2. For estimates of cancer risk both the relative risk coefficient and the absolute risk coefficient were used to give a range of estimated risk. The absolute risk coefficient gives a lower value, is less variable with the population and is not dependent upon the spontaneous cancer incidence, which is not known for the Bikini population. The relative risk coefficient gives a high value, but since it is based on the spontaneous cancer incidences, which is unknown for the Bikini population, it is probably less reliable than the estimates calculated from the absolute risk coefficients.
3. For estimating increased cancer incidences, the bone marrow dose was used because it was slightly higher than the whole body dose. This probably introduced a small element of conservation.
4. For estimating birth defects neither BEIR-I or BEIR-III is very clear about what is meant by parental dose, thus it is not clear whether birth defects should be based on the dose to one parent or both parents. In the latter case, the 30 -year whole body dose would be doubled. We assumed the BEIR-I risk of 0.2% rem was based on both parents being irradiated. Also because we believed the risk coefficient from BEIR-I
males and 49 females. These values are tabulated in the appendix.
5. The spontaneous incidence of birth defects was taken to be 10.7% of all live births from BEIR-III.
6. The normal incidence of cancer deaths was assumed to be 15%. A value less than the approximately 20% given for the U.S. population was used because the Bikini people have been and will probably be exposed to much lower limits of environmental carcinogens than people living in the U.S. and because of limited medical services and prevalence of other risks such as drowning, poisoning, etc. Other causes of death are probably higher in the Bikini population than in the U.S. population. We also suspected the average life span was less than in the U.S. population, which might tend to reduce the number of cancers that would occur in the elderly.
7. The largest dose a person might receive in a year was estimated to be three times the average dose. Data in the appendix for individuals show that the highest individual dose is more than twice the average but less than three times.

To estimate the number of births, deaths and the magnitude of the Bikini population after 30 years, information was used from the final draft of the Marshall Islands Five Year Health Plan prepared by the Trust Territories' Department of Health Services' Office of Health Planning and the Resources Department. The document is undated, but the presence of data from. 1976 indicates that it must have been prepared in the period of 1977 to 1979 when we received it. It was noted that there are apparent inconsistencies among several of the different tables. For example, Table III-1 gives data for the Marshall Islands for the period 1955-1975 and Table III-5 gives data for the infant mortality rate for 1976. In Table III-1, the infant death rate per 1000 births for 1970 through 1975 is given as $28.3,33.6,25.4,46.4,21.1$ and 37.0 . However, Table III-5 indicates the infant mortality rate to be only 17.04. We used the data of Table III-1 in the following estimates; because it is more complete and it provides a self-consistent set of data. However, in view of the discrepancies, the results can only be considered as approximations. This probably makes little real difference in view of the uncertainties in the risk coefficients that were used. There is also a bias built into the data because of the inclusion of Ebye and Majuro in the overall Marshall Island rates. This arises from the different death rates (particularly infants) at these two locations. In many respects the population of Ebye and Majuro are quite dissimilar from the Bikini population because they have the advantages and disadvantages of a more technical environment.

For the estimates the last 5 or 6 year average of the data were used because they are probably the most representative of current conditions. From this, the following were obtained:

1. Rate of increase of the population has been about $3.8 \% /$ year.
2. Infant death rate is about 3.2% per birth.
3. Overall death rate is 0.54% per year.
4. Birth rate is 4.2% per year.

A population of 550 was assumed for the one that might move back permanently to Bikini Atoll. Values for other initial populations were obtained by ratios of the results.

The total population at the end of 30 years is given by the compounding equation:

$$
P_{30}=550(1+0.038)^{30}=1684
$$

The number of births in 30 years are given by:

$$
B=0.042 \times 550 \int_{0}^{30}(1.038)^{x} d x
$$

where x is the time between 0 and 30 . This gives

$$
B=\frac{0}{\ln } \frac{042 \times 550}{1.038}\left[1.038^{30}-1\right]=1277
$$

Similarly, the number of deaths in the 30 year period would be:

$$
\begin{aligned}
& \text { Deaths }=0.0054 \times 550 \int_{0}^{30}(1.038)^{x} \mathrm{dx} \\
& \text { Deaths }=\frac{0.0054 \times 550}{\ln 1.038}\left[1.038^{30}-1\right]=164
\end{aligned}
$$

One other datum needed is the reduction in 30 year dose to those born after the return because of the decrease in radiation levels and the smaller amount of time in the 30 year period that is spent on the island. For this, the total population dose for those born after returning assuming an initial dose rate of 1 rad/year is given by:

$$
P=550 D_{1} \int_{0}^{30} e^{-\lambda x}\left(1.038^{x}\right) d x
$$

λ is the half-life of decrease of the radiation dose, taken here as 30 years.

