

2. For estimates of cancer risk both the relative risk coefficient and the absolute risk coefficient were used to give a range of estimated risk. The absolute risk coefficient gives a lower value, is less variable with the population and is not dependent upon the spontaneous cancer incidence, which is not known for the Bikini population. The relative risk coefficient gives a high value, but since it is based on the spontaneous cancer incidences, which is unknown for the Bikini population, it is probably less reliable than the estimates calculated from the absolute risk coefficients.

3. For estimating increased cancer incidences, the bone marrow dose was used because it was slightly higher than the whole body dose. This probably introduced a small element of conservation.

4. For estimating birth defects neither BEIR-I or BEIR-III is very clear about what is meant by parental dose, thus it is not clear whether birth defects should be based on the dose to one parent or both parents. In the latter case, the 30-year whole body dose would be doubled. We assumed the BEIR-I risk of 0.2% rem was based on both parents being irradiated. Also because we believed the risk coefficient from BEIR-I

R.

7. The spontaneous incidence of birth defects was taken to be 10.7% of all live births from BEIR-III.

8. The normal incidence of cancer deaths was assumed to be 15%. A value less than the approximately 20% given for the U.S. population was used because the Bikini people have been and will probably be exposed to much lower limits of environmental carcinogens than people living in the U.S. and because of limited medical services and prevalence of other risks such as drowning, poisoning, etc. Other causes of death are probably higher in the Bikini population than in the U.S. population. We also suspected the average life span was less than in the U.S. population, which might tend to reduce the number of cancers that would occur in the elderly.

9. The largest dose a person might receive in a year was estimated to be three times the average dose. Data in the appendix for individuals show that the highest individual dose is more than twice the average but less than three times.

II. POPULATION ESTIMATES

To estimate the number of births, deaths and the magnitude of the Bikini population after 30 years, information was used from the final draft of the Marshall Islands Five Year Health Plan prepared by the Trust Territories' Department of Health Services' Office of Health Planning and the Resources Department. The document is undated, but the presence of data from 1976 indicates that it must have been prepared in the period of 1977 to 1979 when we received it. It was noted that there are apparent inconsistencies among several of the different tables. For example, Table III-1 gives data for the Marshall Islands for the period 1955-1975 and Table III-5 gives data for the infant mortality rate for 1976. In Table III-1, the infant death rate per 1000 births for 1970 through 1975 is given as 28.3, 33.6, 25.4, 46.4, 21.1 and 37.0. However, Table III-5 indicates the infant mortality rate to be only 17.04. We used the data of Table III-1 in the following estimates; because it is more complete and it provides a self-consistent set of data. However, in view of the discrepancies, the results can only be considered as approximations. This probably makes little real difference in view of the uncertainties in the risk coefficients that were used. There is also a bias built into the data because of the inclusion of Ebye and Majuro in the overall Marshall Island rates. This arises from the different death rates (particularly infants) at these two locations. In many respects the population of Ebye and Majuro are quite dissimilar from the Bikini population because they have the advantages and disadvantages of a more technical environment.

For the estimates the last 5 or 6 year average of the data were used because they are probably the most representative of current conditions. From this, the following were obtained:

- 1. Rate of increase of the population has been about 3.8%/year.
- 2. Infant death rate is about 3.2% per birth.
- 3. Overall death rate is 0.54% per year.
- 4. Birth rate is 4.2% per year.

A population of 550 was assumed for the one that might move back permanently to Bikini Atoll. Values for other initial populations were obtained by ratios of the results.

The total population at the end of 30 years is given by the compounding equation:

$$P_{30} = 550 (1 + 0.038)^{30} = 1684$$

The number of births in 30 years are given by:

$$B = 0.042 \times 550 \int_{0}^{30} (1.038)^{X} dx$$

where x is the time between 0 and 30. This gives

$$B = \frac{0.042 \times 550}{10.038} [1.038^{30} - 1] = 1277$$

Similarly, the number of deaths in the 30 year period would be:

Deaths =
$$0.0054 \times 550 \int_{0}^{30} (1.038)^{\times} dx$$

Deaths = $\frac{0.0054 \times 550}{\ln 1.038}$ [1.038³⁰ - 1] = 164

One other datum needed is the reduction in 30 year dose to those born after the return because of the decrease in radiation levels and the smaller amount of time in the 30 year period that is spent on the island. For this, the total population dose for those born after returning assuming an initial dose rate of 1 rad/year is given by:

$$P = 550 D_{10} \int_{0}^{30} e^{-\lambda x} (1.038^{x}) dx$$

 λ is the half-life of decrease of the radiation dose, taken here as 30 years.

