No. 71

RC

Box

Collection 1320

June 30, 1960

R

ATOLL RESEARCH BULLETIN

407971

71. Microclimatic observations at Eniwetok by David I. Blumenstock and Daniel F. Rex,

with a special section on Vegetation by Irwin E. Lane

Issued by THE PACIFIC SCIENCE BOARD National Academy of Sciences—National Research Council

Washington, D. C., U.S.A.

ATOLL RESEARCH BULLETIN

11. A.K. 4.

Editor to appending

No. 71

Microclimatic observations at Enivetok

by

David I. Blumenstock and Daniel F. Rex,

with a special section on Vegetation

by

Irvin E. Lane

Issued by

THE PACIFIC SCIENCE BOARD

National Academy of Sciences--National Research Council Washington, D. C.

June 30, 1959

Lan CRAMPER

ACKNOWLEDGMENT

It is a pleasure to commend the far-sighted policy of the Office of Naval Research, with its emphasis on basic research, as a result of which a grant has made possible the continuation of the Coral Atoll Program of the Pacific Science Board.

It is of interest to note, historically, that much of the fundamental information on atolls of the Pacific was gathered by the U. S. Navy's South Pacific Exploring Expedition, over one hundred years ago, under the command of Captain Charles Wilkes. The continuing nature of such scientific interest by the Navy is shown by the support for the Pacific Science Board's research programs during the past thirteen years.

The preparation and issuance of the Atoll Research Bulletin is assisted by funds from Contract N7onr-2300(12).

The sole responsibility for all statements made by authors of papers in the Atoll Research Bulletin rests with them, and do not necessarily represent the views of the Pacific Science Board or of the editors of the Bulletin.

Editorial Staff

F. R. Fosberg, editor M.-H. Sachet, assistant editor

Correspondence concerning the Atoll Research Bulletin should be addressed to the above

c/o Pacific Science Board National Research Council 2101 Constitution Avenue, N. W. Washington 25, D. C., U.S.A.

PREFACE

Although weather observations have for many years been obtained on various oceanic islands, many fundamental questions concerning the local climates and microscale weather on such islands remain unanswered. In particular, the problem of to what extent an oceanic atoll creates its own local weather and microclimates has not been satisfactorily resolved. Is there significantly more rainfall upon an atoll than there would be were the atoll replaced by open ocean? Are there significant differences in air temperature between the windward and leeward sides? With a large deep lagoon like that at Eniwetok, is the heat exchange between lagoon water and air essentially the same as the exchange between water and air over the ocean nearby? These and other questions have long given rise to considerable controversy. The present study was undertaken to provide at least somewhat better answers to such questions than have heretofore been possible.

Initial impetus for this study was provided by Professor Maxwell S. Doty of the Department of Botany, University of Hawaii. Professor Doty had been conducting phytoplankton productivity studies at Eniwetok and wished to know whether there were significant differences in mean rainfall from one to another part of the atoll. He suggested to the authors that it might be worthwhile to establish raingages at several different sites and obtain comparative rainfall readings over a period of at least a year. After several discussions among Professor Doty and the authors, it was decided to carry this suggestion still further and to obtain observations of several different kinds on a micro-scale. Accordingly, a field plan was worked out and the Eniwetok Microclimatic Project was formally established under the joint auspices of the University of Hawaii ((under AEC Contract No. AT-(O4-3)-15)), U. S. Weather Bureau, and Joint Task Force SEVEN.

The period of investigation was chosen so as to derive maximum possible support from Task Force operations planned for the spring and summer of 1958. The nuclear test series known as Operation HARDTACK was conducted during this period; and during the build-up for these tests as well as during the test period itself it was possible to draw on logistic and meteorological support not usually available at Eniwetok. The University of Hawaii, the U. S. Weather Bureau, and Joint Task Force SEVEN each provided funds, equipment, and personnel in support of the study. In addition to the senior authors, those participating in the observational program at Eniwetok were:

can't date to marth still the still

1.	Mr. Dominic D. Conte	Pacific Supervisory Office U. S. Weather Bureau, Honolulu, Hawaii
2.	Mr. Wilson Floe	Pacific Supervisory Office U. S. Weather Bureau, Honolulu, Hawaii
3.	S/Sgt. F. E. Haas, USAF	JTF SEVEN Meteorological Center Pearl Harbor, Hawaii
4•	Prof. Irwin E. Lane	Botany Department, University of Hawaii Honolulu, Hawaii
5.	Mr. Tetsuo Matsui	Botany Department, University of Hawaii Honolulu, Hawaii
6.	Mr. Mikihiko Oguri	Botany Department, University of Hawaii Honolulu, Hawaii
7.	Prof. Jimmie Bob Smith	Botany Department, University of Hawaii Honolulu, Hawaii

Without the excellent work of these field personnel and the outstanding support of many other persons in the sponsoring agencies and the U. S. Atomic Energy Commission it would have been impossible to conduct this study. We wish to express our sincere thanks to all those concerned with the project for their genuine interest and valuable assistance. In particular we wish to acknowledge the active and continuing support provided by Mr. Ernest Wynkoop and Mr. Ray C. Emens of the U. S. Atomic Energy Commission and Professor Doty. We also wish to thank Professor Irwin Lane for his special field investigation of the distribution of vegetation on two of the islets of Eniwetok and for his preparation of one of the principal sections of this study. Finally, we wish to thank the personnel of the USAF Air Weather Serdetachment at Eniwetok, who made radarscope and other special observations in direct support of this study.

vi

David I. Blumenstock Daniel F. Rex

: SEVEN each

on to the senior

u, Hawaii

.u, Hawaii

ter

y of Hawaii

y of Hawaii

y of Hawaii:

ty of Hawaii

ng support of many ssion it would have mks to all those ance. In particular Ernest Wynkoop and . We also wish to tribution of he of the principal JSAF Air Weather Service hs in direct support

TABLE OF CONTENTS

	Page
LIST OF FIGURES AND PLATES	ix
INTRODUCTION	1
GENERAL GEOGRAPHIC RELATIONSHIPS	2
GENERAL WEATHER SETTING	4
HYDROGRAPHY	8
TOPOGRAPHY	10
VEGETATION	15
THE OBSERVATIONS	19
APPENDIX I. TABULAR PRESENTATION OF OBSERVATIONAL	
DATA (Including separate Table of Contents)	25
APPENDIX II. INDICES FOR PHOTOGRAPHS	149
APPENDIX III. BIBLIOGRAPHY	157
FIGURES AND PLATES (In numerical order following p. 158)	

LIST OF FIGURES AND PLATES

(Figures and Plates appear in order as the last section of this publication.)

- Figure 1. ENIWETOK ATOLL
- Figure 2. BATHYRITHMS, ENIWETOK LAGOON
- Figure 3. BATHYRITHMS IN THE VICINITY OF ENIWETOK
- Figure 4. MEAN MONTHLY EAST-WEST WIND COMPONENTS, ENIWETOK, AS A FUNCTION OF ALTITUDE
- Figure 5. SURFACE WATER CURRENTS IN BIKINI LAGOON
- Figure 6. SURFACE WATER TEMPERATURES IN JANUARY AND AUGUST
- Figure 7. MAP AND SITE DIAGRAM, FRED
- Figure 8. MAP AND SITE DIAGRAM, EIMER
- Figure 9. MAP AND SITE DIAGRAM, BRUCE
- Figure 10. SKETCH MAPS OF JANET AND YVONNE ISLETS
- Figure 11. MAP AND SITE DIAGRAM, KEITH
- Figure 12. TOWER LAYOUT, SITE MACK
- Figure 13. VEGETATION, KEITH
- Figure 14. VEGETATION, BRUCE

eener in een staar in die staar

- Plate I. WEATHER INSTRUMENTS, BRUCE ISLET
- Plate II. WEATHER INSTRUMENTS, KEITH ISLET
- Plate III. TYPICAL RADARSCOPE VIEWS
- Plate IV. REPRESENTATIVE CLOUD PICTURES

18 Lippy

2.5

MICROCLIMATIC OBSERVATIONS AT ENIWETOK

1. INTRODUCTION

For a one-year period, from August, 1957, to August, 1958, the authors together with their other field colleagues conducted a study of microclimatic conditions at Eniwetok Atoll in the Marshall Islands. The primary purpose of the study was to determine to what extent a deep, large atoll lying far at sea in a trade wind zone creates its own weather and climate. Stated differently, how and to what degree do the weather and climate of Eniwetok differ from the weather and climate that would obtain if there were only open ocean where Eniwetok lies?

This report on our study does not attempt to answer the fundamental question raised above. Instead, it merely presents our observational findings. It is a lata report, designed to make available to meteorologists and others data that re hope will be useful to them in many different kinds of inquiries.

We are including in this report not only the data themselves, together with nformation concerning the observational sites and procedures used, but also a odicum of information concerning the nature of the atoll and of broad-scale eather conditions in the Eniwetok area. This additional information is provided o make our results most useful to as many different investigators as possible, ncluding those unfamiliar with Eniwetok and with the Marshall Islands Atoll area.

Since the observational plan of this study is described in detail in Section all that will be done here is to indicate its nature in very broad terms. Tring two different two-week periods, one during August, 1957, and the other ring January-February, 1958, weather observations were made at seven different ites in the atoll. These sites were on the islets of FRED, BRUCE, KEITH, ELMER, NET, and YVONNE; and also in the lagoon at MACK¹. (See Figure 1.) At FRED

¹For convenience, American code names are used for most islets and reefs ferred to. Both code names and native names appear in Figure 1.

re were hourly observations, made by the USAF, Air Weather Service. At BRUCE KEITH, observations were 3-hourly. Elsewhere, observations were made daily.

The second second

Observations varied from site to site, but among the sites they included all the usual kinds of surface weather observations and also rawinsondes twice daily, cloud photographs, and radarscope photographs. During these two 2-week period observations were also made on trans-lagoon runs aboard an M-boat (LCM) and on ocean runs outside the reef in an aircraft rescue boat (ARP). On lagoon and ocean runs surface water temperatures were measured through making bucket haul at frequent intervals.

During the remainder of the year, outside these two intensive-study peric the observations were restricted to the usual comprehensive hourly observation at FRED and to daily, semi-monthly, and monthly rainfall observations at varic other sites². Circumstances did not permit making regular rainfall observatio

²Except for the intensive-study periods, only the daily rainfall values presented for FRED. Sources of other data for FRED are given in Appendix III

throughout the entire year at all of the sites listed above. It is hoped non theless that the observations obtained will be found to be useful in suppleme ing the observations for the two intensive-study periods.

Those who wish to use the primary data appearing in Appendix I or listed Appendix II may find Appendix III helpful to them. Appendix III lists severa major sources for additional meteorological data for Eniwetok.

2. GENERAL GEOGRAPHIC RELATIONSHIPS³

Eniwetok is situated in the Marshall Islands, a group of islands lying 1 of the Gilbert Islands and east of the Caroline Islands. It is located at $11.4^{\circ}N.$, $162.3^{\circ}E.$ Most of the atolls which make up the Marshall Islands are distributed along two chains which are nearly parallel and trend northwestwa

³A large part of the factual information contained in this section was obtained from "Geology of Bikini and Nearby Atolls" by Emery, Tracy, Ladd et USGS Prof. Paper No. 260-A, Part I, 1954. The reader is referred to this pu cation for a more detailed presentation.

The easternmost is the Ratak (Sunrise) Chain; the westernmost, the Ralik (Su

ncluded all the twice daily, 2-week periods (LCM) and on lagoon and 5 bucket hauls

-study periods, observations ons at various l observations

ll values are pendix III.

hoped nonesupplement-

or listed in ts several

lying north ed at nds are hwestward.

on was ^{add} et al, his publi-

k (Sunset)

Chain. In addition to these two main chains there are several isolated outlying atolls. Altogether the group contains twenty-nine atolls, five islands having no interior lagoon and two, known, submerged banks shallower than ten fathoms. The highest land elevation within the group is about twenty-eight feet.

Eniwetok is an isolated atoll lying west of the Ralik Chain and is located some 2,500 statute miles west-southwest of Honolulu, Hawaii and some 4,700 miles from San Francisco. The atoll is some 190 statute miles due west of Bikini Atoll, which together with Ujelang, located some 130 miles southwestward from Eniwetok, are the closest exposed land areas. It appears that Eniwetok Atoll was originally a volcanic cone, since basalt was found there in 1950 as a result of several deep drilling explorations. The cone probably initially emerged some feet above the water and later was eroded away and absorbed by wave and water action. When the critical depth of sea water required for coral existence and growth was reached by the emerging cone, coral growth probably began.

Today Eniwetok Atoll consists of a chain of about thirty small, low islets surrounding an oval lagoon 25 miles long by about 20 miles wide (Figure 1). The total dry-land area of these islets is only 2.5 square statute miles compared with a total lagoon area of 360 square statute miles. The total reef area exposed at low tide is about 32 square statute miles. Most of the islets are less than 13 feet high but are, in some instances, covered by coconut palms reaching up to 80 to 100 feet above low tide level. Three entrances penetrate the reef. Deep Entrance at the southeast side is only about 3/4 of a mile wide but it has a depth of 31 fathoms between ELMER and Japtan Islets (Figure 1). South Channel, on the other hand, is very wide, about six miles, and is usually known as Wide Passage. Charted depths in Wide Passage are only 6 to 12 fathoms. Southwest Passage on the west side is even shallower, having depths of only about 1 fathom. Maximum tidal currents of two knots in Deep Entrance and of 1 knot in Wide Passage have been observed.

The Eniwetok lagoon is nearly elliptical with its long axis trending northwestward. The deepest area is in the north central part of the lagoon, which is the area farthest from the main passes through the reef (Figures 1 and 2). If the numerous superimposed coral mounds were ignored, the bottom contours would show a smooth slope from depths of about 24 fathoms near FRED northwestward to the deepest point of the lagoon, about 35 fathoms. There appears to be no

and the second second

indication whatsoever of submerged terraces or cliffs on the deep portion of the lagoon floor. The mean depth of the lagoon is 26.2 fathoms, with depths between 24 and 32 fathoms most common. Bottom samples and underwater photographs show that the lagoon floor is chiefly covered with Foraminifera, shells, Halimeda debris, coral and other miscellaneous fine debris.

In the Marshalls, the atolls rise out of water about 15,000 feet in depth. The slopes of the atolls are steepest in the upper portions near the surface. At Eniwetok the contour gradient reaches a rate of about 4,000 feet per mile. Figure 3 shows the ocean bottom contours in the vicinity of Eniwetok Atoll.

The original native population of Eniwetok Atoll was Micronesian and in 1930 consisted of 121 inhabitants who raised chiefly pigs, chickens and coconuts, and caught the abundant fish available in the Eniwetok area. In 1947 Eniwetok Atoll was selected for an expansion of the permanent Pacific Proving Ground because of its isolated position, stable weather and the geography of its land masses. At this time the Eniwetok people were moved to Ujelang, where nearly 200 natives live today. Since that time Eniwetok has been populated exclusively with American personnel associated with atomic test operations. The number of persons present varies from tens of thousands during active operations to several hundreds during interim periods. The development of the atoll for test purposes has consisted principally of the construction of permanent base camps on FRED and ELMER Islets and of the utilization of the northern islets, extending from Runit to Bogallua, for shot-site and technical instrumentation purposes.

3. GENERAL WEATHER SETTING

Although detailed studies of the macroclimate of the Marshall Islands area and of Eniwetok in particular are available in the literature (Appendix III), it was thought desirable to include in this report a general description of the weather setting of Eniwetok. It is the purpose of this section to present a general description that will be especially useful to those not familiar with tropical meteorology.

Eniwetok is located on the south side of the Pacific high pressure belt, in what is commonly called the north-east trade wind zone, and to the north of the equatorial trough of low pressure.

Wind Structure. Eniwetok is overlain with three nearly independent wind

portion of the depths between tographs show 3, Halimeda

eet in depth. he surface. t per mile. ok Atoll. an and in 1930 coconuts, and niwetok Atoll nd because of masses. At)O natives with Ameripersons veral hunpurposes on FRED ding from

es.

lands area .x III), it f the sent a ar with

belt, in h of the

t wind

systems. The lowest of these, extending from the surface up to about 20,000 feet, is the well known trade wind current. The Trades are deepest and strongest during the winter months, December through February, with an average strength at the surface of about 18 knots from an east-northeasterly direction. Maximum speeds occur at about the four to five thousand foot level, where speeds greater than 25 knots are not uncommon. The top of the current during this season may often extend to 30,000 feet or more. During the spring and summer the Trades become gradually weaker and more variable. At the same time their average or most typical direction veers from east-northeasterly to easterly. During August and September the average surface wind is 11 knots from the east. During these two months, frequent periods of very light winds, especially coming from the southeast, are often observed. During March, April and May the trade wind current becomes shallowest, often not extending above the 8,000 or 9,000-foot level. Figure 4, on which is plotted the zonal or east-west component of the wind as a function of height and of month, shows these different changes. Surface wind statistics by month are given in Table I.

Above the trades and extending up to the tropopause, which is generally located between 55,000 and 60,000 feet, are westerly winds which are usually called the Upper Westerlies. This wind stream may be thought of as the southward extension of the strong circumpolar jet stream of mid-latitudes. At the latitude of Eniwetok this southward extension of the polar westerlies overlies the trade wind current. The Upper Westerlies are quite variable due to the presence of numerous cyclonic and anticyclonic vortices which are typically carried along in the basic current. Such a vortex, in the proper position relative to Eniwetok, often produces east winds for periods of two to four days at these upper levels. The upper westerly current, whose core is normally located at about the 40,000foot level, is strongest in the spring, from the month of March through May, at which time average velocities reach 25 knots. At the same time this current is deepest and most well developed. As the season progresses through summer into autumn, the thickness and strength of the current diminishes to average values of about 5 knots with extremely high variability. In mid-winter the Upper Westerlies often do not extend as far south aloft as Eniwetok.

Above the tropopause and situated in the lower stratosphere is the third wind stream, which is an easterly and very steady current. These winds are

TABLE I. CLIMATOLOGIC DATA SUMMARY, ENIWETOK¹

	TEMPERATURE			PREC	SURFACE WIND ³								SKY COVER							
	OF			Me M		Amount Most	% OCCURRENCE								% OCCURRENCE				MEAN	
	Mean Maximum	Mean Minimum	Mean Diurnal Range	Mean (inches)	Mean No. of Days with Meas. Precip.	nt Occurring t Frequently (inches)	NE	ENE	(74)	ESE	SH	4 (- 12 (MPH)	13 (mPH)	25 - 31 (MPH)	Mean Speed (MPH)	0 - 2 (Tenths)	3 - 5 (Tenths)	6 - 9 (Tenths)	10 (Tenths)	(Tenths)
JAN	84.6	77.7	6.9	0.95	11.4	.0205	33	45	20	1	0	11	74	14	18.7	19	40	25	16	5•4
FEB	84•4	77•5	6•9	1.09	8.4	•02-•05	27	56	15	0	0	14	74	11	18.4	18	33	24	25	5.9
MAR	84•6	77.8	6.8	1.62	12.1	•02-•05	20	60	14	3	0	14	77	9	17.8	14	32	27	27	6.2
APR	85.6	78•7	6•9	1.13	9.6	•02-•05	21	63	15	l	0	8	85	7	18.4	15	27	24	34	6.5
MAY	85•5	78.7	6.8	4.80	15.0	•02-•05	13	59	24	3	1	15	78	6	17•5	10	27	28	35	7.0
JUN	85.9	78.9	7₊0	3.88	15•4	•02-•05	12	59	24	3	ı	16	79	4	16.9	11	33	41	25	6.3
JUL	86.1	78.9	7•2	6.01	19.1	•11-•25	8	38	35	10	4	38	59	l	13.7	9	34	37	20	6.6
AUG	86.3	79.1	7•2	6.93	20.9	•11-•25	9	27	35	9	8	48	45	ı	11.9	6	29	41	24	7.0
SEPT	87.0	79•4	7.6	6.44	16.6	•26-•50	10	20	37	6	6	55	39	1	11.2	9	32	36	23	6.6
ост	86•7	79.1	7•6	7•96	20•4	•11-•25	14	27	29	8	7	52	42	l	11.7	7	27	38	28	7.0
NOV	86.0	79.0	7.0	5.89	18.7	•02-•05	16	42	28	7	3	32	58	8	15.8	13	39	29	19	6.0
DEC	85.1	78.7	6.4	2.50	15.6	•02-•05	26	45	24	2	1	20	66	11	17•7	17	38	24	21	5•7
ANNUAL	85•7	78.6	7.1	49.20	183.2	•02-•05	17	45	25	5	3	27	65	6	15.8	12	33	30	25	6.3

¹ Based on observations July 1945-March 1947; June 1949-July 1955, less May 1951.

² Measurable precipitation is taken as being 0.01 inch or more. The intervals used for tabulating the frequency of rainfall amounts were 0.01, 0.02-.05; 0.06-.10; 0.11-.25; 0.26-.50; 0.51-1.00; and over 1.00.

Press W. W. Walk and Back

³ Winds from directions other than those shown occurred less than 5% of the time on an annual basis; windspeeds above 31 m.p.h. occurred less than 1 percent of the time.

normally called the Krakatoa Easterlies. The Krakotoa Easterlies are weakest during the winter months of December through February and reach their maximum strength in the late summer or early autumn from August to October. Lack of observational data precludes any positive statement concerning their extent. However, they are generally observed above altitudes of 60,000 feet extending upward as high as balloon soundings have reached. These upper easterlies are the steadiest and most persistent winds known. Their steadiness exceeds that of the surface trades.

AND THE REPORT OF A DECK OF A D

A CALL REPORT OF A STATE OF A STA

Temperature. The variation of surface air temperature at Eniwetok is extremely small -- a fact associated with its oceanic location and its latitude⁴.

⁴Length of the daylight period (sunrise to sunset) at Eniwetok ranges from 12 hours, 46 minutes to 11 hours, 29 minutes. Energy received at the outer atmosphere ranges from about 890 to about 600 cal./cm.²/day. (After Robert J. List, Smithsonian Meteorological Tables, 6th edition). For times of sunrise and sunset see Table 2.

There is more temperature difference between night and day than there is between January and July. The greatest temperature changes are observed during rain showers, as a result of evaporative cooling. Mean-maximum and mean-minimum temperatures by month are given for Eniwetok in Table I.

Cloudiness. The dry season is normally considered to extend from mid-November through March and during this time total sky cover averages about 5 tenths. There is little if any observable diurnal variation in cloud amount. The dominant cloud form during this season is the typical trade wind cumulus with bases at about 1,800 feet and tops extending to the 4,000-5,000-foot level. Some middle cloudiness and cirrus may be observed in association with disturbed conditions in the more active convective areas located further south. As the season advances from April to late August or early September the cumuli typically present increase in vertical development so that by late summer cloud tops are normally found at the 8,000-9,000-foot level. At the same time, the amount of sky cover increases to an average of 6 or 7 tenths, due in part to more active cumulus development and in part to the more frequent appearance of

amounts Ŷ the frequency of rainfall ž 3 Ľ tabulating The intervals used for .00; and over 1.00. 6 0 less May 1951. time the Я . more. The 0.51-1.00; than 5% 1955, June 1949-July less 5 0.26-.50; occurred 0.01 inch those shown Based on observations July 1945-March 1947; is taken as being (•06-•10; 0.11-.25; the time. 0.06-.10; than percent of other Measurable precipitation were 0.01, 0.02-.05; Winds from directions Ч then occurred less

0

b.d

o

6

12

2

m

m.p.h.

