above the experimental minimum requirenients given. The fron in the diet appears to compare invortibly with the minimum daily requirement us suggested by the Nudonal Research Coanelli Eggleton (1939) has given normal daily food intake of zine as 12 mg. The Rongelapese food a pears to have large variation in zine content, and on the overage is less than 8 mg dulays

The light levels of cobale-ob and zine--5 are dissociated with each other and will initials containing local lish. This is to be expected since these isotopes are found priunarily the marine organisms (Domning, at 57). The lighter levels of strontium-od and desimin-137 are found where local fruit was consumed. In general, higher levels of strontium-od are coincident with higher levels of desimn-137. Coconut contributes little strontium-90, and pandanus the post.

The average value for the daily intake of strontium-90 is 83 gac, and for calcium 0.28 g. The average daily intake in terms of "strontium units" (gac Sr^{00}/g Ca) is then nearly 300. This value is about three

· · · ·		 		** .	T 1 1 1
- Ci.d 3.	Rudiolsote jos	 f futious	.::0::1	Non relation	is.and."

Sample no.								
	1°04	Z ₁₅ -4	- C3107	Sr ^w				
1	59 = 20°	$67 = \pm 9$	10000 ± 100	142 ± 11.8	497 ± 41.4			
2	-2 = 20		1165 ± -6	129 ± 12.7	1239 ± 121.6			
3			გვე <u>≕</u> ე4	-9 ± 9.8	013 ± 122.5			
• T	33 ± 19		$2600 \pm .55$	62 ± 3.7	339 ± 47.3			
5	39 = 20	. · · ·	$_{\odot}$ 330 \pm 26	19.2 ± 8.2	248 ± 106.5			
6	200 ± -8	370 ± 65	3560 🛨 – 63	144 ± 13.1	140 ± 12.7			
7	79 ± 10	125 ± 50	2800 ± 54	122 ± 11.4	ີ 300 <u>ສ</u> ີ 17.2			
8	240 ± 30	きい 生 82	30 ± 34	-3.5 ± 5.9	159 ± -36.1			
9	$\omega \pm \omega$		310 ± 25	57.3 ± 9.5	331 ± -52.8			

ų,

. " Calculated from Table 4, wet-to-dry ratio, and weight of total sample.

^a 0.95 counting error.

. . times that of previous estimates (Dunning, 1957): Colar et al., 19-0). Those estimates were lased on an estimated daily limite of 0.8 g of calcium, or about three times the value reported here. Thus, the significant difference between this and previous values reflects a discrepancy between observed and estituties) calerant intrake. It is not within the scope of this report to enter into an estimation of body burden, which has been discussed in detail by Colm et al. (1200). . lowever, it is of interest to note that the loody burden as estimated from admalysis data (Woodward et al., 1959) and discussed by Colm is consistent with a discrimination factor of four and a cally lattice of about 100 que Sroo g calcium. This would indicate either that the discrimination lactor is greater than four or that these samples do not correctly represent dully calcium hanke. in any case, it is obvious that continued study of Srig movement at Rongelap Atoli is necessary.

6

lentions containing the lilipher levels of alno-05 also contain the lilipher levels of stude zine, in denting that local set locas may be the main source of zine in the dencleshinn-137, strongiant-to, and conde-obshow no definite correlation with potassium, calcium, and cobalt, respectively, indicating that these elements are in large measure supplied from imported foods.

With the current means of sanitation—pit toilets and burial of garbage—on Rongelap and Enlactok Islets there must be a net addition of minerals. The chief export, copra, is low in ash content as compared with imported foods. A quantitative evaluation of the addition would require comparison of export and import records.