Because this integral cannot be solved analytical, an approximate solution was obtained by calculating this function for each of 30 years and

simplicity and the lack of good death rate data.

We also compared the age characteristics of the Marshallese from Table IV-3 and the U.S. population in 1970. This comparison is given in the attached curve. The slopes are similar above age 35 but the magnitudes are distorted by the high birth rate in the Marshall Islands. However, in terms of the relative risk the similar slopes suggest that if the natural cancer rates in the two populations are similar, the relative risk for people above 35 in both populations would be similar because most of the cancer occurs at ages from about 40 and above. However, the magnitude of the relative risk in the U.S. used for the Marshallese will be high by a factor of somewhere around 2-3 because of the distortion caused by the very high proportion of young people who have a relatively low natural cancer incidence.

Using the preceding calculations for a population of 550, calculations were made for other population sizes. For a population of 550 (from preceding):

Deaths in 30 years = $164 \approx 160$ Births in 30 years = $1277 \approx 1300$

For a population of 140 (the number that returned to Bikini):

Deaths in 30 years $\frac{164}{550} = \frac{x}{140}$, $x = 41.7 \approx 40$ Births in 30 years $\frac{1277}{550} = \frac{x}{140}$, x = 325. \approx 300

For a population of 235:

Deaths in 30 years $\frac{164}{550} = \frac{x}{235}$, x = 70.07 \approx 70 Births in 30 years $\frac{1277}{550} = \frac{x}{235}$, x = 545.62 \approx 550

For a population of 350:

Deaths in 30 years $\frac{164}{550} = \frac{x}{350}$, x = 104.36 \approx 100 Births in 30 years $\frac{1277}{550} = \frac{x}{350}$, x = 812.63 \approx 800

III. RISK COEFFICIENTS

At the time the Bikini book was prepared no agency in the U.S. government had accepted the risk coefficients in BEIR-III. Thus we were constrained to use risk coefficients from BEIR-I. While not included in the printed book, risk estimates based on BEIR-III were calculated for comparison purposes. The following gives the origin of the risk coefficients used.

A. BEIR-I

Proprietor to

Cancer (Tables 3-3 and 3-4) 1.

> Cancer deaths/year in U.S. from 0.1 rem/year (pop = 197, 863, 000)

Derived on

Cancer	deaths/10°	pers
rem		

	<u>Absolute</u>	<u>Relative</u>	Absolute	<u>Relative</u>
Leukemia	516	738	26	37
Other Cancers				
30 year	1210	2436	61	123
elevated risk				
lifetime	1485	8340	75	421
elevated risk		<i>2</i>		
	اند. المراجع			
	1.			

Range 1726-2001 3174-9078 87-10

87-101 160-458

From the above the minimum estimate of cancer risk would be given by a risk coefficient of $87/10^6$ person rem and the maximum by $458/10^6$ person rem. Thus, these two risk coefficients were used to define a range of estimated cancer deaths.

2. Genetic Effects (from Page 1 & 2 BEIR-I)

a. Based on specific defects 5 rem/30 year reproductive generation would cause in the first generation 100-1800 cases of dominant diseases and defects per year (3.6 million births/year) or 5 times this amount at equilibrium. The 1800 cases represent an increase of 0.05% incidences per year first generation and 0.25% at equilibrium. In addition there would be a few chromosomal defects and recessive diseases and a few congenial defects due to a single gene defect and chromosome aberrations.

The total incidence at equilibrium is 1100 to 27,000/year. These at equilibrium, the maximum would be 0.75% or 0.15% in the first generation.

These are equivalent to 0.15% per rem at equilibrium and 0.03%/rem in the first generation.

b. Based on overall ill health. Overall ill health: 5% - 50% of ill health is proportional to the mutation rate using 20% and doubling dose of 20 rem, 5 rem per generation would eventually lead to a 5% increase in ill health.

Thus the rate of overall ill health is 1%/rem at equilibrium or 0.2%/rem in first generation.

For estimating the potential genetic derived health defects in the Bikini population it was decided to use a risk coefficient of 0.2% per rem in the first generation recognizing that it was probably very conservative.