£

above

windspeeds

basis;

annua 1

æ

7

A standard and the stand and the stand of the

middle cloud and cirrus. Average cloud amounts at Eniwetok are given in Table I.

Precipitation and Tropical Storms. During the dry season, precipitation is almost entirely the result of cumulus-produced showers. These showers are normally of short duration, but through their frequent occurrence may produce several inches of rainfall in a month. During the summer and early autumn months, periodic disturbances in the trade wind current, which are known as easterly waves, move across the Eniwetok area and produce greatly increased cloudiness and precipitation. These wavelike deformations of the general easterly flow are first observed in the trade wind current in the vicinity of 140° W longitude. They move westward and slowly deepen until in some cases cutoff cyclonic disturbances are produced. These cyclonic vortices or tropical storms continue their westerly movement in the basic current and under certain special circumstances may develop into typhoons. It is uncommon, however, for typhoons to become fully developed in the Eniwetok area; perhaps one every five years is typical. With the passage of an easterly wave over, or to the south of, Eniwetok a general increase in cloudiness at all levels is observed together with numerous moderate to heavy showers and in some cases with light to moderate continuous rainfall. As the wave passes on westward the cloud conditions slowly return (after a day or two) to a typical trade wind cumulus distribution and precipitation is again produced almost exclusively by individual cumulus activity. The intensity and frequency of easterly wave formation reaches its maximum in late summer or early autumn, and a corresponding maximum in precipitation values is observed at that time. Mean precipitation amounts by months for Eniwetok are given in Table I.

4. HYDROGRAPHY

The four aspects of the hydrography of Eniwetok Atoll that are pertinent to the interpretation of the observations presented in this study are the bathymetry of the lagoon and immediately surrounding ocean waters, tidal variations, current systems in the lagoon, and mean water temperature relationships with special reference to seasonal variations in surface water temperature and changes in vertical temperature structure within the lagoon. Each of these topics is considered below.

On the broadest scale, Eniwetok consists of a reef and superincumbent islets

'en in Table I. >cipitation is vers are norproduce autumn known as oreased eneral easter-' of 140° W cutoff ical storms ain special or typhoons 'e years is of, Eniwetok ith numerous ntinuous return precipivity. The in late alues is tok are

tinent to bathymetry s, current ≥cial s in is con-

nt islets

that enclose a large deep lagoon and that on the ocean side descend very steeply along the reef front into water that is hundreds of fathoms deep (Figure 3). The lagoon is generally deepest in its north central part, most of which lies below 32 fathoms, and it includes about 2300 coral knolls that rise to within a few fathoms of mean sea (lagoon) level as well as a 10-fathom terrace that borders the reef "along the east, north, and northwest side of the lagoon." Emery describes this terrace as follows:

"The terrace is widest where the reef bends outward away from the lagoon and narrowest where the reef is indented toward the lagoon In the northwest part of the lagoon, where the terrace is widest it contains a depression which extends about 8 fathoms below the terrace surface "⁵

⁵K. O. Emery, "Submarine Geology of Bikini Atoll", <u>Bull</u>. <u>GSA</u>, LIX, 9, 855-59, 1948.

From the bathymetric chart that appears in Emery's article, it can be seen that this terrace is 1,000 to 5,000 feet wide. This same chart gives the bathymetric details for the entire lagoon floor. A more generalized chart of the floor appears in Figure 2; while Figure 1 shows sample soundings between ELMER and MACK and between BRUCE and KEITH, along the two lines that were followed in sampling lagoon water temperatures.

The mean tidal range at Eniwetok Atoll is 2.7 feet; the mean diurnal range, 3.9 feet. During the two periods of synoptic observation, in August, 1957, and in January-February, 1958, the high and low tides were as shown in Table 2, Appendix I.

The general pattern of current systems within the Eniwetok lagoon shifts continually with tidal variations and with changes in the speed and direction of the wind. However, some generalizations are warranted. With northeast to southeast winds, the surface currents probably form general patterns similar to those that have been observed at Bikini (Figure 5).

So far as surface water temperatures are concerned, the annual range over the nearby ocean is from a mean of 82° F. in late winter (February-March) to a mean of 83.5° in late summer (August-September) as shown in Figure 6. Vertical

Lee Lee ger

temperature structure within the first few fathoms of water is closely related to windspeed. With winds in excess of 10-15 knots there is vigorous mixing and the structure is isothermal. Otherwise, the temperature tends to be isothermal at night (with surface cooling) and to increase upward only very slightly by day, with the temperature difference between the surface and the 2-fathom depth being a small fraction of a degree Fahrenheit.

N,

5. TOPOGRAPHY6

As indicated in the introduction, weather observations during the Eniwetok Microclimatic Project were made at seven different sites in the atoll. These sites were on the islets of FRED, ELMER, BRUCE, YVONNE, JANET, KEITH and also in the lagoon at MACK (Figure 1). It is the purpose of this section to describe the local topography of each of these observation points.

⁶Most of the detailed reef descriptions given in this section were obtained from "Geology of Bikini and Nearby Atolls" by Emery, Tracy, Ladd et al, USGS Prof. Paper No. 260-A, Part I, 1954. The reader is referred to this publication for more detailed information.

<u>FRED</u>, one of the principal islets of the atoll, is located at its southernmost extremity, immediately adjacent to the east side of Wide Passage. This crescent-shaped islet is oriented approximately northeast-southwest and measures some 2.6 miles long by 0.4 miles wide. The islet comprises some 0.8 square miles of dry land. The development of FRED as the principal permanent operational base has removed essentially all of its natural topographic features. It now consists of an essentially flat, graded, table some 11 feet above mean sea level. Only in the extreme northeastern portion of the islet are remnants of original relief still observed. An aircraft runway, numerous taxiways, aircraft parking areas and buildings occupy more than 90% of the western two-thirds of the islet. The eastern one-third of the islet is principally used for housing facilities for personnel. (See Figure 7.)

The seaward reef along the southeastern face of the islet is composed of four principal parts: (1) <u>An Algal Ridge</u> made up of small moderately well developed buttresses with small relatively straight and regular surge channels.

osely related to mixing and the isothermal at ghtly by day, lom depth being

; the Eniwetok coll. These TH and also in to describe the

were obtained al, USGS s publication

its southern-;e. This and measures square miles rational base now consists 'el. Only in l relief ing areas slet. The ties for

>osed of well channels. The ridge is approximately 50 feet wide and appears to be dead as a result of wartime damage and numerous fuel oil immersions. (2) The Outer Reef Flat is covered by 3 inches to 1 foot of water at low tide and consists of a flat of algal limestone covered with a soft velvety algal veneer and pitted with small depressions from a few inches to a foot or more in diameter. The outer reef flat is about 130 feet wide. (3) The Inner Reef Flat is exposed at low tide, rising gradually to about a foot above water level, and is covered over on its shoreward end with loose scattered cobbles. In some areas large blocks of the outer reef have been torn loose and lifted up onto the inner flat by the action of severe storms. (4) <u>A Boulder Rampart</u> makes up the very steep beach of cobbles. This feature is probably in large part artificial as a result of construction work on the islet, but the islet outline appears to have been changed very little. The lagoon beach which stretches along the northwestern face of FRED is a gently sloping scalloped beach made up largely of gravel and loose sand. In some areas, however, exposed rock is evident.

The original vegetation of FRED Islet has been almost completely destroyed as a result of the combined action of wartime assault and the postwar development of the islet. Only a few (six or seven) widely scattered mature cocopalms remain along the lagoon side of the western half of the islet. Additionally some scattered clumps of native <u>Scaevola</u> and of <u>Messerschmidia</u> remain in the easternmost end of the islet. In recent years some artificial planting has been accomplished, but at the present time these plantings do not appreciably alter the appearance of an almost completely barren islet.

ELMER, which is a principal islet of the atoll, is situated on its southeastern edge some 4 miles northwest of FRED and immediately adjacent to the southwestern edge of the Deep Entrance. This oblong islet is approximately 1.4 miles long and 0.3 miles wide; it consists of about 0.3 square miles of dry land. As in the case of FRED, the development of extensive permanent base facilities on ELMER has largely removed all traces of its former natural topography. It now consists of an essentially flat table some 11 feet above sea level. Housing facilities, technical installations and uncovered material storage areas cover more than 80% of this islet. (See Figure 8.)

The seaward reef and lagoon beach characteristics of ELMER are similar in almost all respects to those described in the case of FRED. An exception is the

large well developed rock flat which appears at the northernmost end of ELMER and forms the inner beach-face in that locality.

BRUCE, a smaller islet, is located at the extreme eastern edge of Eniwetok Atoll, about 5 miles north-northeast of ELMER. This islet has two principal parts: the larger part, roughly square in shape, comprises the entire northern end of the islet; the smaller part, an irregular narrow strip separated from the main islet by a water-filled depression in the reef, is situated at the southern end. BRUCE is approximately 0.4 miles long by 0.2 miles wide and contains less than 0.1 square statute miles of dry land. The erection of several measuring installations has not to any great extent affected the natural topography of the islet. As will be seen from Figure 9, the islet consists of an essentially flat table-land which occupies the entire central portion of the islet and is about 12 feet above sea level. Along the lagoon side of this table, which slopes gently downward from its seaward edge toward the lagoon, are several small dunelike mounds which reach elevations of 13 to 15 feet. Most of the observations taken on BRUCE, including the traverse observations, were obtained in the vicinity of an abandoned steel-mat airstrip which runs across the central part of the islet as shown in Figure 9. This airstrip has been abandoned for five or six years and is now covered with a growth of grass and weeds but as yet has not been over-grown by heavier brush.

The sea reef comprising the eastern edge of BRUCE is characterised by the extensive development of lines of groins or rock bars, transverse to the reef edge. The reef itself may be divided into five zones: (1) <u>The Algal Ridge</u> which slopes gently seaward with no buttresses apparent. This zone is approximately 80 feet wide with numerous surge channels in the form of widely spaced cracks 1 to 4 feet wide and 1 to 5 feet deep that extend 50 feet or more beyond the ridge crest. The channel walls are straight-sided and smooth; the floor is eroded algal limestone, its surface wavy and bare except for sparse gravel and boulder nodules in shallow potholes. The crest of the ridge is gently rounded and lies a foot or more above low water. (2) <u>The Algal Pavement</u> consists of a flat pavement of <u>Porolithon</u>, mostly yellow and dying, under one foot or more of water. The pavement is about 66 feet wide. (3) <u>The Reef Flat</u> is of orange-yellow algal limestone veneered by a thin film of Foraminiferal sand and marine algae. The flat surface is barren and covered with 2 to 6 inches of water.

: end of ELMER

dge of Eniwetok No principal entire northern arated from the at the southern contains less al measuring bography of the sentially flat and is about ch slopes al small dunebservations in the entral part d for five or 3 yet has not

.sed by the the reef al Ridge is approxily spaced iore beyond e floor is ravel and y rounded sists of a 'r more of orangend marine iter. It is steep on the seaward side and gently sloping on the shore side. Corals are rare or entirely absent except in small pools. (4) <u>The Rock Bar or Groin</u>, which is about 1300 feet wide, is a lithified conglomorate, modified by erosion and solution to form a rough platform about 3 inches above low water level. To landward the base of the bar is lithified and on it is piled a mass of loose boulders of coral and algal limestone. Further shoreward the rubble grows finer and the last 500 feet of the groin is a gravel and sand bar. (5) <u>A narrow</u> <u>channel</u> separates the groin from the islet beach and is gravel covered. The water here is one to one and one half feet deep at low tide and during early flood tide. The maximum current through this channel reaches 2 knots. The lagoonward side of BRUCE is composed of a number of scalloped gravel and sand beaches which slope gently out to a wide partially submerged rock flat.

BRUCE is covered almost completely with native vegetation. A more complete description of the vegetation is given in Section 6.

<u>YVONNE</u>, a medium-sized islet, is located along the northeast face of Eniwetok Atoll about 6 miles north-northwest of BRUCE. It is an elongated single islet measuring about 1.7 miles long and about 0.2 miles wide. Its dry land area comprises about 0.3 square miles (Figure 10). For many years this islet has been used as a shot site. As a result considerable modification of its natural topography has been produced. It is today a low-lying sand-covered flat with numerous deep and large depressions extending down into the reef structure below and with numerous dune-like hummocks which reach heights of 15 to 20 feet above sea level. The seaward and lagoon reef and beach characteristics are similar to those described in the case of BRUCE. As a result of numerous nuclear detonations, the islet is entirely devoid of vegetation.

<u>JANET</u> is a principal islet of the atoll and is situated at its northernmost extremity. It lies some 11 miles northwest of YVONNE and is roughly triangular in shape. JANET measures some 1.1 miles in a northwest-southeast direction and some 0.7 miles in a northeast-southwest direction. It contains about 0.6 square miles of dry land (Figure 10). This islet has also been used during previous years as a shot site and as a result is largely devoid of vegetation and has an appreciably altered topography. The islet consists of an essentially pyramidal table at some 15 feet above sea level with numerous large pits and depressions located along its seaward sides.

WAL TO THE

The seaward reef off JANET is comprised of four principal zones: (1) The Algal Ridge, which consists of a zone of buttresses and surge channels comparable in general form to those described for BRUCE. The ridge as a whole is dark brown with a few pink or light brown areas, but the darker parts of the ridge are almost black. Surge channels and pothole-like depressions are floored with sand and well-rounded coral pebbles and boulders. The ridge zone is about 60 feet wide. (2) The Coral Zone is a rough rock flat with a relief of one foot or more and a width of about 140 feet. Living corals are very numerous near the ends of the surge channels but over the zone as a whole they probably do not cover more than 15% of the surface. Near the landward edge of the zone are scattered remnants of an older algal limestone that rises from six inches to a foot above low tide level. (3) The Rock Flat, which is about 910 feet wide, is a barren surface with many pools in pits and irregular depressions. The surface is rough near its seaward edge becoming smoother lagoonward with thin patches of sand. (4) The Beach Zone is covered with a fine ripple-marked sand at the edge of the rock flat. At higher levels the covering becomes coarser with worn coral heads commonly exceeding a foot in diameter. The lagoon beach at JANET is a broad gravel and sand beach sloping gently lagoonward and extending out into relatively deep water.

<u>KEITH</u>, a minor islet of the atoll, is located on its southwestern edge about 12 miles almost due west of FRED Islet and some 2-3 miles southeastward from Southwest Passage. KEITH is nearly teardrop shaped and measures about 0.3 miles long by 0.1 miles wide. It is oriented approximately northwest by southeast and consists of less than 0.1 square miles of dry land. No large installations have been placed on this islet and as a result both its natural topography and vegetation have remained largely undisturbed. A relatively narrow ridge, lying along the central axis of the islet and reaching heights above 13 feet above sea level, is the most prominent feature on this islet. The land slopes gently both lagoonward and seaward from this narrow ridge (Figure 11). As one proceeds along the ridge in a southeasterly direction it terminates near the center of the islet, where the land surface slopes steeply down to a nearly flat table-like area located about 5 feet above sea level. This table area comprises the entire southeastern half of the islet.

The seaward reef along the southwestern edge of KEITH can be divided into

Din Jaco Maria

es: (1) The nels com-3 a whole is rts of the is are floored one is about ef of one numerous ⇒y probably of the zone ix inches 910 feet essions. ard with ple-marked :omes

The lagoon ward and

> edge >astward about 0.3 by southinstall toponarrow .bove 13 land e 11). ;es near i nearly rea

i into

four principal zones. (1) The Terrace slopes seaward for some 100 to 300 feet, where at an apparent depth of 10 or 15 fathoms it drops off quite steeply. At its outer edge it consists of irregular lobate algal spurs, separated by wide deep canyon-like channels which extend far down below sea level. These are about 30 feet deep at the reef edge and continue seaward to the edge of the terrace. (2) The Algal Ridge does not rise to a well defined crest; instead there are scattered hummocks or mounds about 20 to 60 feet across that rise to a maximum of 1 foot above low tide level. The zone is about 200 feet wide. (3) The Reef Flat, which at low tide is covered with about 1 foot of water, is a floor of algal limestone, irregular and hummocky with sandy patches in the hollows. This zone is about 50 feet wide. (4) The Beach Rock Zone, which is about 30 feet wide, consists of a rough rock platform on which lie boulders and the bedded sandstone of the islet shore. The lagoon beach side of KEITH is composed of a sharply sloping and narrow sand beach which extends down to about low water level and there meets a flat of coral limestone which gradually slopes downward as one proceeds toward deeper lagoon water.

2 PA AND THE SERVICE REPORT OF A PARTY OF A

Heavy vegetation on KEITH is located principally on its northwestern half. A heavy stand of mature coconut trees dominates this area. The southeastern half of the islet supports only secondary brush-type vegetation, principally <u>Scaevola</u>. (See Section 6.)

MACK is an artificial site built upon a very large coral head which is located in the northeastern quadrant of the lagoon. MACK is approximately 7 miles due west of YVONNE and 8 miles due south of JANET. This site consists of a large platform some 10 feet above sea level upon which has been built a steel tower some 85 feet in height (Figure 12). There are no exposed land areas at this site.

6. VEGETATION

Eniwetok Atoll is considered on the basis of the vegetation to be one of the drier of the Marshall Islands. This is evidenced by the lack of ferns such as <u>Polypodium</u> and <u>Asplenium</u>, and of shrubs such as <u>Pipturus</u>, which are present on many of the other atolls. The paucity of bryophytes and foliose lichens above a meter or a meter and a half above the ground is further indication of the comparative dryness.

Even so, the atoll received sufficient moisture to maintain vegetation on almost all portions which are continuously above high tide. The character of this vegetation is a result of human activity and the bio-physical factors such as soil and underlying rock, waterlevel, and tolerances of individual species. It has not been possible to make a careful study of all of these factors. However, observations and suggested correlations may be of some value.

As would be expected on a group of small islets composed almost exclusively of coral and coralline sand with many fragments of mollusc shells, the vegetation is a strand vegetation with <u>Scaevola frutescens</u> and <u>Messerschmidia argentea</u> the most frequent shrubs or small trees. Where the soil is somewhat richer in organic matter <u>Pisonia grandis</u>, <u>Guettarda speciosa</u> and, on some islets, <u>Cordia <u>subcordata</u> become more frequent. Coconuts occur in regular rows, having been planted by the Japanese or Marshallese Islanders. Beneath the trees, which may reach 60-70 feet in height, there are hundreds of sprouted nuts as well as seedlings and small plants of the more common shrubs and plants. Vines are an important adjunct to the vegetation along the margins of the tall shrub thickets or forest.</u>

Broadly speaking, the vegetation may be described as composed of three relatively distinct "zones". The first of these is low, with the plants and shrubs not, or barely exceeding, one meter in height. The factor which seems to determine the presence of this type of vegetation is shallow sand or isolated sand spits separated from the main water lens of the islet. It is here that <u>Triumfetta procumbens</u> and <u>Ipomoea pes-caprae</u>, both trailing or creeping vines, reach their maximum development. Low, stunted or dwarfed <u>Scaevola</u> also occurs with patches of <u>Lepturus</u> forming open grass-mats on the higher or deeper-sandy spots.

The "tall shrub" type of vegetation, consisting of shrubs to five or six meters tall, occupies the major part of each islet. <u>Scaevola frutescens</u> and <u>Messerschmidia argentea</u> compose the greater portion of this shrub. <u>Ipomoea tuba</u> is generally found at the "contact" of this vegetation with the low strand vegetation. Somewhat richer soils support <u>Guettarda speciosa</u>, <u>Cordia subcordata</u>, and <u>Terminalia littoralis</u>.

Rocky-sandy spits, even though separated from the main water-lens, are occupied by this type of vegetation, but with <u>Pemphis</u> <u>acidula</u> as the nearly

n vegetation on e character of cal factors such vidual species. E factors. Howue.

most exclusively s, the vegetation <u>ia argentea</u> the richer in .slets, <u>Cordia</u> having been ees, which may s well as seedes are an shrub

of three plants and which seems to or isolated here that ping vines, also occurs eeper-sandy

ive or six icens and Ipomoea tuba strand a subcordata,

nearly

exclusive member. The individuals form a "scrub" or "chaparral" with open bare substrate between them.

The "forest", if this designation may be used, is restricted to those areas of the islets where the depth of the soil or rock substrate is such that a distinct "water-lens" only of brackish water is formed. <u>Pisonia grandis</u> is the major species, although <u>Ochrosia oppositifolia</u> and <u>Cordia subcordata</u> may, formerly, have reached their maximum development in this type of vegetation.

The coconut plantations were planted in the forest area where they were underlain by soil and in the high shrub type of vegetation.

Since there were two areas intensively studied, one on the windward, and one on the leeward, side of the atoll, it may be useful to describe and discuss these areas separately. These descriptions should be read in conjunction with Figures 13 and 14.

<u>KEITH</u>. Underlying the entire islet appears to be a shelf of consolidated coral sand and shell rock which has its upper surface at about the high tide level. This shelf rock is soft and easily broken and begins on the ocean side approximately at the beach. On the lagoon side it extends 100-200 feet lagoonward of the high tide line.

The southeast half of the islet forms a shallow basin about 1-2 feet above high tide level, enclosed by a sandy ridge 3-8 feet above the floor of the basin. Within the basin the high scrub in the chaparral are generally only 1-2 meters high, though occasional larger shrubs occur. The individuals are generally 5-10 meters apart and numerous seedlings are present. <u>Messerschmidia</u> and <u>Scaevola</u> are the only shrubby species found. They are subglobose in shape, with the lateral branches touching the ground. Between the shrubs may be found clumps of <u>Tricholaena repens</u> and <u>Fimbristylis atollensis</u>. The rim on the lagoon side carries the low vegetation with a preponderance of <u>Scaevola</u>, <u>Triumfetta</u> and <u>Lepturus</u>. On the lagoon side of the rim are distinct rows of <u>Messerschmidia</u> seedlings corresponding to windrows of seaweed (a greater portion of which is <u>Turbinaria</u>) washed up by the sea and the Trades.

The rim on the ocean side is covered by the high shrub <u>Messerschmidia</u> and <u>Scaevola</u>. <u>Triumfetta</u> and <u>I. tuba</u> occur as scattered plants and <u>Lepturus</u> is almost entirely absent. The beach slope is nearly bare, with only scattered clumps of <u>Triumfetta</u>.

The northwest side of the basin area rises rapidly to the high portion of the islet. <u>Guettarda</u> enters the composition of the shrub here, and is found in reduced numbers throughout the rest of the islet. The ocean side of the islet is underlain by broken rock of irregular sizes, filled between with sand. This area was not planted to coconuts and here the <u>Pisonia</u> reaches its maximum development in an open forest, with <u>Boerhaavia</u> forming the major part of the ground cover. The lagoon half of the high part of the islet is covered with deeper soil and coconuts have been planted. The high shrub forms a definite understory, but <u>Terminalia</u> is found only along the lagoon-side margins. In disturbed soils of this area the ephemeral weeds <u>Portulaca oleracea</u> and <u>Fleurya</u> <u>ruderalis</u> may be found. <u>Pemphis acidula</u> and <u>Suriana maritima</u> occur as isolated individuals on the high shrub margins of the high portion of the islet.

in a water and and and and and and and the state of the s

BRUCE. The islet of BRUCE is apparently underlain by a coral sand rock which has been mainly broken up into irregularly sized rocks under the islet itself, but is mainly unbroken in the shallow waters surrounding the islet.