Because this integral cannot be solved analytical, an approximate solution was obtained by calculating this function for each of 30 years and

The assumption of no aeatns in ane ofighnat s5utecurn iny was maue ior simplicity and the lack of good death rate data.

We also compared the age characteristics of the Marshallese from Table IV-3 and the U.S. population in 1970. This comparison is given in the attached curve. The slopes are similar above age 35 but the magnitudes are distorted by the high birth rate in the Marshall Islands. However, in terms of the relative risk the similar slopes suggest that if the natural cancer rates in the two populations are similar, the relative risk for people above 35 in both populations would be similar because most of the cancer occurs at ages from about 40 and above. However, the magnitude of the relative risk in the U.S. used for the Marshallese will be high by a factor of somewhere around 2-3 because of the distortion caused by the very high proportion of young people who have a relatively low natural cancer incidence.

Using the preceding calculations for a population of 550, calculations were made for other population sizes. For a population of 550 (from preceding):

$$
\begin{aligned}
& \text { Deaths in } 30 \text { years }=164 \approx 160 \\
& \text { Births in } 30 \text { years }=1277 \approx 1300
\end{aligned}
$$

For a population of 140 (the number that returned to Bikini):
20
COMPARISON of AGE CHARACTERISTICS
OF MARSHALLESE AND 1970 US POPULATIONS
$18-$

- MARSHALLESE
--- U.S.
-. MARSHALLESE

Deaths in 30 years $\frac{164}{550}=\frac{x}{140}, x=41.7 \approx 40$
Births in 30 years $\frac{1277}{550}=\frac{x}{140}, x=325 . \approx 300$

For a population of 235:
Deaths in 30 years $\frac{164}{550}=\frac{x}{235}, x=70.07 \approx 70$
Births in 30 years $\frac{1277}{550}=\frac{x}{235}, x=545.62 \approx 550$

For a population of 350 :
Deaths in 30 years $\frac{164}{550}=\frac{x}{350}, x=104.36 \approx 100$
Births in 30 years $\frac{1277}{550}=\frac{x}{350}, x=812.63 \approx 800$

III. RISK COEFFICIENTS

At the time the Bikini book was prepared no agency in the U.S. government had accepted the risk coefficients in BEIR-III. Thus we were constrained to use risk coefficients from BEIR-I. While not included in the printed book, risk estimates based on BEIR-III were calculated for comparison purposes. The following gives the origin of the risk coefficients used.

A. BEIR-I

1. Cancer (Tables 3-3 and 3-4)

Derived
Cancer deaths/year in U.S.
from 0.1 rem/year
$($ pop $=197,863,000)$

Cancer deaths $/ 10^{6}$ person rem
Leukemia $\quad \frac{\text { Absolute }}{516} \quad \frac{\text { Relative }}{738} \quad \frac{\text { Absolute }}{26} \quad \frac{\text { Relative }}{37}$

Other Cancers
30 year
1210 2436 elevated risk
lifetime
elevated risk

61
123
$75 \quad 421$

$$
\begin{array}{lllll}
\text { Range } & 1726-2001 & 3174-9078 & 87-101 & 160-458
\end{array}
$$

From the above the minimum estimate of cancer risk would be given by a risk coefficient of $87 / 10^{6}$ person rem and the maximum by $458 / 10^{6}$ person rem. Thus, these two risk coefficients were used to define a range of estimated cancer deaths.

2. Genetic Effects (from Page 1 \& 2 BEIR-I)

a. Based on specific defects 5 rem/30 year reproductive generation would cause in the first generation 100-1800 cases of dominant diseases and defects per year (3.6 million births/year) or 5 times this amount at equilibrium. The 1800 cases represent an increase of 0.05% incidences per year first generation and 0.25\% at equilibrium. In addition there would be a few chromosomal defects and recessive diseases and a few congenial defects due to a single gene defect and chromosome aberrations.

The total incidence at equilibrium is 1100 to $27,000 /$ year. These at equilibrium, the maximum would be 0.75% or 0.15% in the first generation.