B. BEIR-III

1. Cancer	· (Table V-4 of	Typescript Edit	ion)	
	Lifetim	e Risk of Cance	r Death	
	(deaths/10 ⁶ /rad)		
	Single exp	osure to	Continous	xposure
	10 r	ad	to 1	rad/yr
<u>Model</u>	Absolute	Relative	Absolute	<u>Relative</u>
$L-Q, \overline{LQ-L}$	77	226	67	182*
L-L, <u>L-L</u>	167	501	158	430*
Q-L, <u>Q-L</u>	10	28		

* In printed version these were 169 and 403, respectively. We used the risk coefficients that were derived for continuous exposure.

2. Birth Defects--pages 166-169 (mean parental age = 30 years) l rem per generation (l rem parental exposure) per 10⁶ live offspring 5 to 75 birth defects, this is 0.0005--0.0075%--First generation.

Since the spontaneous rate is given as 10.7%, in the U.S. population, 1 rem will increase the rate from 10.7% to 10.7005--10.7075%.

In terms of the spontaneous rate 1 rem per generation gives $\frac{0.0005}{10.7}$ = 0.000047 = 0.0047% increase and $\frac{0.0075}{10.7}$ = 0.0007 = 0.07% increase.

IV. CALCULATIONS OF RISK

Table 1 gives the radiation dose values provided by Dr. Robison for use in developing estimates of increased health risks in the Bikini population.

A. Risks for 14 Different Living Conditions

1. Cancer Risks

Table 3 shows the calculations for estimates of increased cancer risk for 14 different living conditions.

2. Birth Defects Risks

Table 3 gives the calculations for the estimates of birth defects.

B. Risk Estimates Based on BEIR-III

Table 4 gives risk estimates based on BEIR-III risk coefficients. These were calculated for comparison purposes only and were not used in the Bikini book. The highest estimates for cancer risk result from using the linear relative risk model and are about the same as those given in Table 2 for the relative risk model. The lowest estimates result from the linear-quadratic absolute risk model and are slightly less than those for the absolute model in Table 2. Thus, as far as estimates of cancer risk are concerned, those obtained using risk coefficients from BEIR-I are in the same general range as those obtained using risk coefficients from BEIR-III.

Risk estimates for birth defects obtained using the risk factor from BEIR-I gives values about three times those obtained using the upper value of the range of risk factors given in BEIR-III. If BEIR-III risk factors for birth defects represent a more enlightened assessment of this potential consequence of radiation exposure than the factor taken from BEIR-I for overall health defects, then the estimates in the Bikini book may be conservative by a factor of three.

Identification Number	Age	Total Whole Body Dose (mrem)
6111	32	250
6097	19	950
6115	13	1600
6109	15	760
6001	13	1300
6046	13	600
6063	40	1400
0001	32	1400
0122	70	
6030	10	
6129	13	1000
6027	b	1200
6010	8	2000
6105	5	1500
6059	19	400
6124	54	390
6058	18	1200
6036	27	340
6110	32	1400
6051	19	1200
6092	8	2400 (highest value)
6080	7	310
6038	6	1400
6103	9	1600
6028	7	1800
6044	6	2200
6062	21	1100
6034	46	1800
865	- 45	1300
6050		1000
6004	10	2100
6112	25	420
6025	20	420
0035 604E	20	1400
0040	20	270
6108	24	/30
6063	24	1100
525	37	470
934	43	2100
6106	6	1100
6025	5	1300
6113	25	880
6060	22	790
6032	32	1400
6123	50	1000
6098	16	720
6065	19	910
6114	32	290
6064	30	1300
6081	9	610
6048	13	660
		44,320 (Total for 41 under age 40)
		Average = 1080.98 mrem
		•*

Females

Total for all 49 females = 54,710 Average = 1116.55 mrem

APPENDIX

1

Estimates of Radiation Doses Received By Person Who Visited at Bikini for About 10 Years Until August 1978

A. Bone Marrow Doses - Calculation of Average Dose (Values in mrem)

Male		Female	
1600	2600	260	430
1600	1600	1000	1500
300	710	* 1700	280
1300	510	810	770
1200	2100	1400	1100
1300	1800	700	430
1600	680	1500	2200
890	500	1700	1200
2400	1100	1600	1300
1300	350	900	900
1500	2700	1200	820
1900	1600	2100	1400
900	210	1500	1100
2100	2100	410	760
310	1400	400	1000
1500	1900	1300	300
370	1600	340	1400
1300	1900	1500	620
2300	1600	1200	670
1900	<u>3000 (</u> highest value)	2400	56,200 mrem
1600	72,360 mrem	320	
480	n = 50	1400	n = 49
1800		1600	
2000		1900	
2500		2300	Average dose to all people
2300		1100	72.36 rem
1900		1900	<u>56.20 rem</u>
590		1400	128.56
1500		740	
2600		2200	$\frac{128.56}{99}$ = 1.2986 = 1.3