The southeast portion of the islet is a long sand spit with a short perpendicular spit extending oceanward. The long spit is covered by the low vegetation with extensive open patches of <u>Lepturus</u>. Along the highest portion the <u>Messerschmidia</u> and <u>Scaevola</u> take on the character of the high shrub. The perpendicular spit which is covered by high tides has the high shrub Pemphis.

The main part of the islet is covered by the high shrub, and except for a band on the ocean side 10-20 meters broad had been entirely planted to coconuts. This band is underlain by the broken coral-sand rock with little soil or sand between. The <u>Scaevola</u> is the dominant shrub in this region with almost no ground cover and no vines. In back of this band the <u>Messerschmidia</u> becomes dominant. Here too, vines and ground cover is lacking. On the lagoon side of the islet there is apparently a greater accumulation of organic matter in the soil. <u>Pisonia</u> and <u>Cordia</u> nearly exclude the other shrubs. <u>I. tuba</u> forms a nearly continuous blanket on the margin.

An airstrip that had been cut out of the vegetation just southeast of the center and a road connecting the strip with the landing on the lagoon side near the northwest end form openings in this vegetation. The strip, which is no longer in use, and the road are covered or bordered by <u>Fimbristylis</u> in the open. In the shadler portions of these clearings the weedy grass Eragrostis and

ligh portion of and is found in le of the islet ith sand. This s maximum r part of the covered with ! a definite argins. In ea and Fleurya ur as isolated islet. 1 sand rock ? the islet he islet. : short perthe low hest portion shrub. The ib Pemphis. except for a I to coconuts. il or sand

most no becomes oon side of ter in the forms a

ast of the n side near h is no In the open. 1 and Portulaca (P. oleracea and P. samoensis) form the ground cover. Boerhaavia is the principal ground cover under Pisonia and Cordia.

7. THE OBSERVATIONS

Four aspects of the observational program require consideration: the plan of observation, instrumentation, instrument exposure (including site details), and observational procedures. In addition to make the data collected in this study most useful it is necessary to estimate how reliable the different kinds of observations were. Except for the observational plan, all of these aspects of the observations are considered specifically in the detailed notes that accompany the Tables in Appendix I.

<u>Plan of Observation</u>: The intensive observational periods extended from 1200 August 18th through 1100, September 1st, 1957 and from 1200 January 25th through 1100, February 8th, 1958 (180th meridian time). The plan of observation is summarized in Table II. This plan was, in fact, followed reasonably closely with three principal exceptions: because of various difficulties that will not be described, there were days on which cloud photographs were not obtained and on which radarscope pictures were not obtained; and hygrothermograph records were not obtained for every day at all locations. In addition, a few of the 3-hourly observations were missed at KEITH and BRUCE, while at the northern islet sites (YVONNE and JANET) a few daily rainfall observations were missed. The tabular data in Appendix I show precisely what these various omissions were.

During the actual intensive observational periods, special traverses were made on BRUCE and KEITH to determine micro-scale variations in the dry- and wet-bulb temperatures and in the temperature of the ocean and lagoon water at shallow depths upon the reef. Despite their relative paucity, these supplemental observational data may prove of interest to some investigators.

The extensive observational phase covered two periods: from September 1, 1957 through January 24, 1958 and from February 9, 1958 through August 17, 1958. Throughout almost all of this period semi-monthly rainfall totals were obtained at BRUCE and KEITH and daily totals were obtained at FRED and ELMER. In addition, some additional rainfall readings were made on YVONNE, JANET, and MACK.

Organization of Observational Data: The bulk of the observational data are presented in the Tables of Appendix I, which contains its own Table of Contents,

SITE OR ZONE	Air pressure	Dry bulb temperature	Wet bulb temperature	Surface wind	Rainfall	Maximum temperature	Minimum temperature	Sky Cover	Clouds	Ceiling	Humidity	Present Weather	Cloud photograph	Radarscope photograph	Rawinsonde	Surface water temperature	
FRED (USAF)	Н	Н	Н	Н	D	D	D	Н	Н	Н	-	Н	-	3	12	-	
ELMER	-	D	D	D	D	D	D	D	D	-	-	0	-	-	-	-	
BRUCE	-	3	3	3	3	12	12	3	3D	-	С	0	3	-	-	-	
KEITH	-	3	3	3	3	12	12	3	3D	-	С	0	3	-	-	-	
маск	-	B	D	D	D	D	D	D	D	-	С	D	-	-	-	-	
JANET	-	-	-	-	D	-	-	-	-	-	-	-	-	-	-	-	
YVONNE*	-	-	-	-	D	-	-	-	-		-	-	-	-	-	-	
LAGOON	-	D	Ď	-	-	-	- 1	0	0	-	-	0	-	-	-	D	
OCEAN	-	0	0	-	-	-	-	0	0	-	-	0	-	-	-	0	
MSTS SHIP**	2	2	2	2		-	-	2	2	_	-	2	0	0		0	

TABLE II. OBSERVATIONAL PROGRAM DURING INTENSIVE OBSERVATIONAL PERIODS(August 18 - September 1, 1957: January 25 - February 8, 1958)

- Abbreviations: 0: Occasional 2: 2-hourly
 - D: Daily 12: 12-hourly

H: Hourly

C: Continuous recording

۰.

3: 3-hourly

3D: 3-hourly, daylight hours only

20

* Second intensive period only.

** First intensive period only.

List of Abbreviations, Code Names and Symbols, and Notes. In using the data appearing in Appendix I reference should be made to the <u>General Notes</u> at the beginning of the Appendix as well as to the detailed, specific notes for the individual tables that are being used. Appendix II provides two Indices, one to the Radarscope Pictures; the other, to the Cloud Pictures. This Appendix also contains specific notes and states how copies of these pictures can be obtained on loan. Supplemental data sources are listed in Appendix III. All Figures and Plates referred to in the Appendices, as well as in the text, appear at the back of this publication and are listed on page ix.

0 0

.

0

0

N

N

N

1

1

R

2

N

2

WS TS SHIP**

Second intensive period only. First intensive period only.

* *

21

APPENDIX I

.

APPENDIX I.

TABULAR PRESENTATION OF OBSERVATIONAL DATA

<u>N.B.</u> It is recommended that the data in this Appendix be used in conjunction with the corresponding Notes. These Notes describe the observational sites and procedures, specify the instruments used, and provide estimates of the extreme limits of accuracy of the observations. The accuracy limits given can be applied to estimate the significance of comparative observations as well as of any particular observation. In this connection it is noted that even in instances in which the extreme limits of accuracy exceed the difference between two observations, the difference may have some significance. Significance is related to the nature of the statistical populations from which the observations are drawn, a subject discussed in some detail in the references cited in Appendix III.

25

ING VEL

7.

CONTENTS OF APPENDIX I.	ge
	28
Part A. General Tables	
Notes for Tables 1 - 3	33
Table 1. ABEREVIATIONS, CODE NAMES, AND SYMBOLS.	35
Table 2. ENIWETOK ATOLL: HIGH AND LOW TIDES, SUNRISE AND SUNSET	36
Table 3. FRED: NAUTICAL MILES OF WIND (NOON TO NOON, 180TH MERIDIAN)	38
Part B. Observational Data, First Intensive	
Phase (August 18 September 1, 1957)	
Notes for Tables 4 - 18	39
Table 4. FRED: HOURLY OBSERVATIONS AND DAILY SUMMARY	51
Table 5. FRED: RAWINSONDE OBSERVATIONS. O	60
Table 6. BRUCE: THREE-HOURLY OBSERVATIONS	66
Table 7. BRUCE: SPECIAL OBSERVATIONS. .	69
Table 8. KEITH: THREE-HOURLY OBSERVATIONS	71
Table 9. KEITH: HOURLY RELATIVE HUMIDITIES	74
Table 10. MACK: DAILY OBSERVATIONS	75
Table 11. MACK: BI-HOURLY TEMPERATURES AND RELATIVE HUMIDITIES	76
Table 12. EIMER: DAILY OBSERVATIONS	77
Table 13. EIMER: BI-HOURLY TEMPERATURES	78
Table 14. JANET: DAILY RAINFALL	79
Table 15. ELMER-MACK: LAGOON TRAVERSES 8	30
Table 16. BETWEEN BRUCE, KEITH, ELMER: LAGOON TRAVERSES. 6 6	34
Table 17. LAGOON-OCEAN: LAGOON-OCEAN TRAVERSES 6	37
Table 18. ENIWETOK-BIKINI: BI-HOURLY OBSERVATIONS, MSTS - T-LST 618	38

الأراطعان جداده والمردي الطعك

بالنعى الواحي دارد

•...

Part C. Observational Data, Second Intensive

Phase (January 25 -- February 8, 1958)

Notes for 1	[ables]	19 - 32	ю
Table 19.	FRED:	HOURLY OESERVATIONS AND DAILY SUMMARY)3
Table 20.	FRED:	RAWINSONDE OBSERVATIONS	2

a

	Page Table 21. BRUCE: THREE-HOURLY OBSERVATIONS
	Table 23. BRUCE AND KEITH: SPECIAL OBSERVATIONS
<u>Page</u> 28	Table 24. KEITH: THREE-HOURLY OBSERVATIONS
20 a 40 a 7	Table 25. KEITH: HOURLY RELATIVE HUMIDITIES
33	Table 26. MACK: DAILY OBSERVATIONS
35	Table 27. MACK: BI-HOURLY TEMPERATURES AND RELATIVE HUMIDITIES
••••• 36	Table 28. ELMER: DAILY OBSERVATIONS
••••• 38	Table 29. JANET AND YVONNE: DAILY RAINFALL
06	Table 30. EIMER-MACK: LAGOON TRAVERSES
le l	Table 31. BETWEEN BRUCE, KEITH, EIMER: LAGOON TRAVERSES
	Table 32. LAGOON-OCEAN: LAGOON-OCEAN TRAVERSE
••••• 39	Part D. Observational Data for Extensive Phase
••••• 51	(September, 1957 August, 1958)
••••• 60	Notes for Tables 33 - 38 138
••••• 66	
••••• 69	
, 71	
74	Table 35. BRUCE, KEITH, MACK: OCCASIONAL RAINFALL OBSERVATIONS, SEPTEMBER, 1957 - AUGUST, 1958 142
•••• 75	Table 36. ELMER: DAILY RAINFALL, SEPTEMBER, 1957 - AUGUST, 1958
•••• 76	Table 37. JANET: DAILY RAINFALL, AUGUST 30, 1957 - APRIL 29, 1958
•••• 77	Table 38. YVONNE: DAILY RAINFALL, FEBRUARY 8 - APRIL 21, 1958
•••• 78	
•••• 79	
• • • • 80	
• • • • 84	
• • • 87	
• • • • 88	
• •	
•••• 100	
•••• 103	
•••• 112	

. .

APPENDIX I.

GENERAL NOTES

<u>N. B.</u> These <u>General Notes</u> should be consulted before utilizing any of the observational data of this Appendix. The General Notes describe the observational sites and instrument exposures on the various islets and at MACK, state the types of instruments used, and give the procedures used in making shipboard observations. Thus these Notes supplement the far broader descriptions of the various islets given in the text. The <u>Specific Notes</u> for the individual tables, as listed in the Table of Contents, Appendix I (preceding pages), should also be consulted before utilizing the data. The Specific Notes describe departures from general observational practices as stated in the General Notes, give estimates of the reliability of the observations, and provide specific comments that will be useful in interpreting the observational data.

Observation Sites, Instrumentation, and Instrument Exposures at Land Stations and at MACK

FRED

<u>Site Description</u>: Figure 7 shows the location of buildings and of instruments on FRED. The shelter, raingages, special anemometer, and the tower on which the regular anemometer was located were all surrounded by barren ground composed of coral sand and gravel. The tower, however, was immediately adjacent to a surfaced taxi-way that was an apron of the main runway.

Instruments:

(a) <u>Raingages</u>: Standard 8-inch raingages were used at both locations 1 and 2. Raingage 2 was located about 15 yards SW of a 2-story building and it was this gage that was used for regular observations at the USAF weather station up until February 1, 1958. The gage appeared to be in too sheltered a location with reference to the tradewinds; and for this reason gage 1 was established at a distance of about 60 yards from the building. On February 1 this new location was adopted as the location of the official gage, and effective that date there were rainfall readings only from this one point.

(b) The <u>shelter</u> was of the standard Cotton Region type, with the door facing NNW.

(c) The direct reading <u>dry-bulb thermometer</u> was a mercury-in-glass instrument of the standard tropical type (USAF tropical thermometer). It was graduated in halfdegrees Fahrenheit.

(d) The <u>wet-bulb thermometer</u> was a jacketed variety of the dry-bulb, mounted in the shelter on a standard hand-crank apparatus.

(e) Both <u>anemometers</u> were standard 3-cup instruments. Anemometer #1 was an instrument that showed total nautical miles of wind on a dial that was read directly. This anemometer was mounted on a special mast at a height of 11 feet above the ground (18-20 feet above mean sea level). Anemometer #2 was a recording (triple-register) instrument mounted on the tower at a height of 33 feet above the ground (41-43 feet above mean sea level).

(f) <u>Barometry</u> was based on a standard mercury instrument that was used to check daily the recording microbarograph from which the observational values were obtained. Values are given here in terms of station pressure, which represents a height of 19 feet above mean sea level.

(g) A GMD-la was used for <u>rawinsonde</u> observations.

(h) The <u>radarscope</u> was a CPS/9.

BRUCE

<u>Site Description</u>: Figures 9 and 14 show the location of instruments on BRUCE and Plate I shows views of these instruments. These figures and the photographs in the Plate give detailed information as to the nature and distribution of ground cover and as to the topography (very minor relief) of the Islet. The ground was predominantly barren beneath the anemometer, the shelter, and the raingages and consisted of beachrock covered by a veneer of coralline sand and gravel.

Instruments:

(a) <u>Raingages</u>: Standard 8-inch gages were used at both the Ocean and Lagoon sites.

(b) The <u>shelter</u> was of the standard Cotton Region type, with the door facing north.

(c) The <u>anemometer</u> was a 3-cup instrument with a totalizing dial (values given in nautical miles). It was mounted on a special mast at a height of 11 feet above the ground (18-20 feet above mean sea level).

observational data s and instrument ruments used, and se Notes suppletext. The Contents, Appendix ata. The Specific ated in the General ovide specific

nstruments on nich the regular of coral sand d taxi-way that

ations 1 and 2. ias this gage ntil February 1, ce to the tradeut 60 yards location of the

from this

(d) <u>Maximum and minimum thermometers</u> were mounted in the shelter in the standard manner (on the cross-beam, just forward of the back of the shelter, facing the door). These were standard Weather Bureau instruments: mercury-in-glass and alcohol-in-glass.

(e) A standard <u>hygrothermograph</u> was kept in the shelter. This was a Friez recording instrument, with a 7-day setting (7-day chart), and with a hair-and-lever mechanism for recording relative humidity.

(f) Direct <u>dry-bulb and wet-bulb</u> temperature readings were made using a Friez psychron (mercury-in-glass thermometers graduated in whole-degrees Fahrenheit and mounted in a unit with a battery-driven fan). The psychron was placed in the shelter and the reading was made at the time of lowest wet-bulb reading.

KEITH

<u>Site Description</u>: Figures 11 and 13 show the location of instruments on KEITH and Plate II shows views of these instruments. These figures and the photographs in the Plate give detailed information as to the nature and distribution of ground cover and as to topography. The ground was barren beneath the shelter, anemometer, and raingage, and consisted of beach-rock covered by a thin veneer of coralline sand and gravel.

Instruments:

The instruments used were identical with those for BRUCE (above). Figures 11 and 13 and Plate II provide information concerning instrument exposure.

ELMER

Site Description: Observations were made at two different sites. Through February 28, 1958, observations were made near the northeastern end of ELMER, with the raingage and the shelter in a large open area lying between a tank farm (to the NE) and quonset huts (to the SW). Effective March 1st, rainfall observations were taken near the dispatchers shack at the airstrip toward the SW side of ELMER. At both sites, the instruments were well out in the open and were underlain by barren ground consisting of coralline sand and gravel. Shelter and raingage locations with reference to buildings are shown in Figure 8.

Instruments:

(a) The <u>shelter</u> was mounted on a post at a medial height of $5\frac{1}{2}$ feet. It was 2X2X1 ft. with the 1 ft. length applying to the depth. The door, which faced NE, was full and hinged to swing upward. The shelter was made of light wood except for the

A REAL PROPERTY AND A REAL PROPERTY AND

elter in the shelter, facing y-in-glass and

his was a Friez a hair-and-lever

made using a Friez Fahrenheit and ced in the shelter

nts on KEITH and hotographs in the f ground cover and meter, and rainline sand and

we). Figures 11 wre.

Through February with the raingage he NE) and quonset aken near the oth sites, the ound consisting ference to

feet. It was th faced NE, was except for the back, which was masonite. The door was fully louvred, but the other five interior faces were solid.

(b) The <u>maximum and minimum thermometer</u> was of the U-type (mercury-in-glass) with a magnet for re-setting the rider. It was graduated in whole-degrees Fahrenheit. The thermometer was mounted on an upright post in the shelter.

(c) The raingage was a standard 8-inch one.

(d) Direct <u>dry-bulb and wet-bulb readings</u> were taken using a Friez psychron (mercury-in-glass thermometers graduated in whole-degrees Fahrenheit and mounted in a unit with a battery-driven fan). Psychron readings were made outside the shelter, in the shade, at a 5-foot height with the observer standing to leeward of the psychron.

(e) A standard recording <u>hygrothermograph</u> was maintained in the shelter (<u>see</u> description of this instrument under BRUCE instrumentation, above).

<u>Site Description</u>: This tower site is diagrammed in Figure 12. The raingage and shelter, whose location is also shown in this figure, were located on a side platform immediately to the south of the tower and at a height of $17\frac{1}{2}$ feet above mean low lagoon water.

Instruments:

(a) The standard, 8-inch <u>raingage</u> was at the extreme SE edge of the platform. Because it was only four feet south of the standard shelter, the catch was probably biased due to eddies, especially when rainfall occurred with a north wind.

(b) The <u>instrument shelter</u> was of the standard Cotton Region type with the door on the west side.

(c) <u>Maximum and minimum thermometers</u>, the <u>hygrothermograph</u>, and the psychron for direct reading of <u>dry-bulb and wet-bulb</u> temperatures were of the same kinds that were used at KEITH and BRUCE (<u>see</u> above).

JANET AND YVONNE

MACK

Only standard 8-inch raingages were installed on these islets. In both instances they were placed on level terrain comprised of coralline sand and gravel with beachrock beneath. Both were well exposed, with no obstruction of any kind within 100 yards. Their locations are shown in Figure 10.

Shipboard Observations

LAGOON TRAVERSES

Lagoon traverses were made on M-boats (LCMs). Water temperatures were measured through making hauls in a canvas bucket, the hauls being made on the windward side of the boat, 1-3 yards to the stern of mid-ship, well forward from the exhaust. Upon completing the haul, the bucket was placed in the shade of the steering-house and a thermometer was placed in the water with its bulb at a depth of 6-10 inches and held there until the mercury reached its lowest point. Except where otherwise noted in the Specific Table Notes that follow, the thermometer that was used was a special water thermometer, graduated in tenths of a degree Fahrenheit and mounted on a wooder backing with a perforated brass shield surrounding the thermometer bulb at a distance from the bulb of about 2/3 inch. Thus the bulb was shielded from the sun but was fully exposed to the water. Dry-bulb and wet-bulb air temperatures were obtained from the deck of the boat on the windward side well forward of the exhaust with the instrument shielded from the direct rays of the sun. Except where otherwise noted, observations were made with a psychron (see instrument description under BRUCE, above and whether or not a psychron was used the observations were made at a height of about 5 feet above the deck or a total height of about 11 feet above the water.

OCEAN TRAVERSES

Ocean traverses were made on a crash-boat (AVP), with the observations being made forward, almost to the bow. As in the case of the lagoon observations (<u>see</u> above), <u>water temperatures</u> were obtained through bucket hauls and <u>air temperatures</u> (dry-bulb and wet-bulb) were obtained using a psychron. Air temperatures were taken at a height of about 5 feet above the forward (cockpit) deck, or about 7 feet above the water.

USNS T-IST 618

<u>Air temperature</u> observations were from instruments in a louvred shelter on the port bridge wing, at a height of about 30 feet above the water. Thermometers were probabl alcohol-in-glass, though this cannot be checked absolutely. <u>Air pressure</u> was from a Taylor aneroid located in the chart room. It was temperature-compensated in 1954 and corrections during 1954-1958 (inclusive) have not exceeded 0.05 inch. <u>Water temperatures</u> were standard intake temperatures.

Part A. General Tables

NOTES: TABLES 1-3

were measured . he windward side the exhaust. Upon ering-house and a 10 inches and held herwise noted in d was a special mounted on a wooden bulb at a distance the sun but was s were obtained exhaust with the otherwise noted, under BRUCE, above); at a height of ve the water.

lons being made .ons (<u>see</u> above), <u>ratures</u> (dry-bulb e taken at a feet above the

lter on the port sters were probably <u>ssure</u> was from a sated in 1954 and <u>Water temper-</u> TAFLE 1. ABBREVIATIONS, CODE NAMES, AND SYMBOLS.

This Table is self-explanatory. With one exception it lists all abbreviations, code names, and symbols used in the text and in the Tables. The exception is the code names for locations other than OSCAR, REX, and SAM. The remaining code names used herein are shown in Figure 1.

TABLE 2. ENIWETOK ATOLL: HIGH AND LOW TIDES, SUNRISE AND SUNSET.

All times given are 180th meridian. Tidal heights are correct to 0.1 foot at the northwest end of FRED, on the lagoon side, where the tide gage is located. Heights vary only by a few inches from one to another islet, not including the effect of piling up of water by wind. From the observations of surveyers at Eniwetok (personal communication), it is judged that with moderate to strong tradewinds blowing there is an increase in tide height of from 1 to 2 feet along the east coasts of the islets, this increase being above that observed at the tide gage. This increase occurs on the lagoon side of the western islets as well as on the ocean side of the eastern islets.

As for currents in the lagoon, according to H. O. Pub. No. 165A, <u>Sailing Directions for</u> <u>the Pacific Islands</u> (1952), "In Deep Entrance a maximum flood current of 2 knots, setting westward, occurs 2 hours after low tide. A maximum ebb of 1¹/₄ knots, setting southeastward, occurs 50 minutes after high tide. Slack water occurs 40 minutes before low tide, and 20 minutes after high tide. . . . In Wide Passage a maximum flood current of 1 knot, setting westward; occurs 1h. 10m. after high tide. A maximum ebb of 0.7 knot, setting 210°, occurs 2h. 27m. before low tide. Slack water occurs 2h. 48m. after high tide, and 1h. 28m. before low tide."

Sunrise and sunset are defined in the standard manner the times being given as those "at which the upper edge of the Sun's disk is actually seen on a regular and unobstructed horizon, under normal atmospheric conditions, by an observer at zero elevation above the Earth's surface in a level region." (Introduction to <u>Tables of Sunrise, Sunset, and Twilight</u>, U. S. Naval Observatory, Washington, D. C.)

TABLE 3. FRED: NAUTICAL MILES OF WIND (NOON TO NOON, 180TH MERIDIAN).