REFERENCES

- Basu, K. P., and M. C. Lalakar. 1940. Fron and manganese requirements of the human adult. *J. Indian Chem. Soc.* 27, 317.
- Catala, Rene L. A. 1957. Report on the Gilbert Islam 3: Some aspects of human ecology. Atoll Research Bulletin No. 59. The Pacific Science Board. National Academy of Sciences, National Research Council, Washington, D. C. 197 (2).
- Chalenvarti, D., and T. Joyner. 1960. Potassium as an index of naturally occurring radioactivity

in una mascle. Trans. 21m. Hisheries Soc. 20, 312.

- Chou, T. P., and W. H. Adolph. 1935. Coppermetabolism in man. Blochem. J. 20, 470.
- Chow, H. J., and T. G. Thompson. 1955. Flame Autometric determination of calcium in sea water and marine organisms. *Anal. Chem.* 27, 910.
- Cohn, S. H., J. S. Robertson, and R. A. Conard. 1960. Radioisotopes and environmental circumstances: The Internal radioactive communiction of a Pacific Island community exposed to local fallout. A symposium on radioisotopes in the biosphere. Richard S. Caldecott and Geon A. Sayter, eds. University of Elinnesota Printing Department, p. 200.
- Danning, G. M. 1937. Readonctive contamination of vertain aveas in the Pacific Ocean from intelear tests. U.S. Atomic Energy Commission report, U.S. Government Printing Office, Washington, D.C.
- Eggleton, W. G. Z. 1939. The sine content of opacitmus structures in heribert. Silvenem, J. 53, 403.
- Fleischer, K. D., B. C. Sonthworth, J. A. Molocher, and M. M. Tuckerman. 1958. Determanifold of phosphorus in organic components. Acide intero and semi-micro method. *Anal. Chem.* 00, 152.
- Flarps 21, J., and F. I. Seonar. 1952. Cobalt intenso sm of young college women on selfselected cless. J. Nutrition 27, 67.
- Hibbard, C. L., and P. R. Stout. 1933. The estimation of potassium by titration of the cobal initrite with potassium permanganate. J. Assoc. Ogic. Phys. Chemists 13, 137.
- Joyner, T., and D. Chakravarti. 1960. The analysis of some trace elements in fish tissues. C. S. Atomic Energy Commission report No. CWFL-08. Laboratory of Radiation Biology, University of Washington. 14 pp.
- Kawabata, T., and E. E. Heid. 1958. A method for the determination of strontium-90 in biological materials. Applied Fisheries Laboratory (now Laboratory of Radiation Biology), University of Washington. Unpublished.
- Kent, N. L., and R. A. McCanee. 1941. The absorption and exerction of "minor" elements by man. 2. Cobair, nickel, the and manganese. *Biochem. J.* 53, 877.
- Kraus, K. A., and G. E. Moore. 1953. Anionexchange studies. VI. The divalent transition elements manganese to zinc in hydrochloric acid. J. rule. Chem. Soc. 15, 1460.
- Murai, Mary, 1954. Nutrition study in Micronesia, Atoli Research Bulletin No. 27. The Pacific

- -

(s]

Science Loard, National Academy of Sciences, National Research Council, Washington, D. C.

Analysis of Foods." 999 pp. Jcl. Wiley and Sons, New York.

. د

- 239 (j). "Nutritional Data." 1953. 3rd ed. II. J. Heinz Company, Pittsburgh, Pennsylvania.
- Sandell, L. D. 1959. "Colorimetric Determination of Traces of Metals." 3rd ed. 1032 pp. Interscience Publishers, New York.
- Tompsett, S. L. 190 a The copper content of Elood. *Checkson J.* 20, 15-4.
 Winton, A. L., and K. B. Winton. 1945. "The

Woodward, Kent T., Ariei G. Schrodt, Jumes E. Anderson, Harry A. Claypool, and James B. Martgering, 1959. The determination of internally deposited radioactive isotopes in the Marshallese people by excretion analysis. Proc. of Hearings of Joint Committee Ca Atomic Energy, Soth Congr., First session on failout from nuclear weapons tests. Volume 2, p. 1329.