rem persoi

B. Whole Body Dose

Males

	Male	S
Identification Number	Age	Total Whole Body Dose (mrem)
6001	66	1400
6127	13	1500
6120	29	300
6076	20	1300
0070	23	1200
6010	18	1100
6122	12	1500
6066	32	830
6070	28	2200
6119	22	1200
6117	22	1400
6129	31	1800
6015	11	870
6033	27	2000
6007	35	300
6008	32	1400
6071	32	350
963	27	1200
6096	46	2100
6067	32	1700
6073	24	1400
6072	20	460
6119	17	1700
864	51	1900
966	56	3200 (highest value)
6009	6	2200
6049	8	1900
6042	7	580
6014	5	1500
6012	7	2400
6016	10	2400
6013	5	1600
6005	38	700
6135	35	500
6125	35	2100
6067	56	1700
6002	65	670
6006	37	490
6096	48	1100
80	69	330
6017	49	2300
6058	56	1500
6004	28	200
6018	34	1900
6126	35	1400
6003	22	1700
6023	8	1500
6131	14	1800
6011		1400
6133		$\frac{2000}{52.220}$
for all 50 males = 70.530		55,250 (10tal 101 55 under age 40)
		Average = 1364.87 mrem

Average = 1410.6 mrem

Total

•

	RESIDENTS OF RIOUS LIVING PAT	Imported Food (50% of Diet)	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No			
•_						ŧ-, <i>ĭ</i> -								
	•													
	- -													
	_						·							
······································														
												-		
	. .													
				-	2.98 	 								
; 														;
	ADIATI SLANDS	Bi											s the a	
	ESTIMATED F D/OR BIKINI 19	Time on Eneu (%)	100	00	06 06	100	06 06	00 L	06 06	100 100	06 06		is three time	
	ENEU AN	Years on/ Years off	Permanent Permanent	Permanent Permanent	Permanent Permanent	L/L	1/1	1/2 1/2	1/2 1/2	1/3 1/3	1/3 1/3	are rounded off.	cal value given	
		Residence Island	Eneu Eneu	Bikini Bikini	Eneu Eneu	Eneu Eneu	Eneu Eneu	Eneu Eneu	Eneu Eneu	Eneu Eneu	Eneu Eneu	* Doses	** Numeri	

0	a.		•					
pt. 1, 198	11 11 Rates Cancer 15A	, 24 24	24 24	24 24	15 15	15 15	11	==
ξ. O	Nature Deaths	160 160	160 160	160 160	100	100	70 70	70
	Deaths Deaths Relative Risk +	1.399	11.66 21.92	1.585 3.03	.438	.497	0.204 .417	.238
· .	9 <u># Cancer</u> Absolute Risk *	.531	2.214 4.16	.301	.083	.094 .183	.0388	.045
	8 Total Person <u>(rem)</u>	3054 6108	25450 47846	3461 6617	957 1978	1085 2105	446 909.8	520 952.6
	7 30-Yr Additional <u>Person (rem</u>)	1404 2808	11700 21996	1591 3042	432 892.8	489.6 950.4	203.9 415.8	237.6 435.6
Table 2 CANCER RISKS	6 30-Yr Dose (0.36 x Col. 3) (rem)	1.08 2.16	9.0 16.92	1.224 2.340	.54 1.116	.612	.371	.432
	5 # of Births Expected in 30 Yr	1300 1300	1300 1300	1300 1300	800 800	800 800	550	550 550
	4 30-Yr Person (rem)	1650 3300	13750 25850	1870 3575	525 1085	595 1155	242 494	282 517
	3 30-Yr Bone Marrow Dose (rem)	3.0	25. 47.	3.4 6.5	1.5 3.1	1.7 3.3	1.03 2.1	1.2
	2 Initial Population	550 550	550 550	550 550	350 350	350 350	235 235	235 235
	1 Conditions	U-100% U-100% Imported food No imported food	[[NI-100% 	EU-330 days XINI-35 days Timported food No imported food	EU-1 year on nd 1 year off . Imported food . No imported food	EU-330 days KINI-35 days year on and <u>1 year off</u> . No imported food	EU-1 year on and 2 years off . Imported food	EU-330 days KINI-35 days year on and 2 years off 1. Imported food