These are equivalent to 0.15% per rem at equilibrium and $0.03 \% / \mathrm{rem}$ in the first generation.
b. Based on overall ill health. Overall ill health: 5\% - 50% of 111 health is proportional to the mutation rate using 20% and doubling dose of 20 rem, 5 rem per generation would eventually lead to a 5% increase in ill health.

Thus the rate of overall ill health is $1 \% /$ rem at equilibrium or $0.2 \% / \mathrm{rem}$ in first generation.

For estimating the potential genetic derived health defects in the Bikini population it was decided to use a risk coefficient of 0.2% per rem in the first generation recognizing that it was probably very conservative.

B. BEIR-III

1. Cancer (Table V-4 of Typescript Edition)

Lifetime Risk of Cancer Death (deaths $/ 10^{6} / \mathrm{rad}$)

Single exposure to 10 rad

Model	Absolute	Relative	Absolute	Relative
L-Q, LQ-L	77	226	67	182*
L-L, $\overline{L-L}$	167	501	158	430*
Q-L, $\overline{Q-L}$	10	28	---	---

* In printed version these were 169 and 403 , respectively. We used the risk coefficients that were derived for continuous exposure.

2. Birth Defects--pages 166-169 (mean parental age $=30$ years) 1 rem per generation (1 rem parental exposure) per 10^{6} live offspring 5 to 75 birth defects, this is $0.0005--0.0075 \%-$ First generation.

Since the spontaneous rate is given as 10.7%, in the U.S. population, 1 rem will increase the rate from 10.7% to $10.7005-10.7075 \%$.

In terms of the spontaneous rate 1 rem per generation gives $\frac{0.0005}{10.7}=$ $0.000047=0.0047 \%$ increase and $\frac{0.0075}{10.7}=0.0007=0.07 \%$ increase .

IV. CALCULATIONS OF RISK

Table 1 gives the radiation dose values provided by Dr. Robison for use in developing estimates of increased health risks in the Bikini population.

A. Risks for 14 Different Living Conditions

1. Cancer Risks

Table 3 shows the calculations for estimates of increased cancer risk for 14 different living conditions.
2. Birth Defects Risks

Table 3 gives the calculations for the estimates of birth defects.

B. Risk Estimates Based on BEIR-III

Table 4 gives risk estimates based on BEIR-III risk coefficients. These were calculated for comparison purposesconly and were not used in the Bikini book. The highest estimates for cancer risk result from using the linear relative risk model and are about the same as those given in Table 2 for the relative risk model. The lowest estimates result from the linear-quadratic absolute risk model and are slightly less than those for the absolute model in Table 2. Thus, as far as estimates of cancer risk are concerned, those obtained using risk coefficients from BEIR-I are in the same general range as those obtained using risk coefficients from BEIR-III.

Risk estimates for birth defects obtained using the risk factor from BEIR-I gives values about three times those obtained using the upper value of the range of risk factors given in BEIR-III. If BEIR-III risk factors for birth defects represent a more enlightened assessment of this potential consequence of radiation exposure than the factor taken from BEIR-I for overall health defects, then the estimates in the Bikini book may be conservative by a factor of three.
Females
Identification Number Age Total Whole Body Dose (mrem)
6111 32 250
6097 19 950
6115 43 1600
6109 15 760
6091 13 1300
6046 43 600
6061 32 1400
61227016006030101600
6129 13 850
6027 6 1200
6010 2000
6705 5 1500
6059 19 400
6124 54 390
6058 18 1200
6036 27 340
6110 32 1400
6051 19
6092 8
6080 7
6038 61200
2400 (highest value)310
1400
6103
6103 9 9 1600
6028 7 1800
6044 6 2200
21 6062 1100
6034 46 1800
865 45 1300
6050 22 710
6094 10
2100
420
6112 35
1400
6035 20270
6045 28730
6108 24
6063 24 1100
525 470
9342100
4361061700100
6025
025 1300
6113 880
6060 790
60321400
61231000
6098720
6065 910
6114 290
6064 1300
6081 6106606048

APPENDIX

Estimates of Radiation Doses Received By Person Who Visited at Bikini for About 10 Years Until August 1978
A. Bone Marrow Doses - Calculation of Average Dose (Values in mrem)