The low level anemometer was at the same height as those on ERUCE and KEITH. During the first Intensive Phase of the study (August-September, 1957) these three anemometers were compared both before and after the 2-week observational period. Comparisons were made through mounting each anemometer on a 6-foot pole and placing these along the beach on EIMER, with the anemometers aligned up-beach one from the other at successive distances of about 10 feet. The anemometers were rotated as to position and the total values were compared. 5-6 hours was allotted for each comparative run. Results of the inter-calibrations, before and after the observational period, were as follows (in percent of wind totals):

The the set of the set of the set

BEFORE: FRED and KEITH anemometers agreed consistently within 4%, with the FRED anemometer consistently the higher.

BRUCE anemometer consistently the lowest of the three, with the values ranging from 25-33% of the mean of FRED and KEITH.

AFTER: FRED consistently higher than BRUCE by 1-2%.

KEITH consistently 2-15% lower than the mean of FRED and BRUCE.

After the second calibration run, it was discovered that a nut had fallen into the housin of the KEITH anemometer. When this occurred is not known.

During the second Intensive Phase (January-February, 1958) there was no low-level anemometer at FRED, since it was found that one of the three totalizing anemometers was broken and it was decided to retain the wind measurements on BRUCE and KEITH, rather than FRED. Circumstances did not permit making calibration runs prior to this second observational period but runs made afterward showed that the BRUCE and KEITH anemometers agreed within 10%. It is not known which, if either, anemometer was consistently higher.

<u>NOTE</u>: This comparative table for FRED may permit an estimate of low-level wind condition during the second Intensive Phase through reducing the wind readings at the FRED tower (high level) by a factor of 22%. It should be noted, however, that Table 3 shows a general tendence for closer agreement between the high and low anemometers when winds are higher than when wine are lower; and since winds were decidedly higher during January-February than during August-September, this reduction coefficient should probably be decreased somewhat.

ABBREVIATIONS, CODE NAMES, AND SYMBOLS TABLE 1 (For further details see NOTES for individual tables.) KEITH. During the Relative humidity (in percent) RH Altocumulus emometers were RR Rainfall amount since last observation Altostratus ns were made through ۰. or for period shown. Cloud height determined by balloon. h on EIMER, with the Rainfall at gage on lagoon side of ERUCE. RR_{T.} Calm about 10 feet. The Rainfall at gage on ocean side of BRUCE. RRO Cumulonimbus (thunderstorm) cloud Ch A very small islet on the eastern reef 5-6 hours was SAM 1-7/8 miles NNW of BRUCE. Cirrocumulus Cc 'ore and after the Small sand islet between ELMER Sand Island High cloud C_H and FRED. Cirms C1 rith the FRED Sc Stratocumulus Low cloud CT. SEA (code) State of Sea is given in code Clouds: low, middle, high according to the following scale: CIMH the values ranging O - Calm sea, less than 1 foot Middle cloud C Smooth sea, 1-2 feet Т Slight sea, 2-3 feet, occasional 2 _ Cs Cirrostratus small whitecaps - Moderate sea, 3-5 feet, sustained 3 Cumulus Cu whitecaps UCE. Wind direction (to points of the Rough sea, 5-8 feet, large waves, DD large sustained whitecaps compass or in tens of degrees) llen into the housing Wind direction (to points of the St. DDFF Stratus compass or tens of degrees) and windspeed (in knots unless т Trace of rainfall (less than 0.01 inch) no low-level otherwise specified) Dry bulb temperature (in Fahrenheit unless TT emometers was broken Cloud height estimated *C specified, when in centigrade) e her than FRED. FF₂ Mean windspeed in knots over three Dewpoint temperature T_dT_d hours ending at observation time. observational period. Minimum temperature since time of last TnTn m Cloud height measured (with ceiling observation of minimum. within 10%. It is light or ceilometer) TT_s Surface sea water temperature м Observation missing because of technical difficulty. TT. Wet bulb temperature evel wind conditions MB Motor-boating. Humidity too low to Maximum temperature since time of last TxTx be measured accurately. (Estimated Observation of maximum. FRED tower (high value given in parentheses.) a general tendency WX. Present weather N Total sky cover (in tenths) Bearing in degrees gher than when winds ð. NR Total sky cover (in eighths) Approximate value, or when used with cloud ()an during August-NO Total opaque sky cover (in tenths) type indicates less than one-tenth. OSCAR Name of lagoon tower SE of MACK. ? Approximate value, or (for cloud type) (see map) identification uncertain. P Surface air pressure, at station height REI Very small islet 3/4 mile NNW of ELMER (on northern edge of deep entrance).

Ĩ. Neitre - Ala

•

PLACE:	ENIWETOK AT	OLL	HIGH AND LOW TIDES,	SUNRISE AND SUNSET		TABLE 2
TIDES	х.					
D	ATE .	TIME	HEIGHT* (ft.)	DATE	TIME	HEIGHT* (ft.)
8,	/18/57	0200 0753 1407 2041	1.8 3.4 1.7 3.5	1/25/58	0054 0701 1257 1904	0.6 3.8 1.6 4.9
8/	(19/57	0307 0852 1509 2210	2.1 3.0 1.9 3.4	1/26/58	0122 0734 1329 1934	1.1 3.6 1.5 3.6
8/	20/57	0518 1101 1710	2.2 2.8 2.1	1/27/58	0152 0812 1411 2009	1.4 3.5 1.8 3.3
8/	21/57	0010 0714 1308 1858	3.5 1.9 3.0 1.8	1/28/58	0239 0905 1512 2102	1.6 3.3 2.1 2.9
8/	22/57	0131 0812 1410 2002	3.9 1.5 3.4 1.5	1/29/58	0329 1035 1719 2300	1.8 3.1 2.2 2.8
8/	23/57	0224 0856 1455 2051	4.3 1.1 3.8 1.1	1/30/58	0518 1231 1924	2.0 3.3 1.9
8/.	24/57	0309 0934 1534 2134	4.7 0.7 4.2 0.7	1/31/58	0111 0700 1343 2022	2.1 1.8 3.7 1.5
8/:	25/57	0349 1010 1612 2215	5•0 0•5 4•5 0•5	2/1/58	0217 0803 1433 2103	3.2 1.5 4.1 1.2
8/:	26/57	0428 1045 1648 2254	5•2 0•3 4•8 0•4	2/2/58	0302 0850 1513 2140	3.5 1.2 4.5 0.8
8/2	27/57	0505 1120 1724 2332	5•1 0•3 4•8 0•4	2/3/58	0340 0931 1551 2215	3.8 0.8 4.8 0.5
8/2	28/57	0542 1153 1800	4•9 0•5 4•7	2/4/58	0415 1011 1628 2250	4.2 0.5 5.0 0.3
8/2	29/57	0010 0617 1227 1837	0.6 4.5 0.8 4.5	2/ 5/58	0451 1049 1705 2323	4.4 0.4 5.1 0.2

36

N - 2019

.[]

in the second second in the second second in the second second in the second second second in the second second

					144 <u>- A.S.</u> A. B ANY 144 AN	in de lange de la fait de la définie de l
TABLE		ATOLL H	ICH AND LOW TIDES, S	UNRISE AND SUNSET		TABLE 2 (Concluded)
HEIGHT* (ft.)	<u>TIES</u> DATE	TIME	HEIGHT* (ft.)	DATE	TIME	HEIGHT* (ft.)
0.6 3.8 1.6 4.9	8/30/57	0050 0654 1300 1916	0.9 4.2 1.1 4.2	2/ 6/58	0527 1127 1741 2357	4•5 0•4 5•0 0•3
1•1 3•6 1•5 3•6	8/31/57	0132 0730 1334 1958	1.4 3.7 1.5 3.8	2/7/58	0603 1205 1818	4•5 0•5 4•8
1.4 3.5 1.8 3.3	9/1/57	0223 0812 1414 2058	1.8 3.2 1.8 3.5	2/ 8/58	0033 0640 1245 1855	0.5 4.4 0.7 4.4
1.6 3.3 2.1 2.9	<u>SUN</u> DATES		SUNRISE**	SUNSE	¶ ¥¥	
1.8 3.1 2.2 2.8	8/18 - 9/1/5 1/25 - 2/8/5		0700 0735		30 - 1920 10 - 1915	
2.0 3.3 1.9	* Tide hei Source:	U. S. Coast a	t. below mean low wat and Geodetic Survey,	Tide Tables, Cer	tral and Weste	rn Pacific
2.1 1.8 3.7 1.5	** To neare		iian Ocean, <u>1958</u> (Wa es, 180th Meridian ti		Prtg. Office).	
3.2 1.5 4.1 1.2						
3.5 1.2 4.5 0.8						
3.8 0.8 4.8 0.5						
4.2 0.5 5.0 0.3						
4•4 0•4 5•1 0•2						
			37			$\sum_{i=1}^{N} (i - i) = \sum_{i=1}^{N} (i - i) $
			and and a substances and a substance of the	a juga ang ang ang ang ang ang ang ang ang a	n de la secola de activadad	and a second

54)ユ ;7)4 2494 2219 9522 7;7)

ł

Æ

PLACE:	FRED	NAUTICAL MILES	OF WIND (NOON TO NOON, 180t - COMPARATIVE VALUES -	h MERIDIAN)
	DATE		ANEMOMETER #1 (On ground-based mast)	ANEMOMETER #2 (On tower)
	18 - 19 Augu	st, 1957	92•2	176.0
	19 - 20 Augu	st, 1957	217•5	283.0
	20 - 21 Augu	st, 1957	235•4	254.0
	21 - 22 Augu	st, 1957	181.9	218.0
	22 - 23 Augu	st, 1957	180.5	259.0
	23 - 24 Augu	st, 1957	288.5	262.0
	24 - 25 Augus	st, 1957	131.8	219.0
	25 - 26 Augus	st, 1957	51.0	110.0
	26 - 27 Augus	st, 1957	187•5	212.0
	27 - 28 Augus	st, 1957	208.5	218.0
	28 - 29 Augus	st, 1957	154.0	210.0
	29 - 30 Augus	st, 1957	143-1	251.0
	30 August - 1	L September, 195	57* <u>417•7</u> 2489•6	<u>526.0</u> 3198.0

*To 0900, 1 September.

4

38

1.

W. Section

217

TABLE

Part B. Observational Data, First Intensive

a series were assore the series of a standard and a series and a series of a series of the series of the series

Phase (August 18 -- September 1, 1957)

NOTES: TABLES 4-18

TABLE 7

?83.0

176.0

METER #2 tower)

254.0 218.0

:59.0

62.0

19.0

10.0

12.0

L8.0

10.0

6.0 8.0 TABLE 4. FRED: HOURLY OBSERVATIONS AND DAILY SUMMARY.

These Notes apply both to Table 4 and Table 19, which presents similar observational data for the second Intensive Phase.

<u>P</u> represents station pressure and is given to thousandths of an inch, with the units and tens omitted. In Tables 4 and 19, all values are preceded by 29, except 000, which represents 30.000. The mercurial barometer (used daily to check the microbarograph) was calibrated January 30, 1958 and found to be 0.020 inch too low. This value should be added to those shown in the Tables. In addition, unreliability is introduced because the hourly values were read from the microbarograph and because of the lag in this instrument. Allowing for this factor, <u>after</u> 0.020 has been added to the values, the resulting values will all be correct within 0.020 (plus or minus) and half of the resulting values will be correct within 0.004.¹

¹The extreme error of 0.020 represents the maximum 10-minute change that may be expected at Eniwetok, considering both the diurnal pressure curve and the changing synoptic situations. (More rapid change might accompany approach of a typhoon or an intense tropical storm, but such did not occur during these observational periods.) The ten minute period represents the maximum time-lag between the mercurial barometer and the microbarograph at times when the pressure is changing rapidly. (When it is changing very slowly the lag may be greater, but then the error amplitude is diminished very appreciably.) The value 0.004 is based on the assumption that rates of change of pressure over 5-10 minute periods are distributed normally about their mean. Finally, it should be noted that these error estimates allow for the fact that often in actual practice observers do not tap the microbarograph to permit the pen to adjust to the current pressure.

 \underline{TT} and \underline{TT}_{w} were to be read to 0.1° F. according to standard instructions. It is evident, however, from the very high frequency of values ending in .0 or .5 that the observers usually read the temperature to the nearest graduated mark (.0 or .5). Allowing for this fact and for an extreme instrumental error of 0.3°, all values are correct within 0.5°.²

²This assumes there is no consistent bias, either instrumental or human, and that in borderline cases the observer can discriminate to 0.1°.

<u>RH</u> is a calculated value based on TT and $TT_{w^{\bullet}}$ (P is an insignificant factor for our purposes.) It follows that for the dry-bulb and wet-bulb temperatures experienced at Eniwet all RH values are correct within 6%, and 9 out of 10 are correct within 4% (assuming normal error distribution and allowing for 1% error in conversion).

<u>N</u> is probably too high, especially at night, in all instances in which it largely depend on an observation of 10 Cs. An exception would be when 10 Cs was also observed at one of the other stations (ERUCE, KEITH, EIMER or MACK). It is noted that 10Cs was seldom reported at these other Eniwetok locations and that at several widely scattered stations in the tropical Pacific that take rawinsondes it has become customary to enter 10 Cs persistently on the primary basis of presence of a moist layer high aloft and on a secondary basis of real or imagined visual observations, including a slight diminution of starlight that can equally we be attributed to the high moisture content of the lower air.

<u>Cloud</u> observations involving 10 Cs are not always reliable, as noted above. Low cloud heights are probably correct within 200 feet during daylight because of the high frequency o local air traffic. At night they are probably correct within 400 feet. Estimated middle cl heights are probably correct within 2000 feet. All cloud-height values are given in hundred of feet. Thus the entry "18" represents 1800 feet. Direction of cloud movement is to four points of the compass.

<u>DDFF</u> is given to 16 points of the compass, with speed in knots for one-minute intervals Assuming no persistent bias, speeds are correct within 10% and directions are correct within 1 point (plus or minus).

 $\underline{T_xT_x}$ and $\underline{T_nT_n}$ were taken from the hourly values. For this reason, on afternoons with f clouds the true $\underline{T_xT_x}$ may have been as much as 1° higher than those shown; while during the nighttime and very early morning $\underline{T_nT_n}$ may have been as much as 1° lower than the values show. whenever there were showers. (Lowest temperatures on tropical atolls are apt to occur momen tarily during showers, evidently because of overturning of the air combined with the effect evaporation.) This source of unreliability is additive to that for TT (above).

<u>RR</u> is accurate within 0.01 inch, assuming care was taken in the observations. In any event, the representativeness of the catch is a factor that lowers the reliability decidedly more than do any inaccuracies in measurement. (See Table 34 and the notes therefor. These make it clear that RR values in Table 4 are decidedly too low.)

<u>TIMES OF RAINFALL</u> are biased by one to a few minutes in that there was no recording gag and the observer would seldom notice to the minute (especially at night) the exact time of inception or termination of rain. It factor for our perienced at Eniwetor % (assuming normal

ch it largely depends served at one of the seldom reported at ons in the tropical istently on the basis of real or that can equally well

above. Low cloud e high frequency of stimated middle cloud given in hundreds /ement is to four

re correct within

afternoons with few while during the h the values shown but to occur momenwith the effect of e).

tions. In any bility decidedly herefor. These

o recording gage

TAPLE 5. FRED: RAWINSONDE OBSERVATIONS.

These Notes apply also to Table 20.

<u>Date and Time</u> refer to the 180th meridian. Where the time given is precisely 0000 or 1200 it represents the scheduled release time and may be in error by as much as 15 minutes. Otherwise, it is almost certainly correct within 5 minutes.

the second s

Level is correct within 5 mb., except for the more accurate surface value, which is taken from the station barometer (see Notes for Table 4).

<u>Height</u> values are correct within 20 m. for levels between 850 and 600 mb. (inclusive); within 30 m. between 500 and 300; within 50 m. at 200; and within 100 m. at 150 and 100 mb. These inaccuracies are in addition to those associated solely with estimating the pressure level (<u>see</u> above).

TT is correct within 1° C. up to 300 mb. and within 2° above 300 mb., assuming no gross instrument failure and no major error on the part of the observer.

<u>RH</u> is correct within 10% and most values are correct within 5%, except when values are in parentheses, when RH may be in error by as much as 20%.

<u>DD</u> is given to the nearest 10° and about 95% of the values shown give the true value to the nearest 10° interval. The remaining 5% are in error by a full 10° step.³

³The values by 10° intervals are based on more accurate readings half of which may be in error by 1° or more. The 5% figure is based on the assumption that the error distribution is normal.

FF values are correct within 10-15%, the accuracy being greatest at lowest heights and least at greatest heights.

<u>NOTE</u>: The above estimates of the reliability of the various observations are based on considering both instrumental and observer errors, not including any consistent bias. Thus such factors were considered as accuracy of elevation and azimuth angles (instrumental) and the fact that in plotting there were inaccuracies introduced by the thickness of pencil lines.

TABLE 6. BRUCE: THREE-HOURLY OBSERVATIONS.

These Notes apply also to Tables 8, 21, and 24.

Date and Time refer to 180th meridian, and times given are correct within 5 minutes.

 \underline{TT} , $\underline{TT}_{\underline{W}}$, $\underline{T}_{\underline{X}}T_{\underline{X}}$, and $\underline{T}_{\underline{n}}T_{\underline{n}}$ were all checked, one against the others, and minor adjustments were made in some instances in accordance with the following rules. <u>Direct reading</u> dry-bulb and wet-bulb temperatures were taken as being correct <u>except</u> in two instances (for all Tables

41

un stradier an National de la serie listed above), when a dry-bulb reading was obviously off by 5 degrees as indicated <u>both</u> by the recording hygrothermograph and the extreme thermometers. Where direct comparison immediately after re-setting showed consistently that a maximum or minimum thermometer differed from the direct-reading thermometer, the maximum or minimum value was corrected accordingly. Thus the minimum thermometer on KEITH during the first Intensive Phase was found to read 1° F. too low and was consistently corrected by this amount. Except where otherwise noted in the Tables, a thermometers were read to the nearest half degree (values to the nearest .0 or .5). Since the psychron thermometers are designed and manufactured to be correct within 0.3° F. and since these were taken as being standard, the values are correct to within 0.5° F. (see Notes, Table 4).

<u>RR</u> values are correct within 0.01, not allowing for any sampling bias associated with exposure. The authors believe that the gages were well exposed and that there was no appreciable sampling bias due to exposure. The user of these data can judge from Figures 13 and 14 and from information in the text whether or not he agrees with this conclusion.

<u>N</u> is given in tenths, and except where the value is followed by "?" or is qualified by the Remarks, is correct within 0.1. Thus 0.5, representing the observer's best estimate, indicate a real value lying between 0.4 and 0.6, inclusive. It should be noted that N at these station is often lower than N as observed at FRED because while FRED often reported 10Cs, BRUCE and KEITH seldom did so. Probably the FRED observation is in error in these instances (<u>see</u> Notes for Table 4).

<u>CIMH</u> is a more or less accurate classification of cloud types and amounts, the accuracy varying with the observer. Some of the observers were inexperienced, having been trained in cloud observations only for a few hours prior to the start of the first observational period. Others were skilled observers, with many years of experience as well as thorough training. In general, the cloud identifications of the unskilled observers were nearly always correct with reference to recognizion of cumulus and cirrus (undifferentiated); but probably they sometimes failed to recognize strato-cumulus, and particular types of cirrus and they probably sometimes confused altocumulus and cirro-cumulus or alto-stratus and cirro-stratus. Therefore in utilizing these observational data, reference should be made to the cloud photographs, to observations made simultaneously from other islets (including FRED), and to the following tabulation, which shows which observations in Table 6 were made by experienced observers.

Experienced observers made the observations at BRUCE during these intervals (all times are inclusive): 1200 Aug 24 -- 0900 Aug 25; 1200 Aug 26 -- 0900 Aug 27; 1200 Aug 28 -- 0900 Aug 29.

indicated <u>both</u> by the mparison immediately r differed from the cordingly. Thus the o read 1° F. too low, ted in the Tables, all .0 or .5). Since the D.3° F. and since F. (<u>see Notes</u>,

s associated with there was no appreci-Figures 13 and 14 sion.

r is qualified by the t estimate, indicates t N at these stations i 10Cs, BRUCE and 1stances (<u>see</u> Notes

ints, the accuracy g been trained in ervational period. rough training. 7 always correct 2 probably they 1 and they probably tratus. Therefore photographs, to the following ed observers. /als (all times 200 Aug 28 -- 0900 FF_3 gives mean windspeed in knots over the past three hours (since the time of last etservation). The value shown was computed from the dial readings and was rounded off to the nearest whole knot. For a discussion of anemometer calibrations, see Notes for Table 3.

LDFF gives wind direction to 8 points of the compass and windspeed in descriptive terms or in knots. Where descriptive terms or a range in knots is given, the windspeed was estimated by the observer. Where a single windspeed value is given it represents speed to the nearest knot as determined from the anemometer dial readings at the beginning and ending of one minute, unless some other time interval is specified in the Table. Descriptive terms follow the Beaufort phraseology. Estimated amounts (covering a range of speeds) are correct within 20% of the extremes shown where estimates were made by experienced observers (see above); otherwise, they are judged to be correct within 40%.

<u>Times</u> of beginning and end of rain are biased in the direction of giving too late a time in many instances. In this a distinction must be made between daytime and nighttime values. Daytime values are probably correct within 5 minutes. Nighttime values may be in error by as much as 30 minutes and there may well have been light showers that were not detected at night since the observer was often asleep. (On behalf of the observer it must be stated that these were 24- or 48-hour watches, with the observer alone on the islet.) Times of occurrence of phenomena other than beginning or end of rain are probably correct within 5 minutes. Here also, however, a distinction must be made between daytime and nighttime: There may well have been special phenomena that were not detected at night, not only because of poor visibility but also because the observer was in his tent asleep.

TABLE 7. BRUCE: SPECIAL OBSERVATIONS.

<u>Date and Time</u> refer to 180th meridian. Times are absolutely correct to within 5 minutes (allowing for error in setting of observer's watch) and are relatively correct (compared with one another) within 1 minute.

 \underline{TT} and $\underline{TT}_{\underline{w}}$ were measured with a psychron, the instrument being held into the wind with the bulb shielded. Temperatures were estimated to the nearest tenth of a degree F. and are correct within 0.5° F.

<u>Heights</u> were estimated and are correct within 6 inches for the 5- and 3-foot heights and within 3 inches for the one-foot height.

TT₅ was measured with an unshielded thermometer, graduated in half-degrees Centigrade. Readings were estimated to the nearest tenth degree C. and were converted to the nearest tenth degree F. The thermometer was held with the bulb continuously below the water surface, at a the second second being the second second

depth of 3-6 inches. It is difficult to estimate what the accuracy of these observations was, but assuming that the instrument was correct within 0.2° C., that the observer's readings were correct within 0.2° C., that neither of these possible sources of error was consistently biased and that both errors were distributed normally then 9 values out of 10 are correct within 0.3° F. and all are correct within 0.7° F.

TABLE 8. KEITH: THREE-HOURLY OBSERVATIONS.

See Notes for Table 6.

Experienced observers made the cloud and other observations during the following intervals (times are inclusive): 1200 Aug 18 -- 0900 Aug 19; 1200 Aug 21 -- 0900 Aug 23; 1200 Aug 26 -- 0900 Aug 27; 1200 Aug 28 -- 0900 Aug 29; 1200 Aug 30 -- 0900 Aug 31.