* 87 x 10⁻⁶ per person rem + 458 x 10⁻⁶ per person rem

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Table BIRTH D
DefectsBody Dose% IncreaseNo. of Increase 0.7% (rem) $(0.2\%/rem)$ $Birth Defects$ $0.1+140$ 5.4 1.08 1.51 $0.1+140$ 5.4 1.08 1.51 $0.1+140$ 5.4 1.08 1.51 $0.1+140$ 5.4 1.08 1.51 $0.1+140$ 5.4 1.08 1.51 $0.1+140$ 5.4 1.08 1.51 0.24 8.8 1.232 0.24 8.8 12.32 0.59 1.18 1.65 5.9 1.18 1.65 5.9 1.18 1.65 $5.6+90$ 1.4 28 5.9 1.18 1.65 5.9 1.18 1.65 5.9 1.18 2.8 5.9 1.18 1.65 5.9 1.18 1.65 5.9 1.18 1.65 5.9 1.18 2.8 $5.6 +90$ 2.8 2.8 $5.5 +60$ 1.9 2.8 $5.5 +60$ 1.9 2.2 $5.5 +60$ 1.1 2.2 $5.5 +60$ 1.1 2.2 $5.5 +60$ 2.0 2.0 $5.5 +60$ 2.0 2.0 $5.5 +60$ 2.0 2.0 $5.5 +60$ 2.0 2.0 $5.5 +60$ 2.0 2.0 $5.5 +60$ 2.0 2.0 $5.5 +60$ 2.0 2.0 $5.5 +60$ 2.0 2.0 $5.5 +60$ 2.0 <th>3 Sno</th>	3 Sno
.1+140 2.8 $.56$ $.78$ $1+140$ 5.4 1.03 1.51 $1+140$ 5.4 1.03 1.51 $1+140$ 5.4 1.03 1.51 $1+140$ 2.4 4.8 6.72 $$	of Births Birth in 30 Yr (1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1300 13 1300 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1300 14 1300 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1360 14 1300 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800 810 810 810
3.85+60 .96 .192 .1152 3.85+60 1.9 .38 .228 3.85+60 1.1 .22 .132 3.85+60 2.0 .4 .24	06 008 008
1.85 ± 60 1.1 22 132 3.85 ± 60 2.0 .4 24	550 58 550 58
	550 58 550 58

* Values were rounded for use in the Bikini book.

.

	S		Sponcaneous & Increase	139 0.19 139 0.38	139 1.68 139 3.1	139 0.22 139 0.414	85.6 0.098 85.6 0.196	85.6 0.112 85.6 0.21	58.85 0.068 58.85 0.13	58.85 0.076 58.85 0.14	9 10	5 × 1300 births 6
	Birth Defect:	Binth Dofocto	(5-75/10 /rem)	.018227** .035527	.156-2.34 .286-4.29	.021312 .038575	.0056084 .011168	.0064096 .01218	.002604 .0052078	.0030045 .00550825	ω	** eg. <u>2.8 rem x</u>
vsed_on_BEIR-III		30-Vr Whole	Body Dose (rem)	2.8	24.0 44.0	3.2	1.4 2.8	1.6 3.0	.96 1.9	1.1 2.0	<u> </u>	
stimates Ba		Number	of Births in 30 Yrs	1300	1300 1300	1300 1300	800 800	800 800	550 550	550 550	9	
Risk E	-	lute	L-L 158	. 483	4.02 7.56	.547 1.05	.15 .313	.17 .33	.0705 .144	.082	2	
		k Abso	L-Q 67	.205 .409	1.71 3.21	.23 .44	.064	.073	.0298	.035	4	
	Cancer	ative Risl	L-L 430	1.31 2.63	10.94 20.57	1.49 2.85	.41	.467	.192 .39	.224	e S	
		Rela	L-Q 182*	.556	4.63 8.71	.63 1.20	.174 .36	.197 .383	.081 .166	.095	2 -	ent san rem
		Total	Person rem	3054 6108	25450 47846	3461 6617	957 1978	1085 2105	446 910	520 953	_	Coeffici(, v ln ⁻⁶ "
				~ ~	ω4	οn	7 8	6 0 1	11 12	13 14		* Risk 183

*** Based on highest value in Column 8.

Table 4

CALCULATION OF POTENTIAL RADIATION CAUSED HEALTH EFFECTS FOR PERSONS LIVING IN THE NORTHERN MARSHALL ISLANDS

Potential health effects for persons living in the northern Marshall Islands are calculated using the same assumptions and same methods used for the Bikini population (copy attached). Risk coefficients from both BEIR I and BEIR III were used providing not only a range of estimates but also a comparison of the most conservative (linear, relative risk model) with what would be described by many radiation biologists as the most probable (linear-quadratic, absolute model).