Male		Femal	
1600	2600	260	430
1600	1600	1000	1500
300	710	- 1700	280
1300	510	810	770
1200	2100	1400	1100
1300	1800	700	430
1600	680	1500	2200
890	500	1700	1200
2400	1100	1600	1300
1300	350	900	900
1500	2700	1200	820
1900	1600	2100	1400
900	210	1500	1100
2100	2100	410	760
310	1400	400	1000
1500	1900	1300	300
370	1600	340	1400
1300	1900	1500	620
2300	1600	1200	670
1900	3000 (highest value)	2400	56,200 mrem
1600	72,360 mrem	320	
480	$n=50$	1400	$n=49$
1800		1600	
2000		1900	
2500		2300	Average dose to all people
2300		1100	72.36 rem
1900		1900	56.20 rem
590		1400	128.56
1500		740	
2600		2200	$\frac{128.56}{99}=1.2986=\begin{aligned} & 1.3 \mathrm{rem} \\ & \text { per persol } \end{aligned}$

$$
\begin{aligned}
& \begin{array}{c}
\circ \\
\stackrel{\circ}{9} \\
\stackrel{3}{0} \\
\dot{0}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 웅 우 응 으ㅇㅜㅜ 음 } \\
& \text { 응 } \\
& \text { 응 유 우 }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{0}{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ตัํํ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 꿍. } \\
& \infty
\end{aligned}
$$

$$
\begin{aligned}
& \text { 馬㝒 } \\
& \text { 品总 }
\end{aligned}
$$

	$\stackrel{\infty}{\sim}$		$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	No	$\stackrel{\otimes}{\sim}$	$\begin{gathered} \sim \sim \\ \underset{\sim}{\sim} \\ \end{gathered}$	$\stackrel{\sim}{\sim}$
	1	$\begin{aligned} & \infty \\ & \dot{+}+\infty \\ & \hline \end{aligned}$	$\stackrel{-\infty}{\infty}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	No．

$\cdots \text { 屶 }$		مْ	ぶ	$\begin{aligned} & \sim \\ & \text { nion } \\ & \hline \end{aligned}$	$\begin{array}{r} +\infty \\ -i n \end{array}$	$\begin{gathered} 0.0 \\ \text { im } \end{gathered}$	$\stackrel{\circ}{9}$	$\because 0$
			업	억		888	$\begin{aligned} & 80 \\ & 0.0 \\ & 1 \\ & 10 \\ & 00 \\ & 00 \\ & 000 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
		$\begin{aligned} & \text { O8 } \\ & \text { M } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { Mr } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 8.8 \\ & \text { M } \\ & \text { M } \end{aligned}$	OiO	$\mathrm{C}_{\infty}^{\mathrm{C}} \mathrm{O}$	80 웅	응앵
		응융	응	응	웅융	으앴ㅇ	$\stackrel{\sim}{N} \sim \stackrel{\sim}{N}$	$\stackrel{\sim}{\sim} \sim{ }_{\sim}^{n}$
	0 0 0 0 0 0 0				ᄂ ə	qe 1 NI	SV JW甘S	
$\stackrel{\square}{\square}$		$\rightarrow N$	$m \nabla$	\％	N	ar	$\underset{\sim}{\sim}$	\cdots

Table 4

CALCULATION OF POTENTIAL RADIATION CAUSED HEALTH EFFECTS FOR PERSONS LIVING IN THE NORTHERN MARSHALL ISLANDS

Potential health effects for persons living in the northern Marshall Islands are calculated using the same assumptions and same methods used for the Bikini population (copy attached). Risk coefficients from both BEIR I and BEIR III were used providing not only a range of estimates but also a. comparison of the most conservative (linear, relative risk model) with what would be described by many radiation biologists as the most probable (linear-quadratic, absolute model).

POPULATION ESTIMATES

The following population estimates are derived by simple ratios from the Bikini calculation (copy attached) for a population of 550. These calculations predicted 1277 births, 164 deaths over a period of 30 years and a final population of 1684 after 30 years for an initial population of 550 .

Deaths in 30 years: $\frac{164}{550}=\frac{\text { deaths in population of interest }}{\text { initial population of interest }}$

Births in 30 years: $\frac{1277}{550}=\frac{\text { births in population of interest }}{\text { initial population of interest }}$

Population after 30 years: $\frac{1684}{550}=\frac{\text { population after } 30 \text { years }}{\text { initial population of interest }}$

Also from the Bikini population, the estimate of the full 30 year dose received by children born during the 30 year period is 0.36 of the dose persons living the entire 30 year period would receive.