TABLE 9. KEITH: HOURLY RELATIVE HUMIDITIES.

This Note applies also to Tables 22 and 25.

The three-hourly values (0300, 0600, etc.) are based on direct dry-bulb and wet-bulb readings (Table 8). The remaining values are taken from hygrothermograph charts, with adjustments in absolute trace readings being made to fit the three-hourly values. The three-hourly values are all correct within 6% and 9 out of 10 are correct within 4% (<u>see</u> Notes, Table 4). For intermediate hourly values, these errors increase to 8% and 5%. Further, at values in the 80s there is a small bias -- about 1% -- in the direction of giving values that are too low; while in the 90s there is similar bias of about 2%.

Since the hygrothermograph was checked regularly (usually daily and at least every other day) <u>times</u> are correct within 15 minutes.

TABLE 10. MACK: DAILY OBSERVATIONS.

This Note applies also to Table 26.

The Notes for Table 6 apply for all items except RR, DDFF, Sea, and Remarks. Cloud, wind, sea, and other observations were made by experienced observers on all dates except August 26th through 29th.

<u>RR</u>. Unavoidably, the raingage was not well exposed (<u>see</u> General Notes and Figure 7). Therefore readings may be in error by as much as 20%, with values probably tending to be too low when the wind at time of rainfall was between NNW and NNE and too high when it was between SSW and SSE.

44

All Sugar

e correct within 0.3

DDFF gives wind direction to 8 points and windspeed in knots. These are estimates only. Where a range in knots is given, the values may be taken as being correct within 20% of the extremes when the observer was experienced or 40% when he was not. Where a single speed figure is given, the values may be taken as being correct within 30% when the observer was experienced or 60% when he was not.

<u>SEA</u> conditions are described in the <u>Remarks</u> in instances in which there was any doubt as to what standard code number to apply.

small, low platform at the southwest corner of FRED. Platform #2 is the large middle platform

on the northern side, which has upon it the small shelter house. Platform #3 is that on the south side, on which the shelter and raingage were mounted. (See Figure 7.) These platform temperature observations were taken with a psychron at a height of 5 feet (plus or minus 6

inches) above the platform itself. The values are correct within 0.5° F.

MACK: BI-HOURLY TEMPERATURES AND RELATIVE HUMIDITIES.

Remarks give dry-bulb and wet-bulb readings on Platforms #1, 2, and 3. Platform #1 is the

ug 23; 1200 Aug 26

lb and wet-bulb
charts, with adjust, The three-hourly
! Notes, Table 4).
ir, at values in the
that are too low;

least every other

arks. Cloud, wind, except August 26th

and Figure 7). Inding to be too Ien it was between This Note applies also to Table 27.

TABLE 11.

For humidity values, the direct once-a-day RH derived from direct dry-bulb and wet-bulb readings were taken as being correct and the trace curve of the hygrothermograph was where necessary adjusted accordingly. Similarly, the thermograph trace was adjusted where necessary to fit the direct dry-bulb reading and also the maximum and minimum thermometer readings. In both instances the necessary adjustments (both for the first and second Intensive Phase), amounted to not more than 4% for RH or 2° F. for dry-bulb temperature. Usually, they were less than 2% and 1°.

It is estimated that all RH values are correct within 8% and that 9 out of 10 are correct within 5%. There was no discernible bias in the RH chart values at MACK for values below 90%. Above 90%, however, there appears to have been a bias of 1-2%, with the values being too low by this amount and with the greater bias at the higher values.

It is estimated that bi-hourly temperatures are correct within 1.5° F., an estimate based on the closeness of agreement with direct reading temperatures and with maximum and minimum thermometer readings. There is no evidence of bias in the thermograph trace.

Since the hygrothermograph was checked regularly (usually daily and at least every other day), times are correct within 15 minutes.

TABLE 12. EIMER: DAILY OBSERVATIONS.

These Notes apply also to Table 28.

Time refers to 180th meridian and is correct within 5 minutes.

TT and TT, are given to the nearest 0.5° F. (.0 or .5) and are correct within 0.5°.

 T_xT_x and T_nT_n are correct within 1° F. They were read to the nearest 0.5° (.0 or .5).

<u>RR</u> is correct within 0.01 assuming a representative catch. For exposure <u>see</u> General Note text, and Figure 8.

The Notes for Table 4 apply to N, CIMH, and DDFF. Observations were by experienced observers on all dates except August 27-29, inclusive.

TABLE 13. ELMER: BI-HOURLY TEMPERATURES.

Bi-hourly temperatures are taken from the hygrothermograph, with the trace adjusted to fi the direct-reading (psychron) and maximum and minimum values. Values shown in the Table are a correct within 2° F. and from the close agreement between direct readings and thermograph readings it is estimated that 9 out of 10 values are correct within 1° F. The footnotes to the Table give extreme values not obtainable within 1° by interpolation from the bi-hourly values.

Since the hygrothermograph chart was usually checked daily (and always at least every other day) times are correct within 15 minutes.

TABLE 14. JANET: DAILY RAINFALL.

<u>RR</u> is accurate to 0.01 inch. <u>Time</u> is 180th meridian and is accurate to within 5 minutes. Exposure excellent (<u>see</u> General Notes).

TABLE 15. ELMER-MACK: LAGOON TRAVERSES.

ZONES are defined as follows:

ZONE 1 -- Within 500 yards of EIMER

ZONE 2 -- Between 500 yards and 5 miles out from EIMER

(or, in two instances, from BRUCE)

ZONE 3 -- Between 5 and 8 miles out from ELMER

ZONE 4 -- Between 8 and 11 miles out from ELMER

ZONE 5 -- Within 500 yards of MACK

Placement within zones is certain in every instance except the following: On August 26th, the 1030 observation was near the boundary between Zones 3 and 4, and may have been a few hundred yards within 3, rather than in 4 as given. The same is true with reference to the 1015 observation on August 28th. In all instances except when the traverse originated at ERUCE,

A M-most stayed within a zone bordered on the northeast by a line paralleling the direct THER-MACK track at a distance of 2 miles and bordered on the southwest by a line paralleling the direct track at a distance of 1 mile. ect within 0.5°. Time. Absolute times are correct within 10 minutes. Time intervals (between successive st 0.5° (.0 or .5). observations) are correct within 3 minutes, allowing for the fact that occasionally time was osure <u>see</u> General Notes entered at the start of the observations although usually it was entered immediately upon their conclusion. TT_{5} is correct within 0.2° F. in instances in which it was read to the nearest tenth of a e by experienced degree and within 0.4 when read to the nearest half degree (.0 or .5). These estimates are based on the fact that the thermometer specifications call for an accuracy of within 0.1 and on the assumptions that this initial tolerance held and that the observer correctly read the trace adjusted to fit thermometer within 0.1. wn in the Table are all TT and TT_w were read to the nearest half-degree (.0 or .5) and are correct within 0.5° and thermograph read-(see discussion under Notes, Table 4). s footnotes to the the bi-hourly values. BETWEEN BRUCE, KEITH, ELMER: LAGOON TRAVERSES. TABLE 16. 's at least every locations of the observations can be estimated by assuming straight-line courses between the islets and by spacing the observation points along these lines with distances proportional to elapsed times between observations. In most instances this will locate the observation point correctly to within 700 yards and in all instances it will locate the point correctly to to within 5 minutes. within 1500 yards. Times are absolutely correct within 10 minutes (180th meridian time) and differences between successive times are correct within 1 minute. Temperatures were measured with different types of thermometers at different times, and the accuracy varied accordingly. Details are as follows: August 20. Both air and water temperatures were measured with a mercury-in-glass thermometer, unjacketed, graduated in half-degrees C. and temperatures were estimated to O.1º C. Values were later converted to the nearest 0.1° F. for water temperatures and the nearest 0.5° F. for air temperatures. Assuming no bias or instrumental error beyond the initial thermometer tolerance, $\underline{TT_s}$ values are accurate within 0.4° F. and \underline{TT} values, within 0.6° F. : On August 26th, August 23. For all observations through that taken at 1420, the instrument, procedures, 'e been a few and accuracies were the same as for August 20 (above). From 1430 onward, a metal jacketed erence to the 1015 thermometer graduated in whole degrees F. was used. Using this thermometer, the observer estimated TT₃ to the nearest 0.1° F. and TT to the nearest half-degree F. (.0 or .5). Since ated at BRUCE. THU THE THE

this was a less reliable instrument than the centigrade thermometer, $\frac{TT_s}{T_s}$ is judged to be accurate only within 0.5° F. and $\frac{TT}{T}$ to be accurate only within 0.7° F.

<u>August 28.</u> \underline{TT}_{s} , \underline{TT}_{s} , \underline{TT}_{w} were all measured to the nearest half-degree F. (.0 or .5). inte The Fahrenheit thermometer described immediately above was used to measure \underline{TT}_{s} , and the result ing observations are correct within 0.7° F. \underline{TT} and \underline{TT}_{w} are correct within 0.5° F. (see Notes, dur Table 4).

<u>August 31.</u> TT_s , measured to tenths C. (see <u>August 20</u>, above), are accurate within 0.4° P, hou TT and TT_w , measured with a psychron to the nearest half-degree F., are accurate within 0.5° P.

TABLE 17. LAGOON-OCEAN: LAGOON-OCEAN TRAVERSES.

<u>August 18.</u> \underline{TT}_{s} was obtained by canvas bucket-haul from a helicopter using the Centigrade thermometer described in the Notes for Table 16, above. Readings were to the nearest 0.1° C. Values given are correct within 0.4° F.

th

<u>August 23</u>. <u>TT</u>_S was measured to the nearest half-degree F., using the F. thermometer described under date of August 23 in Notes, Table 16, above. All values are accurate within 0.7° F. <u>TT</u> and <u>TT_w</u> were measured to the closest half-degree F. (.0 or .5) using a psychron. Values are accurate within 0.5° F. <u>Locations</u> in the ocean (outside) were all taken 500 to 100 yards off the reef.

TABLE 18. ENIWETOK-BIKINI: BI-HOURLY OBSERVATIONS, MSTS - T-LST 618.

Time is correct within 5 minutes.

<u>Positions</u> while underway, as given in the log, may be assumed to be accurate within 2 nautical miles.

<u>Ng</u> is correct within one-eighth. E.g.: In extreme instances, an entry of "4" may in factors been 3/8 or 5/8.

<u>DD</u> is given to the nearest 10°, with the unit 0 cmitted. Thus 11 represents 110°. With the ship underway, DD was estimated correctly to within 10°. With the ship docked, to within 8°. Thus in both instances a minority of the observations may fall in the wrong 10° category (plus or minus).

<u>FF</u> is given to the nearest knot. With the ship underway, FF was estimated correctly to within 5 knots (plus or minus). With the ship docked, to within 3 knots. Windspeeds (and directions) were estimated primarily on the basis of the effect of wind upon the water, follo ing the Beaufort scale and then estimating knots within the Beaufort interval.

1 3 - 4 04-14 4 - 1	n o Die eine Voorbern Demons Obder Gode Good
<u>'s</u> is judged to be	AX is given in code, following the U. S. Dept. of Commerce Weather Bureau Ship Code Card
	TA 631-0-2), dtd. January 1, 1955. Quoting from this source, the code values given are to be
-degree F. (.0 or .5)	
ure \underline{TT}_{s} , and the result	
hin 0.5° F. (<u>see</u> Notes	during the past hour.
	02: No hydrometeors except clouds. State of sky on the whole unchanged during the past
accurate within 0.4.	pour.
accurate within 0.5	03: No hydrometeors except clouds. Clouds generally forming or developing during the
2	past hour.
	15: Precipitation within sight, reaching sea, but distant ((i.e., estimated to be more
or using the Centigrad	than 5 km. (3 miles) from ship)).
the nearest 0.1° C.	16: Precipitation within sight, reaching sea, near to but not at the ship.
	<u>18</u> : Squall(8).
he F. thermometer	60: Rain, not freezing, intermittent - slight at time of observation.
are accurate within	80: Rain shower(s), slight.
5) using a psychron.	81: Rain shower(s), moderate or heavy.
e all taken 500 to 1000	
4	Table should be preceded by 29. Values given are correct within 0.05 inch.
	TT and TT, are correct within 1° F.
	<u>C</u> amounts are correct within one-eighth. Height estimates are judged to be correct within
accurate within 2	500 feet. Codes, as taken from the U. S. Dept. of Commerce Weather Bureau <u>Ship Code Card</u>
	(TA 631-0-2), dtd. January 1, 1955, have the following meanings:
try of "4" may in fact	
	form of domes or towers, either accompanied or not by other cumulus or by stratocumulus; all
presents 110°. With	having their bases at the same level.
ip docked, to within	2: Cumulonimbus the summits of which, at least partially, lack sharp outlines, but are
wrong 10° category	neither clearly fibrous, neither cirriform nor in the form of an anvil; cumulus, stratocumulus
	Or stratus may be present.
mated correctly to	2: Practostratus of bad weather or fractocumulus of bad weather or both; usually below
Windspeeds (and	altostratus or nimbostratus,
on the water, follow	$C_{\rm M}$ and $C_{\rm H}$ code entries have meanings as follows (from the source cited immediately above):
val.	C_{M} : 1: Altostratus, the greater part of which is semitransparent; through this part the
	sun or moon may be weakly visible as through ground glass.

<u> C_{M} </u>: <u>4</u>: Patches of semitransparent altocumulus (often in the shape of almonds or fishe: at one or more levels; cloud elements continuously changing in aspect.

5: Semitransparent altocumulus in bands or altocumulus in one more or less continuous layer progressively invading the sky, generally thickening as a whole; the layer may be opaque or double with a second sheet.

6: Altocumulus formed by the spreading out of cumulus.

<u>7</u>: Any one of the following cases: (a) Altocumulus in two or more layers usually opaque in places and not progressively invading the sky; (b) Opaque layer of altocumulus no: progressively invading the sky; (c) Altocumulus coexisting with altostratus or nimbostratus or both.

2: Altocumulus, generally at several layers in a chaotic sky; dense cirrus is usually present.

<u> C_{H} :</u> <u>1</u>: Cirrus in the form of filaments, strands or hooks, not progressively invading the sky (often called "mares tails").

<u>2</u>: Dense cirrus in patches or entangled sheaves usually not increasing and possib; the remains of the upper parts of cumulonimbus; or cirrus with sproutings in the form of towers or battlements or having the aspect of cumuliform tufts.

<u>3</u>: Cirrus, often in the form of an anvil; either the remains of the upper parts of cumulonimbus, or parts of distant cumulonimbus, the cumuliform portions of which cannot be set

8: Cirrostratus not progressively invading the sky, and not completely covering it

9: Cirrocumulus alone, or cirrocumulus accompanied by cirrus or cirrostratus or bu but cirrocumulus is the predominant cirriform cloud.

<u>DD</u> for waves is given to 10° , with the unit 0 omitted from the entries. Thus 08 represe 80°. Directions are correct to plus or minus 10° .

50

<u>Period</u> of waves is given in seconds and is correct within one second. <u>Height</u> of waves is given in feet and is correct within 50% (plus or minus).

DOE ARCHIVES

					• «Inus).		es. Thus Og	ampletely cover >r cirrostratus	of the upper of which cann	ncreasing a gs in the f	ogressively	; dense ci	yer of alto ratus or ni	ore	ole; the l	ne more or	upe of almonds	
							3 represent	covering it. ratus or both	pper parts of cannot be seen	and possibly form of	invading	cirrus is	altocumulus not r nimbostratus	ors usually	layer may be	less continu	ids or fisher	
	PLACE	FRED				HOURI	LY 05:	SERVATIONS	AND DAILY	SUMMARY AUGUS	ST 18 - SEPT	MEER 1,	1957	an di san pangang sang	and the second	11.12	<u>. 11.</u>	
	DATE	TIME	P	TT	TT _⊯	RH	K			ObSCURING PHi e-direction-		۳	LLFF	TIMES OF	LATLY	COMMANY		
								lst Layer						RAINFALL	$1_{x}T_{x}$	T _n T _n	kh	
15	8/18	0056 0157 0255 0354 0456 0555 0756 0855 0756 0855 1055 1155 1255 1355 1455 1355 1455 1856 1755 1856 1958 2056 2158 2256 2357	770 760 735 725 720 725 745 750 765 750 745 750 745 755 745 735 745 755 780 800 805 805	81.3 81.0 81.0 81.0 82.0 82.0 82.0 84.0	77.0 77.8 78.0 78.2 78.0 79.0 79.0 79.0 79.0 80.0 81.5 81.5 81.5 82.0 83.0 79.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78	82 88 88 85 84 80 80 77 87 78 87 73 58 80 80 81	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1CUE18 1CUE18 1CUE18 2CUE18 2CUE18 2CUE18 2CUE18 2CUE18 2CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 1CUE18 2CUE18 2CUE18	1005 1005 1005 1005 1005 1005 1005 1005		000000000000000000000000000000000000000	2 2 2 2 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1	ESE4 ESE2 ESE4 ESE6 SSE5 SSE6 SSE8 SE8 SE8 SE8 SE8 SE8 SE8 SE8 SE8 SE		88	81	0	
DOE ARCHIVES	8/19	0056 0158 0255 0357 0455 0558 0659 0755 0855 0955 1055 1256 1355 1256 1355 1455 1556 1657 1756	785 775 760 745 750 750 755 795 800 795 795 765 760 745	82.8 82.5 82.5 82.0 82.1 82.0 85.0 86.0 86.0 86.0 86.0 86.0 88.0 88.0 88	76.0 78.0 77.0 77.0 77.0 76.9 79.0 80.0 81.0 81.0 81.0 81.0 82.0 82.0 81.0 82.0 81.0 82.0 81.0 82.0 81.0	81 82 80 780 88 81 81 81 77 81 775 70	1 3 2 2 2 10 10 10 10 10 10 10 10 10 10 10	1CuE18 3CuE18 3CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18	0 0 0 0 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 10			133222222222222222222222222222222222222	E8 E6 ENE7 ENE7 ENE8 ENE9 E8 E10 E8 E11 E11 E14 E12 E10 E11 E10 E11				v	

State Lines

Section Manual Harris

	PLACE:	FRED					y obs	ERVATIONS AN	ID DAILY SUMM	IARY AUGUST	18 - SE	PTEMB	ER 1,	1957			<u>TA</u> (Conti	BLE 4 nued)
	DATE	TIME	P	TT	TT_{w}	RH	N		DUDS AND OBSC Nount-type-di				NO	DDFF	TIMES OF RAINFALL	DAILY	SUMMAI	RY .
								lst Layer	2nd Layer	3rd Layer	4th La	yer			WATNLY ATT	$T_{\mathbf{x}}T_{\mathbf{x}}$	T _n T _n	RR
	8/19	1855	745	85•4	79.0	76	10	2CuE18	10Cs	0	0		2	E10				
	•	1959	755	84.0	78.0	77	10	2CuE18	10Cs	0	0		2	E10				
		2056	765	83.6	78.0	78	10	2CuE18	100s	0	0		2	E11				
		2157	780	82.8	77.8	80	10	2CuE18	10C s	0	0		2	E10				
		2256	790	82.6	78.0	81	10	2CuE18	100s	0	0		2	E11				
		2358	810	83.0	78.3	81	10	2CuE18	10C s	0	0		2	E13		88	82	0
	8/20	0057	805	83.0	78.3	81	10	1CuE18	10C s	0	0		1	E11				
	•	0156	785	82.5	78.0	82	10	lCuE18	10C s	0	0		1	E15				
		0259	775	82.3	77.7	81	10	1CuE18	10Cs	0	0		1	E10				
		0357	760	82.1	77.5	81	10	2CuE18	10Cs	0	0		2	E10				
		0457	760	82.0	77.5	82	10	3CuE18	10Cs	0	0		3	E11				
		0559	750	81.6	77.0	81	10	3CuE18	10Cs	0	0		3	E11				
		0658	755	82.0	78.0	83	10	2CuE18	10Cs	0	0		3	E10				
		0758	770	83.0	77.5	78	10	3CuE18	10Cs	0	0		3	E16				
		0855	790	84.0	77.8	76	10	2CuE18	1Sc 45	10C s	0		4	E16				
		0956	805	85.0	78.0	73	10	2CuE18	10C s	0	0		3	E14				
		1058	805	86.5	78.5	70	10	2CuE18	10Ċs	0	0		3	E16				
50		1155	820	87.0	79.0	70	10	2CuE18	10Cs	0	0		3	E10				
N		1256	810	86.5	79.0	72	10	2CuE18	100s	0	0		3	E14				
		1356	795	86.5	79.0	72	10	1CuE18	10Cs	0	0		2	E9				
		1455	775	87.0	80.0	74	10	1CuE18	10Cs	0	0		2	E8				
		1557	755	87.8	78.0	65	10	1CuE18	10Cs	0	0		2	E8				
		1656	755	87.0	79.0	70	10	1CuE18	10Cs	0	0		2	E6				
		1757	750	86.5	79.0	72	10	1CuE18	10C s	0	0		2	E6				
		1856	760	85.5	78.5	73	10	1CuE18	100s	0	0		2	E9				
		1957	775	83.5	78.3	79	10	1CuE18	10Cs	0	0		2	E10				
		2055	795	83.2	78.0	79	10	1CuE18	10Cs	0	0		2	E8				
*		2156	810	83.0	78.5	82	10	1CuE18	10Cs	0	0		2	E8				
N		2256	820	83.2	78.5	81	10	1CuE18	10Cs	0	0		2	E8		44	00	•
O.F.		2357	835	83.0	78.5	82	10	1CuE18	10Cs	0	0		2	E8		88	82	0
DOF ARCHIVES	8/21	0056	830	82.5	77.5	80	10	5CuE18	10Cs	0	0		5	ESE8	0039-0049			
The second		0156	805	82.0	77.5	81	10	5CuE18	10Cs	0	0		5	ESE10	0000 0000			
		0256	790	79.0	77.5	93	10	7CuE18e	10Cs	0	0		8	S13	0200-0309			
N Y		0355	780	80.0	77.8	91	10	5CuE18	10Cs	0	0		5	S10				
3		0457	780	81.2	77.5	85	10	4CuE18	100s	0	0		5	S16				
રંગ્		0559	790	81.8	77.6	83	10	4CuE18	10Cs	0	0		5	S12				
		0656	800	81.0	78.0	87	10	5CuE18	6AcE160e	10Cs	0		9	S9				
		0755	800	82.0	78.0	84	10	5CuE18	6AcE160e	100s	0		9	S16				
		0855	920	83.0	79.0	84	10	5CuE18	6AcE160e	10Cs	0		9	S15				
		0955	820	82.0	80.0	91	10	5CuE18	6AcE160e	10Cs	0		9	S16				

. •

•

46

3 . A. T.