POPULATION ESTIMATES

The following population estimates are derived by simple ratios from the Bikini calculation (copy attached) for a population of 550. These calculations predicted 1277 births, 164 deaths over a period of 30 years and a final population of 1684 after 30 years for an initial population of 550.

Deaths in 30 years:	$\frac{164}{550} = \frac{\text{deaths in population of interest}}{\text{initial population of interest}}$
Births in 30 years:	$\frac{1277}{550} = \frac{\text{births in population of interest}}{\text{initial population of interest}}$
Population after 30	years: $\frac{1684}{550} = \frac{\text{population after 30 years}}{\text{initial population of interest}}$

Also from the Bikini population, the estimate of the full 30 year dose received by children born during the 30 year period is 0.36 of the dose persons living the entire 30 year period would receive.

RISK COEFFICIENTS

Both BEIR I and BEIR III risk coefficients are used. These are as follows:

BEIR I

CancerMinimum:	Absolute risk of leukemia (26 x 10^{-6} rem ⁻¹) + 30 year elevated risk for other cancers (61 x 10^{-6} rem ⁻¹) = 87 x 10^{-6} rem ⁻¹ .
Maximum:	Relative risk of leukemia (37 x 10^{-6} rem ⁻¹) + lifetime elevated risk (421 x 10^{-6} rem ⁻¹) = 458 x 10^{-6} rem ⁻¹ .

Genetic Effects: 0.2% per rem in first generation.

BEIR III

CancerMinimum:	Absolute lifetime risk of cancer for continuous
	exposure, 67 x 10^{-6} rad ⁻¹ (low LET) based on
	linear quadratic model.

Maximum: Relative lifetime risk of cancer for continuous exposure, 430 x 10⁻⁶ rad⁻¹, based on linear model.

Genetic	EffectsMinimum:	75	х	10-6	increase	per	rem	in	first	
		ger	nei	ratio	٦.					
					-					

Maximum: 5.0×10^{-6} increase per rem in first generation.

			1 1 1	DAYS DAYS X	36 97	58 94	00
			1	U 330 [INI 35 0FF	Ë Ë	ດັ ດ	16
ц. 1			1 1 1	1 YR ENE BIK 3 YEARS IMPORTED FOOD	701 011	321 330	860 920
1 YEAR ON 1 YEAR OFF X	168 181	504 543	2800 3100	JFF X	168 179	504 537	1500
ENEU IMPORTED FOOD	88 92	264 276	1400 1500	1 YEAR E1 3 YEARS (IMPORTED FOOD	88 92	264 276	760
BIKINI 35 X				U 330 DAYS INI 35 DAYS OFF X	186 197	558 594	2000
ENEU 330 IMPORTED FOOD				1 YR ENE BIK 2 YEARS IMPORTED FOOD	107	321 330	1100
×	1974 2063	5922 6189	44,000 47,000		168 179	504 537	0061
BIKINI PORTED OD	65 94	95 82	,000	T FAR T YEARS Z YEARS IMPORTE FOOD	88 92	264 276	960
ENEU X FO	242 10 261 10	726 31 783 32	5400 24 6000 25	330 DAYS 330 DAYS vI 35 DAYS X	186 198	558 594	3000
100% IMPORTED F00D	124 130	372 390	2800 3000	T YR ENEU BIKII NYEAR OFF IMPORTED FOOD	106	318 330	1600
	<u>Max. Annual</u> WB BM	3X Max. Annual WB BM	<u>30 Year</u> WB BM	1 1 1 1	<u>Max. Annual</u> WB BM	<u>3X Max</u> . WB BM	30 Year WB