RISK COEFFICIENTS

Both BEIR I and BEIR III risk coefficients are used. These are as follows:

BEIR I
Cancer--Minimum: Absolute risk of leukemia ($26 \times 10^{-6} \mathrm{rem}^{-1}$) + 30 year elevated risk for other cancers $\left(61 \times 10^{-6} \mathrm{rem}^{-1}\right)=87 \times 10^{-6} \mathrm{rem}^{-1}$.

Maximum: Relative risk of leukemia $\left(37 \times 10^{-6} \mathrm{rem}^{-1}\right)+$ lifetime elevated risk (421 $\left.\times 10^{-6} \mathrm{rem}^{-1}\right)=$ $458 \times 10^{-6} \mathrm{rem}^{-1}$.

Genetic Effects: 0.2% per rem in first generation.

BEIR III

Cancer--Minimum: Absolute lifetime risk of cancer for continuous exposure, $67 \times 10^{-6} \mathrm{rad}^{-1}$ (low LET) based on linear quadratic model.

Maximum: Relative lifetime risk of cancer for continuous exposure, $430 \times 10^{-6} \mathrm{rad}^{-1}$, based on linear model.

Genetic Effects--Minimum: 75×10^{-6} increase per rem in first generation.

Maximum: 5.0×10^{-6} increase per rem in first generation.
August 5, 1980

168
181

ENE 330

124
130
372
390
2800
3000
Max. Annual
WB
BM

3X Max.
Annual
WB

30 Year
$\stackrel{\cong}{3}{ }_{\infty}^{\infty}$
$\begin{array}{ll}726 & 3195 \\ 783 & 3282 \\ & \\ 5400 & 24,000 \\ 6000 & 25,000\end{array}$

1 YR ENE 330 DAYS
BIKINI 35 DAYS
1 YEAR OFF
IMPoRTED $\quad x$
FOOD

106
110
318
330 16003000

Max. Annual
\% 픙

picocuries per gram

These numbers are 0-5 centimeters soil increment
(dictated by W. L. Robison, Lawrence Livermore, August 6, 1980)

ENEWETAK	ISLANDS	CESIUM	STRONTIUM	PLUTONIUM	AMERICIUM
ALICE	Bokoluo	52	96	46	22
BELLE	Bokombako	84	161	62	24
CLARA	(no native name)	32	50	25	9
DASEY	Louj	7.9	49	28	11
IRENE	Boken	6.7	34	24	4.5
JANET	Enjebi	24	40	15	6.2
KATE	Mijikadrek	7.3	16	15	8.8
LUCY	Kidrinen	13	23	20	13
MARY	Bokenelab	9.2	21	12	6.4
NANCY	Elle	8.7	23	19	12
OLIVE	Aej	14	14	11	6.4
PEARL	Lujor	9.3	15	26	6.8
RUBY	Eleleron	1.5	5.9	6.1	1.2
SALLY	Aomon	3.9	5.5	7.6	2.9
TILDA	Bikile	4.5	7.8	4.1	2.4
URSULA	Lojwa	1.5	2.9	1.2	0.7
VERA	Alembel	5.7	0.83	4.3	2.6
WILMA	Billae	1.7	0.72	2.0	1.2

picocuries per gram

These numbers are $0-5$ centimeters soil increment
(dictated by W. L. Robison, Lawrence Livermore, August 6, 1980)

	CESIUM	STRONTIUM	PLUTONIUM	AMERICIUM	
ENEWETAK	ISLANDS	52	96	46	22
ALICE	Bokoluo	84	161	62	24
BELLE	Bokombako	32	50	25	9
CLARA	(no native name)	7.9	49	28	11
DASEY	Louj	6.7	34	24	4.5
IRENE	Boken	24	40	15	6.2
JANET	Enjebi	7.3	16	15	.-
KATE	Mijikadrek	13	23	20	8.8
LUCY	Kidrinen	9.2	21	12	13
MARY	Bokenelab	8.7	23	19	6.4
NANCY	Elle	14	14	11	12
OLIVE	Aej	9.3	15	26	6.4
PEARL	Lujor	1.5	5.9	6.1	6.8
RUBY	Eleleron	3.9	5.5	7.6	1.2
SALLY	Aomon	4.5	7.8	4.1	2.9
TILDA	Bikile	1.5	2.9	1.2	0.7
URSULA	Lojwa	5.7	0.83	4.3	2.6
VERA	Alembel	1.7	0.72	2.0	1.2

DOCUMENT DUES NUI CONTAIN ECI