	Place	0156 0256 0355 0457 0559 0656 0755 0855 0955 1058	805 790 780 780 790 800 800 820 820 820 820	82.0 79.0 80.0 81.2 81.8 81.0 82.0 83.0 82.0 83.0 82.5	77.5 77.5 77.8 77.6 78.0 78.0 78.0 79.0 80.0 78.5	80 81 93 91 85 83 87 84 84 91 84 91 84		5CuE18 5CuE18 7CuE18e 5CuE18 4CuE18 4CuE18 5CuE18 5CuE18 5CuE18 5CuE18 3CuE18 3CuE18	10Cs 10Cs 10Cs 10Cs 10Cs 6AcE160e 6AcE160e 6AcE160e 6AcE160e	0 0 0 0 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs		5 5 5 5 5 5 5 5 5 5 5 5 5 9 9 9 9 9 9 9		0039-004		(Contil	
	DATE	TIME	P	TT	TT _W	RH	N	(LOUDS AND OBSC Amount-type-di	rection-heig	ght)	N _Ú		TIMES OF RAINFALL		r Sundhaf	
	8/21	1158 1255 1355 1458 1559 1658 1755 1857 1958 2057 2155 2257	795 800 785 770 755 740 745 780 795 820 830	83.0 83.0 84.5 84.5 84.0 84.0 83.5 83.2 83.2 83.2 83.1 82.9	79.5 79.5 80.0 78.5 78.3 79.0 78.8 78.0 78.0 78.0 78.0 78.0 77.8	86 86 84 77 80 80 78 79 79 80	10 10 10 10 10 10 10 10 10	3CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 1CuE18 1CuE18 1CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18	- 2nd Layer 4ScE4.5 4ScE4.5 4AcE160e 3AcE160 3AcE160 3AcE160 3AcE160 3AcE160 1AcE160 1AcE160 1CCs	2AcE160e 2AcE160e 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs	4th Layer 10Cs 0 0 0 0 0 0 0 0 0 0 0 0 0	7 7 9 8 8 8 7 6 6 5 3 3	511 517 516 55W16 55W13 510 55W12 511 515 59 57 510			T _n T _n	
53 DOE ARCHIVES	8/22	2355 0056 0156 0255 0356 0456 0555 0656 0756 0855 0955 1058 1156 1255 1356 1455 1356 1455 1556 1657 1756 1856 1958 2056 2158 2256 2355	835 825 810 800 775 745 730 740 760 775 805 800 785 735 745 730 725 735 740 725 735 740 755 780 790 805	82.3 82.0 82.0 81.8 81.2 80.5 81.0 82.0 84.0 82.0 84.0 82.0 85.0 82.0 85.0 85.0 85.0 87.8 86.7 84.8 84.0 83.5 83.0 82.6 83.0 82.3 83.0	78.0 78.8 77.0 77.5 77.0 77.0 77.0 77.0 77.0 78.0 80.0 80.0	83 87 82 82 83 83 84 87 88 84 86 80 777 77 89 84 84 86 80 777 77 89 80	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1CuE18 1CuE18 1CuE18 2CuE18 2CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18	10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs	0 0 0 0 0 0 0 0 0 2AsE160 2AsE160 10Cs	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2223344444888867677876666	56 5W4 W4 W2 W4 SW8 SW10 SW8 SW4 NNE4 NNE12 NE8 NE11 NE8 NE11 NE10 EI0 ENE8 ENE12 NE11 NE10 NE11 ENE22		85		0.15
INES	8/23	0054 0156 0255 0357	785 765 760 745	82.0 82.3 82.0 82.0	79.0 78.5 78.0 78.3	88 84 84 85	10 10 10 10	2CuE18 3CuE18 3CuE18 3CuE18 3CuE18	1AcE140 1AcE140 2AcE140 2AcE140	100s 100s 100s 100s	0 0 0 0	6 7 8 9	ENE12 E10 E6 E10	ł.			

	PLACE		в	îrm	ጥጥ				ND DAILY SUM			-		MINES OF	D.177	(Conti	
	DATE	TIME	P	TT	^{TT} ₩	RH	N		DUDS AND OBS nount-type-di 2nd Layer			No	DDFF	TIMES OF RAINFALL	T _x T _x	(SUMMA T _n T _n	RR
	e /oo	01.50		70 0	777 2	00	10	-	-	-	-	0	ENELO		-x-x	-n-n	
	8/23	0458 0555	740 715	79•8 80•3	77•3 76•5	90 84	10 10	3CuE18 3CuE18	2AcE140 2AcE140	10Cs 10Cs	0	9 8	ENE10 ENE12	0435-0507			
		0655	715	80.3	76.5	84	10	3CuE18	2AcE140	10Cs	õ	8	ENEIO				
		0755	730	81.0	78.0	87	10	3CuE18	2AcE140	100s	õ	8	ENER ENER				
		0855	735	82.0	79.0	88	10	3CuE18	2AcE140	100s	õ	8	ENE8				
		0955	745	82.0	79.0	88	10	3CuE18	2AcE140	100s	ŏ	8	ENELL	0954-0956			
		1058	745	83.5	80.0	86	10	2CuE18	3AcE140	10Cs	õ	6	NE14	0//4-0//0			
		1155	740	84.5	80.0	82	10	2CuE18	3AcE140	100s	õ	õ	ENE14				
		1255	750	84.5	80.0	82	10	2CuE18	3AcE140	10Cs	õ	6	ENE12				
		1355	715	86.0	83.0	88	10	2CuE18	3AcE140	10Cs	õ	ĕ	ENE13				
		1455	695	87.0	84.0	88	10	2CuE18	3AcE140	10Cs	õ	ĕ	ENE14				
		1556	675	85.5	81.0	82	10	2CuE18	1AsE160	10Cs	ò	6	SE13				
		1657	675	84.0	80.0	84	10	2CuE18	1AsE160		0	6	SSE13				
		1755	680	83.5	80.0	86	10	3CuE18	2ScE50	10Cs	0	8	SSE16				
		1857	685	81.8	79.2	89	10	5CuE18	4ScE50e	10Cs	0	8	SE14				
		1956	700	82.0	79.0	88	10	6CuE16m	6ScE50	10Cs	0	9	SE13				
		2058	720	82.0	79.0	88	10	6CuE16m	6ScE50	10Cs	0	8	SSE13				
		2159	760	81.8	79.2	89	10	6CuE16m	4ScE50	10Cs	0	8	SE12				
Un		2256	765	82.0	79.0	88	10	4CuE18	3ScE50e	10Cs	0	7	SE11				
54		2355	795	83.0	81.0	84	10	3CuE18	2ScE50	10Cs	0	7	SE14		87	80	0.41
	8/24	0055	785	83.0	79.0	84	10	3CuE18	2ScE50	10Cs	0	7	SE12				
		0156	775	82.5	78.3	83	10	3CuE18	2AcE14 0	10Cs	0	7	SE13				
		0255	760	82.3	78.0	83	10	3CuE18	2AcE140	10C s	0	6	SE14				
		0355	755	82.0	78.3	85	10	3CuE18	2AcE140	10Cs	0	6	SE12				
		0456	750	81.5	77.0	81	10	2CuE18	2AcE140	10Cs	0	6	SE10				
		0555	740	81.3	78.0	86	10	2CuE18	2AcE140	10C s	0	6	SE10				
		0658	760	81.0	78.5	89	10	3CuE18	2AcE140	100s	0	6	SSE10				
		0758	770	81.5	77.5	83	10	3CuE18	1AcE140	10Cs	0	6	SE6				
		0855	800	83.0	79.5	86	10	3CuE18	1AcE140	10Cs	0	6	SSE8				
		0955	815	83.0	80.5	90	10	6CuE18b	10Cs	0	0	8	S12				
		1055	820	84.5	80.5	84	10	6CuE18b	.100s	0	<u> </u>	6	S6	1009-1011			
TOR BROTHERS		1155	815	85.5	80.0	79	10	4CuE18	100s	0	0	5	SE3				
5		1256	805	87.0	80.0	74	10	2CuE18	10Cs	0	0	4	ESE5				
3		1356	785	87.2	80.0	73	10	5 ^{CuE18}	10Cs	0	0	6	ESE6				
		1458	770	87.0	81.0	77	10	5CuE18	10Cs	0 0	0	5	E6				
∑∕s		1557	750	86.0	81.0	81 80	10	3CuE18	10Cs	0	0	2 5	E10				
100		1658	740 735	86.1 86.1	81.0 81.0	80 80	10 10	3CuE18 3CuE18	10Cs 10Cs	0	0	2 5	E10 E8				
		1756 1857	745 745	84.2	79-5	80 81	10	3CuE18	100s	0	0	2 5	E8				
· · · · ·		1957	765	84.0	79•5 79•4	82	10	3CuE18	100s	0	0	5	E11				
5		2059	775	83.7	79.0	81	10	3CuE18	1003	0	õ	1	275				

^

مر · &

· · • . • .

* j.

.....

1

1.4

	PLAC	1256 1356 1458 1557 1658 1756 1857 1957 2059 2158 2158	805 785 770 750 740 735 745 765 775 805	87.0 87.2 87.0 86.0 86.1 86.1 84.2 84.0 83.7 83.1	80.0 80.0 81.0 81.0 81.0 81.0 79.5 79.4 79.0 78.7	79 74 73 81 80 80 81 82 81 82 81 82 81 82	10 10 10 10 10 10 10 10 10 10 10	4CuE18 2CuE18 5CuE18 5CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18	10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ь 5 4 6 5 5 5 5 5 5 3 3 8 8 1,	56 SE3 ESE5 ESE6 E10 E10 E8 E8 E11 E15 E14 E15 E14 E157	1009-1011				
1	DATE	TIME	P	TT	TT _w	RH	К		LOUDS AND OBSC Amount-type-d:			к ₀	LLFF	TINES OF RAINFALL	(LAILY	Conti CD-HA		
								lst Layer	2nd Layer	3rd Lag	er 4th Layer				Txlx	1 _n 1 _n	hit	
î X	8/24	2256 2357	810 815	82.9 82.9	78.6 78.6	83 83	10 10	2CuE18 2CuE18	10Cs 10Cs	0	0	3 3	E11 E10		87	81	0.05	
55	8/25	0056 0156 0256 0356 0556 0658 0755 0855 1355 1355 1355 1355 1355 1455 1555 15	795 790 785 790 795 810 825 805 815 795 765 755 755 755 755 760 775 765	82.2 82.0 82.3 82.0 82.0 82.0 82.0 82.0 82.0 86.0 86.0 86.0 86.0 88.0 88.0 88.3 87.0 88.3 87.0 88.3 87.5 83.8 83.3 83.2 82.8 82.6	77.0 77.1 77.0 77.1 77.0 77.1 77.1 77.1	780 780 790 780 800 800 800 800 800 800 800 800 80	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2CuE18 2CuE18	10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		22222555555444566654432	E10 E12 E10 E11 E12 E10 E6 E6 E8 E6 E8 E6 E8 E5 E6 E8 E5 E6 E4 E5 C C C NNE4 N2		88	82	C	
DOR BROTHINS	8/26	0057 0157 0257 0356 0456 0559 0655 0755 0855 0958 1058 1155 1255 1356 1456	755 730 710 705 700 690 710 710 710 720 735 745 765 765 740 740	82.6 82.3 82.2 82.0 81.3 82.0 82.0 82.0 82.0 83.5 86.5 86.5 86.5 86.5 86.5 86.5	77.5 77.6 77.4 77.1 77.0 76.6 79.0 79.0 79.0 79.0 79.0 80.5 80.5 80.5 83.0 80.0	79 80 80 88 88 88 88 88 87 77 77 81 75	10 10 10 10 10 10 10 10 10 10 10 10	2CuE18 3CuE18 3CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18	100s 5As 160e 5As 160e 5Cs 100s 100s 100s 100s 100s 100s 100s 10	0 10Cs 10Cs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		288222222636666	NNE2 E11 C E5 E5 E6 E5 E4 E5 E4 E5 E4 E5 S5 S5 S6 SE6	0139-0146 0945-0947 1129-1131				

DATE	TIME	P	TT	TT _W	RH	N		LOUDS AND OBS			NO	DDFF	TIMES OF RAINFALL		(Conti (SUMM	
							lst Layer							$\mathbf{T}_{\mathbf{x}}\mathbf{T}_{\mathbf{x}}$	T _n T _n	RI
3/26	1557	710	86.7	80.0	75	10	3CuE18	10Cs	0	0	6	SE3				
	1658	705	86.5	80.0	75	10	3CuE18	10Cs	0	0	6	SE3				
	1756	700	85.0	79.0	77	10	3CuE18	10Cs	0	0	6	SE2				
	1856	705	84.3	78.2	76	10	3CuE18	10Cs	0	0	6	E4	1819-1824			
	1955	720	84.0	78.0	76	10	3CuE18	10Cs	0	0	6	E3				
	2058	735	83.4	78.1	79	10	3CuE18	10Cs	0	0	6	E16				
	2158	745	83.0	77.6	78	10	3CuE18	10Cs	0	0	6	E4				
	2256	755	83.1	77.7	78	10	3CuE18	10Cs	0	0	6	E4				
	2355	760	83.0	78.0	80	10	3CuE18	10Cs	0	0	4	E10		88	81	0.0
3/27	0054	755	83.0	78.0	80	10	3CuE18	10Cs	0	0	4	ESE10				
	0157	750	83.0	78.5	82	10	3CuE18	10Cs	0	0	4	ESE10				
	0255	730	82.0	78.0	84	10	3CuE18	100s	0	0	4	E10	0224-0232			
	0357	725	79.5	77.3	91	10	3CuE18	10Cs	0	0	4	E10	0328-0336			
	0456	720	81.0	78.0	83	10	3CuE18	10Cs	0	0	4	SE12				
	0555	710	80.3	77.9	90	10	3CuE18	10Cs	0	0	4	ESE12				
	0655	715	80.3	77.9	90	10	3CuE18	10Cs	0	0	4	ESE16				
	0755	730	82.0	79.0	88	10	3CuE18	10Cs	0	0	4	ESE15				
	0855	745	82.0	79.0	88	10	3CuE18	10C s	0	0	4	ESE15	0829-0839			
	0955	755	83.0	80.0	88	10	3CuE18	10Cs	0	0	4	ESE15	0904-0909			
	1055	770	84.0	80.0	84	10	3CuE18	10Cs	0	0	4	ESE15	1009-1032			
	1155	755	83.8	80.0	85	10	4CuE18	100s	0	0	6	E16	1104-1134			
	1255	740	83.8	80.0	85	10	4CuE18	10C s	0	0	6	E15	1223-1230			
	1355	725	86.0	82.0	84	10	4CuE18	1005	0	0	6	E14				
	1455	715	86.0	82.0	84	10	4CuE18	10Cs	0	0	6	E15				
	1557	700	87.0	78.3	68	10	2CuE18	10Cs	0	0	2	E12				
	1658	690	87.1	78.5	68	10	2CuE18	10Cs	0	0	2	E12				
	1756	700	87.0	78.3	68	10	2CuE18	10Cs	0	0	2	E11				
	1855	725	86.6	79.1	72	10	1CuE18	10Cs	0	0	l	E8				
	1957	755	86.5	79.0	72	10	3CuE18	100s	0	0	3	E10				
	2058	760	86.5	79.0	72	10	2CuE18	10Cs	0	0	2	ESE9				
	2157	785	85.3	78.2	73	10	2CuE18	10Cs	0	0	2	ESE10				
	2256	795	83.7	77.4	75	10	2CuE18	100s	0	0	2	ESE8				
	2359	800	83.i	76.9	75	10	2CuE18	100s	0	0	2	ESE10		87	80	0.
8/28	0056	795	83.0	78.0	80	10	3CuE18	10Cs	0	0	3	SSE9				
	0158	775	83.0	78.5	82	10	3CuE18	10Cs	0	0	3	SE10				
	0256	765	82.0	78.0	84	10	3CuE18	10Cs	0	0	3	SSE8				
	0359	750	82.0	78.0	84	10	2CuE18	10Cs	0	0	2	SE6				
	0455	750	82.3	76.0	75	10	2CuE18	10Cs	0	0	2	SSE6				
	0557	750	82.2	78.1	83	10	2CuE18	10Cs	0	0	2	SSE8				
	0655	760	82.2	78.1	83	10	2CuE18	10Cs	0	0	2	SSE6				

1.5.

56

**

DOF MRCHTMANS

		8/28 PIA :: 3/28	0158 0256 0359 0455 0557 0655 0755	800 795 775 765 750 750 750 750 750 750 750 750 750 75	83.1 83.0 83.0 82.0 82.2 82.2 82.2 83.5 83.5 83.5 85.0 85.0 87.0 85.0 87.0 85.0 87.0 85.0 87.0 81.5 81.5 81.2 81.2		75 80 82 84 84 83 83 86 ECURL EE ECURL EE 80 80 80 80 80 80 81 77 78 79 80 85 84 86 85 85 85 85 82	10 10 10 10 10 10 10 10 10 10	-	100s 100s 100s 100s 100s 100s 100s 100s	Gurlh: Farhu irection-agi	NENA Prity	-	B Creat Creat ENES ENES ENES ENES ENES ENES ENES ENE	87	80 TAP: 10.13 10.13	
DOE MACHINE	57	0/27	0156 0255 0357 0457 0558 0655 0755 0855 0955 1056 1156 1255 1356 1455 1556 1655 1756 1855 1956 2055 2158 2257 2358	815 800 795 790 790 810 815 820 815 820 800 790 775 760 750 760 775 780 790 795 805	82-0 81-7 82-1 81-8 81-4 81-4 82-0 82-0 83-0 83-5 83-0 83-5 83-0	78.0 77.5 77.5 77.0 77.0 79.0 80.0 80.0 80.0 80.0 81.0 80.0 80.0 80	84 83 81 82 88 84 84 77 77 81 66 38 85 74 84 80 80	$ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\$	2CuE18 2CuE18 1CuE18 1CuE18 2CuE18 3CuE18 3CuE18 3CuE18 3CuE18	1AS 140 10Cs 10Cs 10Cs 140 1AS 140 1AS 140 1AS 140 1OCs 10Cs 10Cs 10Cs 10Cs <t< th=""><th>0 0 0 10Cs 10Cs 10Cs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th></th><th>2421133322122222657876666</th><th>E10 E9 E11 E7 E10 E9 E10 E8 ENE8 ENE8 ENE8 ENE8 ENE12 NE12 NE12 NE14 NE10 ENE16 NE12 NE10 NE10</th><th> 90</th><th>81</th><th>0.01</th></t<>	0 0 0 10Cs 10Cs 10Cs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2421133322122222657876666	E10 E9 E11 E7 E10 E9 E10 E8 ENE8 ENE8 ENE8 ENE8 ENE12 NE12 NE12 NE14 NE10 ENE16 NE12 NE10 NE10	 90	81	0.01

e r

	PLACE:	FRED				HOURI	y obs	ERVATIONS A	ND DAILY SUMM	IARY AUGUST	18 - Septembi	ER 1,	1957			<u>T/</u> (Conti	BLE 4
	DATE	TIME	P	TT	TT _w	RH	N		OUDS AND OBSC			N _O	DDFF	TIMES OF RAINFALL	DAILY	SUMM	-
								lst Layer		3rd Layer	4th Layer				$\mathbf{T_x}\mathbf{T_x}$	T _n T _n	RR
	8/30	0055	775	83.0	76.0 78.0	73 84	10 10	2CuE18 2CuE18	10Cs 10Cs	0 0	0 0	2	E13 E10				
		0157 0258	780	82.0 82.5	78.3	83	10	2CuE18	1005	0	0	4	E10 E11				
		0256	760 750	82.1	77.7	82	10	2CuE18 2CuE18	1005	ö	õ	3 2	ENELO				
		0457	745	81.7	77.2	81	10	2CuE18	1AS 160	1005	ŏ	3		0404-0413			
		0559	740	81.7	77.3	82	10	2CuE18	1As 160	100s	õ	3	ENE15	0404-041)			
		0655	745	81.7	77.3	82	10	2CuE18	1AB 160	100s	õ	3	NELO				
		0755	750	82.0	80.0	91	10	2CuE18	1A8 160	100s	õ	ź	NE9	0710-0715			
		0855	760	82.0	80.0	91	10	2CuE18	1AB 160	100s	0	3	NE8				
		0956	770	84.0	80.0	84	10	2CuE18	3As 160	10C s	0	6	NB				
		1055	775	84.0	81.0	88	10	2Cu E18	3As 160	10C s	0	6	NNE7				
		1155	765	81.1	78.0	88	10	1CuE18	2AcE140	10Cs	0	5	NNE6				
		1255	760	82.0	80.0	91	10	1CuE18	2AcE140	10Cs	0	5	E9				
		1355	745	83.0	79.0	84	10	1CuE18	2AcE140	100s	0	5	ESE8				
		1455	725	84.0	79.0	80	10	1CuE18	2AcE14 0	1003	0	5	E10				
		1559	710	88.0	80.0	71	10	2CuE18	10C s	0	0	4	E10				
		1659	710	87.5	80.0	72	10	2CuE18	10Cs	0	0	4	E11				
		1756	700	87.0	77.0	64	10	2CuE18	100s	0	0	3	E3				
58		1859	705	84.0	77.0	73	10	2CuE18	10Cs	0	0	3	ENE14				
~		1956	720	83.0	78.0	80	10	2CuE18	10Cs	0	0	3	ENE13				
		2056	735	83.0	77.0	76	10	2CuE18	1008	0	0	3	ENE11				
		2158	750	82.5	78.3	83	10	2CuE18	1008	0	0	3	ENE10				
		2256	755	82.1	77.7	82	10	2CuE18	1008	0	0	3	NE10				
		2358	765	82.1	77.7	82	10	2CuE18	1003	0	0	3	ENE12		88	82	0.32
	8/31	0055	755	82.1	77.7	82	10	3CuE18	10Cs	0	0	3	E14				
		0157	745	82.5	78.3	83	10	3CuE18	1003	0	0	3	E10				
		0257	730	81.7	77.3	82	10	2CuE18	100s	0	0	2	E9				
		0358	710	81.7	77•3	82	10	2CuE18	1005	0	0	2	E12				
		0455	710	81.5	77.3	83 82	10 10	2CuE18 3CuE18	10Cs 10Cs	0 0	0 0	2	E13				
		0558 0659	695	81.3 83.0	77.0 77.0	76	10	3CuE18	1005	0	0	3	E13 E18				
		0756	700 705	83.0	77.0	76	10	3CuE18	1005	0	õ	3 3	E14				
\sim		0856	720	84.0	80.0	84	10	2CuE18	1005	0 .	ŏ	2	E15				
O_{λ}		0958	725	85.5	80.0	79	10	1CuE18	1005	0	ŏ	2	E12				
Y., *		1056	725	87.0	80.5	75	10	1CuE18	2AcE160	100s	ŏ	4	E14				
Y.		1158	730	87.0	81.0	77	10	1CuE18	1AcE160	1005	õ	3	E12				
S.C.		1259	730	87.0	80.8	76	10	3CuE18	1AcE160	1003	õ	ź	E16				
1 N.		1355	720	86.5	80.5	77	10	3CuE18	1AcE160	1005	õ	Ĺ	E15				
	,	1458	675	87.0	80.5	75	10	4CuE18	100s	0	õ	Ĩ.		1448-1457			
4	1	1557	680	86.5	80.0	75	10	2CuE18	10Cs	õ	õ	3	E8				
DOT FROM		1658	680	86.3	80.0	76	10	1 CuE18	100s	Ó	Ō	3	E10				
		1756	680		80.0	76_	_ 10_	_1CuE18	1005	0	0	3	E11				