August 5, 1980

В

			,	1			
	·		1 . 1	330 DAYS 1 35 DAYS F X	186 197	558 594	1600 1800
ц. (, , , , , ,	1 YR ENEU BIKIN 3 YEARS OFF IMPORTED FOOD	107 011	321 330	860 920
1 YEAR ON 1 YEAR OF X	168	504 543	2800 3100	NEU OFF X	168 179	504 537	1500 1700
ENEU IMPORTED FOOD	88 92	264 276	1400 1500	1 YEAR E 3 YEARS 1MPORTEC FOOD	88 92	264 276	760 810
BIKINI 35 X			· •	J 330 DAYS INI 35 DAYS DFF X	186 197	558 594	2000 2200
ENEU 330 IMPORTED FOOD				1 YR ENEL BIKI 2 YEARS C IMPORTED FOOD	107 110	321 330	1100 1200
×	1974 2063	5922 6189	44,000 47,600	ENEU	168 179	504 537	1900 2100
BIKINI 90RTED 00	55 94	95 82	,000		88 92	264 276	960 1030
ENEU X FOO	242 10 261 10	726 31 783 32	5400 24 6000 25		186 198	558 594	3000 3300
100% IMPORTED F00D	124 130	372 390	2800 3000	T YR ENEU BIKIN YEAR OFF IMPORTED FOOD	106 011	318 330	1600 1700
	Max. Annual WB BM	3X Max. Annual WB BM	<u>30 Year</u> WB BM	1 1 1 1 1	<u>Max. Annual</u> WB BM	<u>3X Max</u> . WB BM	30 Year WB BM

August 2, 1200

			1 1 1	DAYS 5 DAYS X	186 197	558 594	600 800
			 	ENEU 330 BIKINI 30 NRS OFF NTED			
_ _			, , ,	1 ΥR 3 ΥΕΛ IMPOR F00D	107 110	321 330	860 920
1 YEAR ON 1 YEAR OF X	168 181	504 [.] 543	2800 3100	VEU DFF X	168	504 537	1500 1700
ENEU IMPORTED FOOD	88 92	264 276	1400 1500	1 YEAR EN 3 YEARS C IMPORTED FOOD	88 92	264 276	760 810
BIKINI 35 X		n 	~`\	J 330 DAYS INI 35 DAYS)FF X	186 197	558 594	2000 2200
ENEU 330 IMPORTED FOOD	, ¹ ,	1 1 2		1 YR ENEL BIKJ 2 YEARS (IMPORTED FOOD	107 110	321 330	1100 1200
×	1974 2063	5922 6189	44,000 47,000	ENEU	163 179	504 537	1900 2100
BIKINI 4PORTED 30D	065 094	195 282	4,000 5,000		88 92	264 276	960 1030
ENEU X F(242 10 261 10	726 3 783 3	5400 2 6000 2	330 DAYS 330 DAYS 1 35 DAYS X	186 198	558 594	3000 3300
100% IMPORTED F00D	124 130	372 390	2800 3000	T YR ENEU BIKIN YEAR OFF IMPORTED FOOD	106	318 330	1600 1700
	<u>Max. Annual</u> WB BM	3X Max. Annual WB BM	<u>30 Year</u> WB BM	1 1 1 1 1	Max. Annual WB BM	<u>3X Max</u> . WB BM	<u>30 Year</u> WB BM

August 'c isugu

picocuries per gram

These numbers are 0-5 centimeters soil increment (dictated by W. L. Robison, Lawrence Livermore, August 6, 1980)

ENEWETAK	ISLANDS	CESIUM	STRONTIUM	PLUTONIUM	AMERICIUM
ALICE	Bokoluo	52	96	46	22
BELLE	Bokombako	84	161	62	24
CLARA	(no native name)	32	50	25	9
DASEY	Louj	7.9	49	28	11
IRENE	Boken	6.7	34	24	4.5
JANET	Enjebi	24	40	15	6.2
KATE	Mijikadrek	7.3	16	15	8.8
LUCY	Kidrinen	13	23	20	13
MARY	Bokenelab	9.2	21	12	6.4
NANCY	Elle	8.7	23	19	12
OLIVE	Aej	14	14	11	6.4
PEARL	Lujor	9.3	15	26	6.8
RUBY	Eleleron	3.5	5.9	6.1	1.2
SALLY	Aomon	3.9	5.5	7.6	2.9
TILDA	Bikile	4.5	7.8	4.1	2.4
URSULA	Lojwa	1.5	2.9	1.2	0.7
VERA	Alembel	5.7	0.83	4.3	2.6
WILMA	Billae	1.7	0.72	2.0	1.2

picocuries per gram

الطلائة النوبا

. .