- 14

in the

.*

		: FRED		6.3 E	80.0 7			.CuE18	10Cs (0	3	E10 E11				- 1997. 1997 - 1997.
	DATE	TIME	P	π	TT _W	RH	N		CLOUDS AND OESC (Amount-type-di	URING PHENO	MENA	-	LFP LLFP	TIMES OF HAINFALL		Concl SUPORA	
								lst Laye	r 2nd Layer	3rd Layer	4th Layer				T _x T _x	T _n T _n	F R
	8/31	1859 1958 2055 2156	675 715 735 755	84.8 83.3 83.3 83.0	77.0 77.0 78.5 79.3	70 75 81 85	10 10 10 10	1CuE18 1CuE18 1CuE18 2CuE18	10Cs 10Cs 10Cs 10Cs	0 0 0	0 0 0	4 3 3 3	E10 E10 E10 E14	2123-2129			
		2255 2355	770 785	83.0 83.0	80.0 79.0	88 84	10 10	2CuE18 2CuE18	10Cs 10Cs	0 0	0 0	3 3	E14 E11	2318-2321	87	81	0.06
59	9/1	0058 0156 0257 0359 0457 0559 0457 0556 0759 0856 0955 1056 1157 1255 1355 1457 1559 1657 1758 1857 1758 1857 1955 2058 2159 2257 2358	780 765 745 745 755 765 775 810 815 800 745 735 740 755 735 740 755 735 740 755 820 830	82.2 82.0 81.8 81.5 81.5 81.5 81.5 83.5 84.5 85.9 84.5 85.9 86.3 86.2 87.6 86.5 87.6 86.5 87.0 87.1 84.0 84.3 84.3 84.3 83.7 82.9 82.6	77.6 77.5 77.5 77.5 77.5 77.5 77.1 78.4 80.6 80.2 80.2 80.2 80.3 80.6 79.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78	81 81 82 83 82 83 82 83 82 87 77 77 77 70 82 66 88 80 80	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 3CuE18 2CuE18 2CuE18 3CuE18 3CuE18 0CuE18 1OCi 0CuE16 8Ci 1ScE50 1CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18 2CuE18	10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 10Cs 5AsE120 5AsE120 10Cs 0 8C1 0 0 4C1 7C1 1ScE50 1ScE50 1AcE140 1AcE140 1AcE140 1AcE140	0 0 0 0 0 0 0 0 10Cs 10Cs 0 0 0 0 0 0 0 0 0 0 0 0 0		45333335553666636634443	E12 SE11 SE15 S8 SE12 SE17 SE14 SE12 SE12 SE12 SE10 SE10 SE10 ESE10 ESE11 ESE11 ESE10 E10 E11 E10 ESE11 ESE11		89	82	0.0

A DAY AND A DAY AND A DAY

	D		OBSERVATIONS,				TABL
DATE	TIME	LEVEL (mb.)	HEIGHT (m.)	TT (°C)	^T d ^T d (°C)	RH	DDFF (m/s)
8/18	0000	1008 1000 850 700 600 500 400 300 200 150 100	Surface 75 1492 3137 4405 5860 7576 9680 12414 14188 16554	28.5 28.1 17.6 10.4 2.8 -6.0 -15.7 -30.6 -55.0 -67.9 -75.8	23.4 M 15.6 -1.3 -1.6 -9.8 -25.2 MB 	74 M 88 44 79 74 44 (20) 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1200	1009 1000 850 700 600 500 400 300 200 150 100	Surface 85 1506 3147 4413 5867 7586 9684 12413 14206 16577	27.5 27.3 18.8 10.0 2.9 -5.3 -16.4 -31.6 -53.3 -66.4 -78.2	26.1 25.8 13.0 2.6 -3.9 -13.6 -29.2 ME	92 92 69 60 61 52 32 (20)	130 - 5 $130 - 5$ $130 - 6$ $110 - 6$ $100 - 6$ $90 - 6$ $80 - 4$ $290 - 5$ $220 - 7$ $230 - 16$ $260 - 10$
8/19	0000	1010 1000 850 700 600 500 400 300 200 150 100	Surface 94 1510 3150 4412 5862 7574 9672 12409 14196 16543	28.0 27.2 17.8 9.4 1.9 -6.5 -16.5 -31.8 -57.2 -67.9 -79.3	21.8 21.7 13.6 3.8 -2.8 -12.4 -29.3 ME	69 72 76 68 71 63 32 (20) 	80 - 2 90 - 3 100 - 5 90 - 9 90 - 7 90 - 10 130 - 5 200 - 5 250 - 11 230 - 24 260 - 11
	1200	1009 1000 850 700 600 500 400 300 200 150 100	Surface 85 1497 3138 4406 5862 7574 9672 12397 14177 16517	28.0 27.6 18.0 10.4 3.3 -6.0 -16.8 -31.3 -55.0 -68.5 -79.3	22.1 22.8 13.4 -8.2 -12.8 -15.6 -30.2 MB	70 75 74 26 30 47 30 (20) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
8/20	0000	1009 1000 850 700 600 500 400 300 200 150 100	Surface 85 1499 3138 4409 5863 7582 9685 12414 14196 16542	27.4 27.1 17.7 10.2 3.8 -6.1 -15.7 -31.5 -54.8 -66.9 -83.3	22.6 22.8 7.7 -6.5 -14.9 -16.7 -22.5 -42.2	75 77 52 30 24 43 32 34 	80 - 5 80 - 6 70 - 8 80 - 13 100 - 10 80 - 7 110 - 5 180 - 5 220 - 6 250 - 16 250 - 14
			6	50		~0E	ARCHIELS

ł

· · · ·

- }

ţ

-

4 . .

.

-

.957	TABLE	PLACE: FREI	5	HAWINSONDE	OESERVATIONS,	AUGUST 18	- SEPTEMBER	1, 1957	<u>TABLE 5</u> (Continued)
Ή	DDFF (m/s)	LATE	TIME	LEVEL (md.)	HEIGHT (m.)	TT (°C)	^T d ^T d (°C)	RH	DDFF (m/s)
4 8 4 9 4 4 2) 	$\begin{array}{r} 60 - 2 \\ 60 - 2 \\ 100 - 2 \\ 110 - 3 \\ 100 - 7 \\ 110 - 8 \\ 110 - 5 \\ 210 - 6 \\ 310 - 2 \\ 240 - 3 \\ 190 - 6 \end{array}$	37.5	1200	1010 1000 850 700 600 500 400 300 200 150 100	Surface 94 1507 3153 4423 5884 7609 9721 12467 14266 16630	27.5 26.8 17.8 10.9 4.1 -4.9 -14.2 -30.2 -53.1 -66.1 -78.4	22.5 M 14.1 -3.2 -11.9 -18.7 M M	74 M 79 37 30 33 M M 	90 = 8 $90 = 8$ $100 = 7$ $120 = 6$ $130 = 6$ $130 = 7$ $80 = 5$ $120 = 9$ $100 = 7$ $60 = 8$ $70 = 10$
)	130 - 5 $130 - 6$ $110 - 6$ $100 - 6$ $90 - 6$ $80 - 4$ $290 - 5$ $220 - 7$ $230 - 16$ $260 - 10$	8/21	0000	1010 1000 850 700 600 500 400 300 200 150 100	Surface 94 1519 3160 4427 5884 7603 9707 12447 14231 16575	28.5 28.4 18.1 9.8 2.9 -4.8 -15.6 -30.5 -54.1 -67.9 -81.0	23.9 24.4 16.3 7.6 -1.0 -11.6 MB MB	76 79 86 75 59 (17) (20) 	80 - 4 80 - 5 110 - 7 100 - 11 100 - 11 100 - 10 80 - 7 90 - 2 270 - 7 280 - 12 350 - 6
	80 - 290 - 3100 - 590 - 990 - 790 - 10130 - 5200 - 5200 - 5250 - 11230 - 24260 - 11		1200	1010 1000 850 700 600 500 400 300 200 150 100	Surface 93 1510 3158 4427 5886 7605 9707 12436 14215 16583	27.5 26.5 19.0 11.0 3.1 -4.9 -16.2 -31.4 -54.7 -69.0 -75.1	22.3 M 14.1 3.1 -5.8 -14.0 -24.2 -36.2	73 M 73 58 52 49 50 63 	120 = 8 $170 = 6$ $160 = 3$ $120 = 3$ $120 = 8$ $120 = 8$ $120 = 6$ $120 = 9$ $290 = 6$ $290 = 12$ $80 = 7$
	$\begin{array}{r} 80 - 5 \\ 90 - 5 \\ 90 - 7 \\ 90 - 10 \\ 90 - 10 \\ 100 - 8 \\ 110 - 5 \\ 190 - 7 \\ 210 - 6 \\ 220 - 19 \\ 270 - 8 \end{array}$	8/22	0000	1010 1000 850 700 600 500 400 300 200 150 100	Surface 94 1510 3149 4409 5853 7565 9668 12402 14191 16512	27.0 26.9 17.9 8.6 0.8 -7.5 -16.7 -30.9 -54.7 -69.8 -77.3	22.9 22.7 14.6 5.1 -2.9 -12.8 -21.8 MB 	78 78 81 79 81 66 64 (20) 	180 - 5 $185 - 4$ $140 - 3$ $105 - 6$ $100 - 6$ $90 - 7$ $90 - 7$ $50 - 7$ $50 - 7$ $50 - 10$ $260 - 11$
	$ \begin{array}{r} 80 - 5 \\ 80 - 6 \\ 70 - 8 \\ 80 - 13 \\ 100 - 10 \\ 80 - 7 \\ 110 - 5 \\ 180 - 5 \\ 220 - 6 \\ 250 - 16 \\ 250 - 14 \\ \end{array} $		1200	1009 1000 850 700 600 500 400 300 200 150 100	Surface 84 1500 3142 4403 5856 7575 9677 12409 14194 16565	27.1 26.1 18.9 9.8 1.9 -6.3 -15.7 -31.8 -54.0 -67.0 -77.3	21.6 21.6 15.8 5.0 -0.9 -9.0 -20.3 -40.5 	72 76 82 72 90 81 68 42 	30 - 7 40 - 5 80 - 2 10 - 2 340 - 3 30 - 9 10 - 7 90 - 6 340 - 6 350 - 17 210 - 5
						61		De	or orecometes

٠

.

, 34 , 34

Lateration - the

LACE: FREI)	RAWINSONDE	OBSERVATIONS,	AUGUST 18	SEPTEMBER	(1, 1957	<u>TABLE</u> (Continued
DATE	TIME	LEVEL	HEIGHT	TT		RH	
		(mb.)	(m.)	(°C)	(•C)		(m/s)
8/23	0000	1009	Surface	27.5	22.9	76	60 - 5
		1000	85	27.2	22.6	76	60 - 5
		850 700	1501	17.8	14.6	82	70 - 9 230 - 6
		700 600	3140 4399	8.6 1.2	5.0 -0.6	78 88	230 - 8 190 - 4
		500	4277 5851	-5.4	-7.4	86	130 - 3
		400	7570	-15.8	-21.4	62	120 - 3
		300	9668	-31.9	-39.9	45	180 - 4
		200	12399	-55.0			330 - 3
		150	14178	-68.3			300 - 5
		100	16534	-76.8			270 - 3
	1200	1007	Surface	28.5	23.0	72	70 - 7
		1000	68	27.9	M	M	70 - 7
		850	1484	19.2	13.4	69	100 - 11
		700 600	3131	10.7	5-4	69	100 - 5
		500	4401 5860	3.6 -4.9	-0.9 -10.6	72 64	160 - 7 180 - 10
		400	7502	-15.6	-22.4	56	220 - 9
		300	9684	-30.4	-39.7	40	240 - 6
		200	12420	-53.7			230 - 9
		150	14207	-67.2			260 - 3
		100	16584	-77.1			100 - 4
8/24	0000	1000	Gundada	00 0	0 4 0		
0/24		1009 1000	Surface 85	29.0 28.6	24•8 24•6	78 79	140 - 6 140 - 6
		850	1503	17.0	13.2	79	160 - 10
		700	3139	9.1	3.8	69	140 - 10
		600	4398	1.7	-3.4	70	150 - 8
		500	5850	-5.2	-15.9	43	180 - 9
		400	7562	-16.1	-28.3	34	120 - 10
		300	9655	-31.9	-38.9	50	220 - 6
		200 150	12377 14139	-56.0 -70.5			240 - 4 260 - 8
		100	16476	-81.5			200 - 10
	1200	1010	Surface	27.5	21.6	70	170 - 3
	_	1000	94	26.8	M	M	150 - 3
		850	1509	18.1	11.8	67	130 - 4
		700	3149	9.1	3.1	66	150 - 5
		600	4416	2.2	-2.9	69	120 - 8
		500 400	5869 7589	-5.2	-17.0 -25.2	39	130 - 8
		300	9693	-15.7 -30.1	-25.2	44 36	130 - 10 140 - 4
		200	12444	-52.7	-401)		10 - 5
		150	14234	-68.2			340 - 6
		100	16608	-79.0			120 - 5
D/or	0000	1010	0			.	£
8/25	0000	1010	Surface	28.5	23.4	74	90 - 6
		1000 850	94 1518	28.2 19.4	23.1 12.6	74 65	90 - 6 80 - 4
		700	3170	17.4	-5.0	30	90 - 7
		600	4442	3.3	-5.2	54	90 - 7
		500	5898	-5.7	-17.2	40	80 - 8
		400	7618	-15.5	-29.4	29	110 - 6
		300	9719	-30.8	MB	(20)	90 - 4
		200	12468	-53-4			90 - 2
		150 100	14253 16605	-68.3			140 - 1 270 - 5
		100	10003	-80 . 6			
				(-		. 13	90 - 2 140 - 1 270 - 5
			,	62		N. 30	
						αv^*	

1957	<u>TAB</u> (Continu		THED	RAWINSONDI	OBSERVATIONS	, AUGUST 18	– SEPTEMBEH	1, 1957	<u>TABLE 5</u> (Continued)
RH	DDFF (m/s)	LACE: I	TIME	LEVEL (mb.)	HEIGHT (m.)	TT (°C)	Tata (°C)	RH	DDFF (m/s)
76 82 78 38 36 52 5 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	e/25	1200	1010 1000 850 700 600 500 400 300 200 150 100	Surface 94 1514 3154 4419 5875 7596 9702 12444 14235 16576	28.0 27.8 18.4 9.7 2.8 -5.0 -14.1 -31.0 -52.8 -68.0 -78.0	20.5 20.0 9.4 5.1 -4.2 -17.4 MB MB	64 56 73 60 37 (16) (20) 	100 - 3 $100 - 3$ $100 - 5$ $110 - 9$ $90 - 10$ $80 - 9$ $60 - 9$ $40 - 7$ $20 - 6$ $270 - 10$ $40 - 12$
2 M 9 9 2 4 5)	70 - 7 $70 - 7$ $100 - 11$ $100 - 5$ $160 - 7$ $180 - 10$ $220 - 9$ $240 - 6$ $230 - 9$ $260 - 3$ $100 - 4$	8/26	0000	1009 1000 850 700 600 500 400 300 200 150 100	Surface 85 1502 3153 4425 5883 7600 9702 12445 14226 16574	28.0 27.0 19.0 12.0 3.5 -5.0 -16.6 -30.1 -53.7 -68.9 -77.6	22.0 22.0 17.0 6.1 -0.2 -16.3 -19.6 -37.2	72 74 88 67 77 41 78 50 	30 - 2 30 - 3 90 - 3 90 - 4 90 - 3 90 - 3 90 - 3 70 - 4 70 - 8 10 - 8 340 - 9 70 - 8
	140 - 6 $140 - 6$ $160 - 10$ $140 - 10$ $150 - 8$ $180 - 9$ $120 - 10$ $220 - 6$ $240 - 4$ $260 - 8$ $200 - 10$		1200	1008 1000 850 700 600 500 400 300 200 150 100	Surface 75 1490 3128 4387 5833 7545 9646 12384 14167 16493	27.0 26.7 17.6 2.7 0.9 -6.5 -16.2 -31.5 -53.7 -69.0 -78.5	19.0 19.3 13.9 -2.8 -3.5 -7.3 -32.0 MB	62 69 79 66 72 <u>M</u> 24 (20) 	110 - 3 90 - 3 110 - 6 100 - 5 120 - 7 M - M M - M M - M M - M M - M
	170 - 3 $150 - 3$ $130 - 4$ $150 - 5$ $120 - 8$ $130 - 10$ $140 - 4$ $10 - 5$ $140 - 6$ $20 - 5$	8/27	0000	1009 1000 850 700 600 500 400 300 200 150 100	Surface 84 1497 3132 4392 5843 7558 9653 12378 14154 16473	27.0 26.5 17.4 8.9 1.3 -5.1 -16.2 -31.5 -54.1 -69.3 -79.5	21.6 21.7 13.9 3.6 -3.3 -19.6 -25.6 -40.0	72 75 80 69 72 31 44 43 	100 - 5 100 - 5 100 - 8 100 - 6 90 - 7 140 - 4 90 - 2 30 - 4 360 - 12 350 - 14 10 - 7
9 8 9 8 11 9 9 9 140	0 - 6 0 - 4 0 - 7 0 - 7 0 - 7 0 - 8 0 - 6 0 - 4 0 - 2 0 - 1 0 - 5		1200	1008 1000 850 700 600 500 400 300 200 150 100	Surface 76 1486 3124 4384 5837 7540 9637 12379 14161 16513	27.0 26.6 19.3 9.0 2.1 -7.3 -17.3 -31.1 -54.2 -68.9 -76.3	25.6 M M M M M M M	92 M M M M M 	110 - 7 $110 - 8$ $140 - 2$ $130 - 7$ $130 - 7$ $110 - 2$ $30 - 5$ $10 - 5$ $330 - 15$ $10 - 9$ $30 - 7$
						63		Ŷ	EARCHITTE

•

4.4

.

.

PLACE: FRED		RAWINSONDE O	BSERVATIONS,	AUGUST 18 -	SEPTEMBER 1	, 1957	<u>TABLE</u> (Continue
DATE	TIME	LEVEL (mb.)	HEIGHT (m.)	TT (°C)	Td ^T d (°C)	RH	DDFF (m/s)
8/28	0000	1009 1000 850 700 600 500 400 300 200 150 100	Surface 85 1501 3141 4400 5848 7563 9656 12380 14154 16504	28.7 27.9 17.9 8.8 1.1 -6.2 -16.9 -32.6 -55.2 -69.0 -74.0	22.8 23.1 14.9 -1.3 -3.3 -14.2 -26.8 -37.6 	70 75 83 49 72 53 42 61 	120 - 5 $120 - 5$ $150 - 4$ $160 - 5$ $160 - 6$ $130 - 7$ $80 - 8$ $30 - 8$ $10 - 8$ $360 - 21$ $20 - 2$
	1200	1010 1000 850 700 600 500 400 300 200 150 100	Surface 94 1517 3761 4424 5875 7589 9686 12425 14204 16566	28.0 27.2 18.8 9.7 1.8 -6.2 -16.5 -31.3 -54.0 -69.4 -74.1	22.1 22.1 15.0 2.8 -2.4 -20.2 -22.6 -37.2 	70 74 78 62 73 32 59 56 	180 - 3 $170 - 3$ $170 - 3$ $150 - 5$ $160 - 6$ $150 - 7$ $120 - 6$ $100 - 11$ $40 - 16$ $30 - 18$ $30 - 5$
8/29	0000	1010 1000 850 700 600 500 400 300 200 150	Surface 94 1510 3155 4423 5876 7587 9686 12424 14192 16555	27.5 27.0 18.8 10.0 2.9 -6.2 -17.0 -30.8 -55.4 -70.1 -76.8	21.8 22.5 13.9 4.7 -5.7 -11.8 -23.4 -35.3 	71 76 73 69 53 64 57 65	70 - 6 70 - 6 70 - 5 100 - 2 110 - 2 180 - 2 200 - 5 110 - 11 60 - 14 20 - 14 90 - 9
	1200	100 1010 850 700 600 500 400 300 200 150 100	Surface 94 1516 3166 4430 5898 7593 9699 12447 14236 16605	28.5 27.8 19.3 10.6 2.1 -6.2 -15.4 -30.4 -53.2 -67.5 -76.0	23.0 22.8 13.5 2.5 -3.8 -11.9 -28.1 -41.0 	72 74 69 57 65 64 33 35 	100 - 490 - 580 - 570 - 490 - 250 - 2360 - 390 - 460 - 8110 - 6340 - 4
8/ 30	0000	1009 1000 850 700 600 500 400 300 200 150 100	Surface 85 1509 3153 4421 5874 7593 9696 12428 14210 16567	-68.0		77 79 77 83 74 68 52 (20) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
				64		OF ARCI	IL'FS

Called and the second second second

.

¢

ţ

• •

Ì

¥:

di.

. **1**.44

× 1

_	4	1	1 M 1 1	1 v 10
2 Cal	and the second		1. Same - 1. Same - S	25

.957	TABL	PLACE:	en: FD	RAWINSONDE	OBSERVATIONS,	AUGUST 18	- SEPTEMBER	1, 1957	<u>TABLE 5</u> (Concluded)
н	(Continue DDFF (m/s)	LAUD: LATE		LEVEL (mb.)	HEIGHT (m.)	TT (°C)	T _d T _d (°C)	RH	(concluded) DDFF (m/s)
0 5 3 9 2 3 2 1 	120 - 5 $120 - 5$ $150 - 4$ $160 - 5$ $160 - 6$ $130 - 7$ $80 - 8$ $30 - 8$ $10 - 8$ $360 - 21$ $20 - 2$	97 <u>.</u> 78	1200	1008 1000 850 700 600 500 400 300 200 150 100	Surface 76 1498 3140 4406 5859 7582 9690 12423 14216 16593	27.5 27.1 18.3 10.2 2.4 -4.8 -15.4 -31.0 -53.5 -66.1 -79.5	23.7 23.8 12.5 2.7 -5.9 -12.6 -20.3 MB	80 82 70 60 54 54 65 (20) 	100 - 4 $100 - 6$ $110 - 6$ $110 - 9$ $100 - 8$ $160 - 2$ $310 - 3$ $290 - 7$ $220 - 10$ $240 - 6$ $70 - 5$
	180 - 3 $170 - 3$ $170 - 3$ $150 - 5$ $160 - 6$ $150 - 7$ $120 - 6$ $100 - 11$ $40 - 16$ $30 - 18$ $30 - 5$	0/31	0000	1008 1000 850 700 600 500 400 300 200 150 100	Surface 76 1496 3142 4413 5870 7584 9679 12409 14192 16565	28.0 27.2 18.6 10.7 2.9 -5.8 -16.5 -31.9 -53.8 -68.0 -77.4	23.4 22.8 16.2 3.4 -2.0 -10.3 -22.5 -41.5	76 77 86 61 70 70 60 38 	60 - 6 70 - 6 80 - 3 80 - 3 80 - 8 90 - 3 150 - 3 90 - 7 190 - 11 190 - 14 30 - 3
	70 - 6 70 - 6 70 - 5 100 - 2 110 - 2 180 - 2 200 - 5 110 - 11 60 - 14 20 - 14 90 - 9		1200	1007 1000 850 700 600 500 400 300 200 150 100	Surface 68 1494 3146 4417 5873 7594 9698 12434 14231 16608	28.6 28.0 19.6 11.1 -5.8 -15.6 -31.6 -53.8 -66.1 -75.0	23.1 22.8 15.6 2.4 -1.8 -9.2 -21.9 -38.2 	72 73 78 59 72 77 58 52 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	100 - 490 - 580 - 570 - 490 - 250 - 2360 - 390 - 460 - 8110 - 6340 - 4	9/1	0000	1008 1000 850 700 600 500 400 300 200 150 100	Surface 75 1500 3148 4415 5817 7592 9691 12426 14215 16568	26.5 25.8 19.1 10.6 2.8 -5.2 -14.8 -31.3 -52.7 -67.7 -82.4	21.9 21.6 17.6 4.7 -5.2 -13.9 -28.4 MB	76 78 91 67 56 50 30 (20) 	100 - 7 $110 - 7$ $120 - 9$ $90 - 9$ $100 - 10$ $100 - 8$ $110 - 8$ $130 - 9$ $180 - 12$ $180 - 12$ $130 - 6$
	$\begin{array}{r} 60 - 8\\ 60 - 8\\ 60 - 10\\ 60 - 7\\ 50 - 2\\ 350 - 2\\ 20 - 5\\ 20 - 5\\ 20 - 2\\ 40 - 3\\ 200 - 9\\ 80 - 8\end{array}$		1300	1009 1000 850 700 600 500 400 300 200 150 100	Surface 85 1510 3157 4426 5889 7620 9731 12485 14294 16635	27.6 27.6 19.4 10.1 3.8 -3.9 -14.9 -29.8 -52.3 -66.3 -81.3	22.4 22.6 15.5 4.7 -4.7 -10.7 -20.7 -36.5 	73 74 78 69 54 59 61 52 	130 - 5 $130 - 6$ $150 - 6$ $120 - 10$ $110 - 10$ $100 - 13$ $110 - 9$ $170 - 5$ $110 - 5$ $90 - 6$ $90 - 11$
			No second se			65		D _C	T. WELLINES

. -

Ĺ.