100

These numbers are 0-5 centimeters soil increment

(dictated by W. L. Robison, Lawrence Livermore, August 6, 1980)

ENEWETAK	ISLANDS	CESIUM	STRONTIUM	PLUTONIUM	AMERICIUM
ALICE	Bokoluo	52	96	46	22
BELLE	Bokombako	84	161	62	24
CLARA	(no native name)	32	50	25	9
DASEY	Louj	7.9	49	28	11
IRENE	Boken	6.7	34	24	4.5
JANET	Enjebi	24 *	40	15	6.2
KATE	Mijikadrek	7.3	16	15	. 8.8
LUCY	Kidrinen	13	23	20	13
MARY	Bokenelab	9.2	21	12	6.4
NANCY	Elle	8.7	23	19	12
OLIVE	Aej	14	14	וו	6.4
PEARL	Lujor	9.3	15	26	6.8
RUBY	Eleleron	1.5	5.9	6.1	1.2
SALLY	Aomon	3.9	5.5	7.6	2.9
TILDA	Bikile	4.5	7.8	4.1	2.4
URSULA	Lojwa	1.5	2.9	1.2	0.7
VERA	Alembel	5.7	0.83	4.3	2.6
WILMA	Billae	1.7	0.72	2.0	1.2

	, 9 1 9			.,					
		. <u></u>							
1		-							
	<u>) (0</u>								ter a futficientes

yn Enen	330 d	l'yr i	mean	1 92 5	here 330 of	lin the	L*e-	191 Chen Plan	3.5 .4.
n 14		2 /10	olh	2 %	11	39-014		3 m 11	4
my, strat	\mathbf{V}	Invitio		loold		In you test		Ingented.	і
jest		ford		ford	/	ford	/*	broot	
		86	11.2	147	101	55	118	107	186
106	186	92	179	107	197	72	179	110	197
//0	110	1-							
		· · · · · ·							
318	558	264	504	321	558	264	504	321	558
330	.594	276	537	330	594	2-74	331	330	317
1									1
							1	1	1
1600	3000	960	1900	1100	2000	760	1500	860	1600
1600	3000 3300	960 1030	1900 2100)100 1200	2000	760 813	1500 1700	860 920	1600 1800
		9 Snew 330 d 3 She 330 d 3 She 330 d 3 She 330 d 106 186 106 186 106 188 318 558 330 594	In Ener 330 d 1 yr Solar 330 d 1 yr Solar 355 d 1 yr yr 11- yr 11- 106 106 106 186 88 106 186 88 106 186 88 106 186 88 192 24 192 192 192 192 192 192 192 192	yn Smer 330 d 1 y2 Eners yn Smer 330 d 1 y2 Eners yn ell- yn ell- yn id X Jugartin Yn ell- 106 186 88 168 106 186 88 168 106 188 92 179 318 558 264 504 330 594 276 537	yn Enne 3304 lyn Ener 1yn 1 318 558 264 276 537 330	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

,							
			1 1 1 1 1	J 330 DAYS INI 35 DAYS DFF X	186 197	558 594	1600 1800
			, , , , ,	1 YR ENEL BIKI 3 YEARS C IMPORTED FOOD	107 011	321 330	860 920
1 YEAR ON 1 YEAR OFF X	168 181	504 543	2800 3100	VEU DFF X	168	504 537	1500 1700
ENEU IMPORTED FOOD	88 92	264 276	1400 1500	1 YEAR E 3 YEARS 1 MPORTED FOOD	88 92	264 276	760 810
BIKINI 35 X					186 197	558 594	2000 2200
ENEU 330 IMPORTED FOOD				1 YR ENEL BIK 2 YEARS IMPORTED FOOD	107 110	321 330	1100 1200
×	1974 2063	5922 6189	44,000 47,C00	ENEU	168 179	504 537	1900 2100
BIKINI 0RTED 00	55 94	95 32	,000		88 92	264 276	960 1030
ENEU X FOO	242 100 261 100	726 31 783 32	5400 24 6000 25		136 198	558 594	3000 3300
100% IMPORTED F00D	124 130	372 390	2800 3000	T YR ENEU BIKIN YEAR OFF IMPORTED FOOD	106 110	318 330	1600 1700
	lax. Annual WB BM	X Max. Annual WB BM	<u>30 Year</u> WB BM	1 1 1 1	Max. Annual WB BM	<u>3X Max</u> . WB BM	<u>30 Year</u> WB BM

REPOSITORY	PNNL	
COLLECTION	Marshall	Jolands
BOX NO. 5	684	
FOLDER U	htel	

1

.

DOCUMENT DOES NOT CONTAIN ECI Reviewed by