	BRUCE			1110		ULI UD	DERANI	TONO,	AUGUST 18 - S	SEP TEM	SER 1, 1997	TABLE 6
Date a	nd Time	TT 	TT	<u>T T</u>	T _n T _n	<u>RR</u> L	<u>RR</u> O	N 	CIWH	FF3	DDFF	REMARKS
8/18	1200	89.0				0	0	6	Cu,Sc,Ci		SE	
	1500					0	0	8	Cu,Sc,Ac,Ci	4	SE	1500 few drops of rain fell.
	1800					т	Т	8	Thick Cu;Sc	2	SE	1700-1710 light shwr, also heavy squalls 3-5
	2100					0	0	1		1	E	miles N and E.
8/19	0000	82.0		94.0	80.0	0	0	1		4	NE	0000 clear overhead - clouds on horizon.
	0300					0	0	1	Cu	4	NE	
	0600					0	0	4	Cu	4	E	
	0900	·				0	0	4	Cu	5	Е	
	1200	88.5	80.5	88.5	80.0	0	0	2	Cu	6	E gentle	
	1500					0	0	4	Cu	8	E gentle	
	1800					0	0	4	Cu,Cb	8	E gentle	
	2100					0	0	-		8	E	
8/20	0000	82.5	77.0	90.5	82.5	0	0	Clear?		10	E	
	0300					0	0	-	•••••	11	E	
	0600					0	0	-	•••••	6	E	
	0900	85.0	77.5			0	0	-	Cu	9	E	
	1200	89.0	80.0	89.0	80.0	0	0	4	Cu,Ci	9	NE moder	ate 1200 towering Cu on horizon.
	1500	91.0	81.0	_===		0	0	2	Cu, Ac, Ci	8	NE	
	1800	86.0	79.0			0	0	3	Sc, Ac	6	NE light	
	2100	83.0	78.0			0	0	2		5	NE light	
8/21	0000	80.0	77.0	91.0	80.0	0.02	0.03	5		5	NE	0000 dark clouds to SE.
	0300	79.0	77.0			0.02	0.01	10		8	S modera	te 0300 steady light shwrs.
	0600	79.0	76.0			0.07	0.09	10		4	SE light	
	0900	82.0	77.0			0	0	10	Ac,Ci	4	S modera	
	1200	89•5	80.5	89.5	77•5	0	0	4	Cu,Sc,As, Ac,Ci	8	S fresh	
	1500					0	0	7	Cu, Ci	6	S	
	1800					0	0	4	Cu,Ci	4	S	
	2100					0	0	-		3	S gentle	1
8/22	0000	81.0	77.0	93.0	79.5	0	0	-	********	2	Calm	0200 rain began.
	0300					0.04	0.04	-	•••••	1		0300 light rain at time of obs.
	0600					0.01	0.02	-	Cu,Sc,Ci	2	S	
	0900					0	0	9	Cu,Sc	2	SE	
	1200	83.0	77.5	83.0	77.5	0.25	0.28	10	Cu, Sc	5	Calm	1100 rain ended.
	1500					т	т	10	Cu,Cb,Ac	7	NE	
	1800					0	0	10	Cu,Sc	8	Е	
	2100					0	0	10		10	NE light	
8/23	0000	81.5	78.0	86.0	81.5	0	0	10		11	E modera	te 0000 few drops of rain.
	0300					0	0	10		8	E light	•
	0600					0.19	0.19	10		9	SE	0430-0545 light rain. 0600 light shwrs.
	0900					Т	0.01	9	Sc, Ac, Ci	9	NE	0830 light shower.
	1200	85.5	80.5	85.5	78.0	0	Τ	7	2Cu;5Ci	11	E 5-10	
						0 07	0 01	ò	1011.20h.301.	9	E 5-10	1500-1505 rain with ESE wind 10-15 kts.

DOF

LE CHUNK

		1500			∪•رت 	((•)	-			Cu,Sc	• 5	Calm	1100 rain ended.
		1800					T O	Т	10	Cu,Cb,Ac	• 7	NE	1100 Tain ended.
		2100					ŏ	0 0	10 10	Cu,Sc		E	
	8/23	0000	81.5	78.0	86.0	81.5	õ	ŏ	10	••••••		NE ligh	
		0300					0	õ	10	• • • • • • • • • • • • • • • • • • •		E moder	
		0600 0900	 .				0.19	0.19	10			E light SE	
		1200	 05 F				Т	0.01	9	Sc,Ac,Ci.		NE	0430-0545 light rain. 0600 light shwrs.
		1500	85.5	80.5	85.5	78.0	0	Т	7	2Cu;5Ci	• 11	E 5-10	0830 light shower.
	a subscription.	1800					0.01	0.01	9	4Cu:2Cb:3Ci	. 9	E 5-10	1500-1505 rain with ESE wind 10-15 kts.
	ant and the co		a e standa in a	and and a second second			0	0	-10-	8Cu;2Ac&Ci.		SE 10-14	followed by F.O.5 kts. 1800 overset
	PLACE	I LRUCE	and the second		THE OWNER	108-HOU	RLY OF	TATE OF	015	AUGUST 18 - S			
s 1													(Continued)
	Lato	and Time	77	<u> </u>	TxTx	<u>Ir. Ir.</u>	hhi	ħħċ	7	CTWH	FF3	LLFF	R = M A R K ;
	- /-												
	8/24	0000	82.5	77.5	91.5	82.5	3	0	-	•••••	16	SE 10-15	
		6300 6600					0.C4 C	C.C4 0	ī	2Cu;2Ci	10 10	SE 6-5 SE 5-10	
1		0900			****		õ	ŏ	7	5Cu;2Ci	8	SE 5-10	
		1200	93.0	82.0	93.0	79.0	ŏ	õ	2	4Cu;4Ci	4	E 8-10	
		1500	91.0	81.5			0	0	7	3Cu;2Ac;7Ci.	5		1500 towering Cu to the East.
		1800	87.0	80.0			0	0	8	2Cu;8Ci	5		nd variable
		2100	82.0	77.5			0	0	5	5Ci	5	E 8-10	
1	8/25	0000	81.5	77.5	93.0	81.5	0	0	3	3Ci	7	E 8-10	
		0300	81.5	76.5			0	0	3	3Ci	8	E 10-15	
1		0600 0900	81.0 85.5	76 .5 79 . 0			0	0 0	3 10	1Cu;2Ci 2Cu;2Ac;10Cs	6	SE 6-8 SE 8-10	
		1200	93.0	81.5	93.0	81.0	ŏ	õ	9	2Cu;7Sc	5	E 5-10	
		1500		79.0			õ	ŏ	ý.	2Cu;1Ac;6Ci.	3	E 0-2	
1		1800		77.5			0	Ō	9	2Cu;3Ac;4Ci.	3		1730 calm began.
		2100		77.0			0	0	-		ì	Calm	2120-2125 light shwr.
	8/26	0000		77.5	93.0	82.0	Т	Т	-		1	Calm	
		0300		77.0			0	0	-	•••••	3	Calm	0/15 0500
		0600		78.0			0 0.03	0	29	•Cu	3	SE 0-2 SE 0-2	0645-0700 rain shwr.
•		0900 1200		79•5 81•5	88.0		0.01	0.04 T	9	4Cu;2Ac;3Ci.	4 5	SE 10-12	0900 shwr over Elmer and lagoon, partial rainbow to west. 0918 shwr began. 0923
67		1500		82.0			T	0.01	6	3Cu;6Ci	6	SE 8-10	shwr stopped. 1155 rain shwr began. 1205
		1800		79.5				0.0]	9	4Cu;4Ac;2Ci.	ŭ,	E 4-6	stopped. 1200 towering Cu all Quads. 1700
		2100		78.5			0	0	-		5	E 8-10	rain shwr began. 1710 stopped. 1730 rain
	8/27	0000		77•5	94.0	82.0	0	0	-	• • • • • • • • • • • • • • • •	9	SE 10-15	shwr began. 1740 stopped. 1800 towering
		0300		78.0			0.02	T	-		9	E 10-15	Cu all Quads. 0250 rain shwr began. 0255
		0600		78.0			0	T O	5	3Cu;3Ci	10	E 10-15	stopped. 0300 towering Cu all Quads. 0600
		0900 1200	84.0 90.0	79•5	90.0	81.0	0	ŏ	3	4Cu;2Ac;2Ci. 2Cu:1Sc	6 13	SE 8-12 E 15	towering Cu NE. 0900 towering Cu all Quads and rain shwrs to S.
		1500		82.0			ŏ	ŏ	5	4Cu;1Sc		E 20	
		1800	87.0				õ	ŏ	8	4Cu;4Ci		E 15	
		2100		78.0			0	0	-		8	SE 12	
	8/28	0000	82.0	78.0	94.0	82.0	0	0	-	••••	8	E 10	
		0300	81.5	77•5			T	Т	-	••••	7.	SE 20	
008		0600		77•5			0	0	2	•••••	6	SE 10	0000.1
<u> </u>		0900		79.0	<u></u>	 Ø1 0	0	0	8 10	2Cu;6Ac;6Ci.	4	S 10 Calm	0900 hazy sun. 1200 very dark horizon to east.
C → C → C → C → C → C → C → C → C → C →		1200		80.0 78.5	89.0 	81.0	0	0	10	3Cu;10Ac	2	E 1-2	1500 very dark horizon to SE.
9.		1500 1800		78.5			õ	ŏ	10	2Cu;10Ac		E 6-8	1)00 very dark horizon to obt
T.		2100		77.0			ŏ	ŏ	_		9	E 8-10	
	8/29	0000	80.5		90.5	80.5	õ	õ	-		10	E 6-8	
×,		0300		77.5			0	0	-			E 6-8	-/
and the second se		0600		78.0			0	0	7	5Cu;5Ci		E 4-6	0600 shwrs in sight in all quadrants. 0803
Ster HILLS		0900	86.0	79•5			Т	T	5	2Cu;4Ci		E 3-5	light shwr began. 0807 stopped. 0900 cirrus very thin. 1200 wind variable in spd.
		1200	88.5	80.0	88.5	80.5	0	0	3	.Cu	6	E 0-5	cirrus very onine izoo wind variable in spa-

and the second second second second States and the second

(Concluded)	ER 1, 1977	EPTEME	AUGUST 18 - S	LONS,	SERVAT	RLY OB	EE-HOUI	THR			BRUCE	PLACE:
REMARKS	DDFF	FF3	CIMH	N	RRO	RRL	<u>Tn</u> Tn	$\underline{\mathbf{T}_{\mathbf{X}}\mathbf{T}_{\mathbf{X}}}$	TTW	<u>TT</u>	nd Time	Date a
1500 wind speed variable; towering Cu to W.	E 3-8	9	2Cu&Cb2Ci	4	0	0			79.5	89.0	1500	8/29
1632 few drops rain. 1720-1728 light shwr.	E 5-8	11	8Cu;2Ci	10	0.03	0.03			78.0	82.5	1800	•
1800 wind speed variable; towering Cu to W.	E 5-10	11	Cu	5	0.01	0.01			78.5	82.5	2100	
S half of lagoon covered with shwrs; shwrs	E 8-10	12	*********	-	0	0	82.5	89.0	78.5	82.5	0000	8/30
to seaward SSE and E of Bruce. 1828-1853	E 5	8	********	-	0	0			78.0	82.0	0300	
very light shwr. 1912-1919 very light shwr	E 2-5	8	Cu	2	0	0			77.5	82.0	0600	
2100 gusty winds. 0851-0854 light shwr.	Calm	6	Cu	9	т	Т			79.0	84.0	0900	
0900 rain shwr. Rain seaward in SE quadrant;	SE 0-2	3	2Cu;2Ci	4	0.39	0.36	82.0	86.0	80.0	86.0	1200	
rainbow to W. 0935 9/10 sky cover -5Sc;3Cu	E 3-5	4	2Cu;1Ci	3	0	0			82.0	91.0	1500	
1Ac. 0950-1023 rain shwr. 1830-1845 rain	E 0-5	6	7Cu	7	0	0			80.0	86.5	1800	
shwr. Wind E 15-20.	E 5-10	8	••••	_	0.28	0.27			78.0	81.5	2100	
	E 8-12	9	••••	-	0	o	81.5	91.0	78.0	81.5	0000	8/31
	E 8-12	9		-	0	0			78.0	82.0	0300	,.
	E 8-12	11	2Cu;1Ci	3	0	0			77.0	82.0	0600	
	E 8-12	10	5Cu;1Ci	6	0	0			79.5	84.5	0900	
	E 15	10	3Cu;2Ac;1Ci.	6	0	0	80.5	89.0	81.0	89.0	1200	
	E 15	11	2Cu;3Sc;1Ac.	6	0	0			83.0	91.0	1500	
	E 15	11	6Cu;2Ci	8	0	0			80.0	87.0	1800	
2100 thin high cirrus. Halo around moon.	E 12	8	**********	-	Ō	ò			79.0	83.0	2100	
2345-0045 rain shwr. 0000 showery.	E 15	6		-	Ť	Ť	81.0	91.0	78.0	81.0	0000	9/1
0345 light shwr.	SE 12	11			0.04	0.04			78.0	80.0	0300	,, -
	SE 20	10		6	0.01	0.01		-	78.0	81.0	0600	
0900 hazy.	SE 15	ĩĩ	2Cu:7Ci&Cs	9	0	0			79.0	85.0	0900	

•

.

8

P.F.

.

	PLACE:	BRUCE	SPEC	AL OBSERV	ATIONS, A	UCUST, 1	957	
	LATE	LUCATION	TIME	h7.	11	17. ₄	TT.5	<u></u>
				(ft.)				
	28th	Ocean water line	1530	5	83.0	78.0		This set of observations on August 28th represents
		Edge of vegetation, ocean	1533	5	83.5	78.0		readings on a cross-INUCE traverse along a line
		Opposite well #5	1536	5	84.2	78.6		past the shelter and parallel to the line of wells
		Opposite instrument shelter	1539	5	83.8	78.0		(on old airstrip). Wind throughout was ELL,
		Opposite Well #4	1542	5	83.8	78.4		2-3 knots.
		Opposite Well #4, but about						
		75 feet into vegetation	1546	5	84.5	78.9		
		Opposite Well #3	1550	5	83.9	77.9		
		Opposite Well #2	1553	5	83.8	77.6		
		Edge of vegetation, lagoon	1557	5	83.7	77.7		
		Lagoon water line	1600	5	83.8	77•5		
	30th	Edge of water, lagoon	1208		86.0	80.0	84.6	The 1208-1241 observations are from a lagoon-ocean
		Edge of water, lagoon	1210	5	86.0	79.5		traverse on a line passing the shelter and parallel
		Edge of vegetation, lagoon	1212	5	87.0	80.0		to the line of wells.
		Edge of vegetation, lagoon	1213	1	87.0	82.0		
		Opposite Well #1	1215	5	85.5	79.5		
		Opposite Well #1	1216	1	87.0	82.0		
69		Opposite Well #2	1217	5	87.5	81.0		
v		Opposite Well #2	1218	1	91.0	84.0		
		Opposite Well #3	1221	5	87.0	80.5		
		Opp osite Well #3	1222	1 5	92.5	86.5		
		Opposite Well #4	1224	5	81.0	80.5		
		Opp osite Well #4	1225	1	87.5	82.0		
		Opposite instrument shelter	1227	5	86.0	80.0		
		Opposite instrument shelter	1228	1	91.0	84.0		
		Opposite Well #5	1229	5	87.5	81.0		
		Opp osite Well #5	1230	1	89.5	83.5		
		Edge of vegetation, ocean	1232	5	86.0	80.0		
		Edge of vegetation, ocean	1234	1	88.0	83.5		
		Edge of water (on reef)	1241	5	85.5	82.0		
		Edge of water (on reef)	1241	1	84.0	78.5	84•6	
DOF MA MAL		15 yards to edge of ocean reef	-	3	85.0	79.5	85.1	
C		Halfway in on ocean reef	1515	5	84.5	78.5		but from ocean to lagoon.
. *7		Edge of vegetation, ocean	1519	5	86.5	80.0		
1		Edge of vegetation, ocean	1520	1	90.5	83.5		
1		Opposite Well #5	1523	5 1	90.0 91.0	82.5 83.0		
		Opposite Well #5	1524	5				
· · ·		Opposite instrument shelter	1525		90.5	82.5		
		Opposite instrument shelter	1526	1	91.5	82.5		
		Opposite Well #4	1527	5	90.5	82.0		
		Opposite Well #4	1529	1	90.5	82.5		

1. Star

- ACAG

	PLACE:	BRUCE	SPEC	IAL OBSERV	ATIONS,	AUGUST, 1	.957	(a. TABLE ?
	DATE	LOCATION	TIME	HT. (ft.)	TT	TT _w	TT ₅	(Concluded) REMARKS
	30th	Opposite Well #3	1530	5	89.5	81.0		
	-	Opposite Well #3	1531	1	91.0	82.0		
		Opposite Well #2	1532	5	90.5	81.5		
		Opposite Well #2	1533	1	91.5	82.0		
		Opposite Well #1	1534	5	89.5	81.0		
		Opposite Well #1	1535	1	90.0	82.0		
		Edge of vegetation, lagoon	1536	5	88.5	80.0		
		Edge of vegetation, lagoon	1537	1	91.0	82.0		
		Edge of lagoon	1539	5	90.5	81.5	86.0	
		Edge of lagoon	1540	1	90.5	82.5		
		Edge of lagoon	1540	5	89.0	81.0	85.3	
		Edge of water, ocean	2109	5	83.0	78.5	83.5	The 2109-2131 observations are the same traverse
		Edge of water, ocean	2110	1	83.0	79.0		as above, ocean to lagoon.
		Edge of vegetation, ocean	2112	5	83.0	78.5		
		Edge of vegetation, ocean	2113	1 '	82.0	79.0		
		Opposite Well #5	2115	5	84.0	82.5		
		Opposite Well #5	2115	1	84.0	82.0		
		Opposite instrument shelter	2116	5	84.0	82.0		
70		Opposite instrument shelter	2117	1	83.5	82.0		
0		Opposite Well #4	2120	5	82.0	79.0		
		Opposite Well #4	2121	1	82.0	79.0		
		Opposite Well #3	2122	5	82.0	78.5		
		Opposite Well #3	2123	1	81.5	78.5		
		Opposite Well #2	2124	5	82.0	78.5		
		Opposite Well #2	2125	1	81.5	79.0		
* <u>)</u>		Opposite Well #1	2126	5	82.0	78.5		
\sim		Opposite Well #1	2127	1	81.5	78.5		
Υ.		Edge of vegetation, lagoon	2129	5	82.0	78.5		
27		Edge of vegetation, lagoon	2129	1	81.5	78.5		
×.		Edge of lagoon water	2131	5	82.0	79•0	84.2	
DOF BROTHERS								

.

•

. . . .

.

	PLACE:	KETTH	1		715		RLY OB	SERV	ATIONS, AUGUST	18 -	SEPTEMBER	1, 1957
	Late 1	und Tize	<u>11</u>	<u> </u>	$\frac{T_{x}T_{x}}{T_{x}}$	<u>1<u>n</u>7<u>n</u></u>	<u>на</u>	<u>к</u> -	CINH	FF3	LLFF	KEMAKRS
	8/18	1200	87.5	78.5	89.0	ac.o	C	4	4Cu		KE	
		1500	89.0	79.0			C	7	7Cu	4	E	
		1800	88.5	78.0			C	4	4Cu	4	NE	1700 Partial raintow, NE
	0/00	2100	82.5	75.5			0	1	1Cu	2	NE	
	8/19	0000	82.5	77.0	90.5	82.5	0	1	100	4	E	
		0300	82.0	76.0			0	3	2Cu;1Ac	5	NE	
		0600 0900	81.5 86.0	77.5			0	8	7Cu;1Ac	5	NE NE	
		1200	91.0	79.0 81.0	01 0	75.5	ŏ	2	50u	3	ne E	
		1500	92.5	81.0	91.0	()•)	õ	4	4Cu 3Cu	ú	Ē	
		1800	86.5	79.5			ŏ	4	4Cu	11	E	
		2100	83.0	77.0			ŏ	1	1Cu	12	E	
	8/20	0000		77.0	92.5	82.0	Ő	1	1Cu	12	E	
	0/20	0300		77.0	72.07	02.00	ŏ	3	2Cu;1Ci	12	e E	
		0600		75.0			ŏ	8	2Cu;6Ci	10	E	0645-0730 calm. 0800-0830 Rainbow to W. Line of
		0900	85.5	77.0			ŏ	7	2Cu;1Ac;4Ci.	12	E	shwrs. 5-10 mi. S, moving W. 0900 Cu in SE,SW
				79.0	91.0	81.0	ŏ	6	3Cu;3Ci	12	E	1200 Cu well developed S to W
		1500		79.0			ŏ	3	2Cu;1Ci	13	E	1500 Cu well developed in N. 1700-1900 very light
		1800	88.5	79.0			ŏ	2	Cu		E	winds. 1800 few Ci in NW
				77.0			ŏ	2	Cu	8	Ē	WINDS. 1000 IEW CI III NW
-1	8/21	0000		77.0	91.0	82.5	ŏ	ŝ	Cu	a a	E	0000 Few drops of rain
71	0/21	0300	78.5	77.0			0.05	10	Sc	0 0	W	0255-0310 light shwrs. 0340-0347 light shwrs.
		0600	81.0	77.0			0.01	10	Sc	8	S	02))=0)10 11ght Shwis, 0)40=0)47 11ght Shwis,
		0900	83.0	77.0			T	10	6Cu:4Ci	7	SE	
		1200	83.0	78.0	83.0	78.0	ō	9	1Cu;7Ac,As;	10	S	
		1200	٥٠٠٥	10.0	0,.0	10.0	U	'	101,780,880,	10	5	
		1500	85.0	78.0			0	9	5Cu;8Ci	12	S .	
		1800	84.0	78.0			ŏ	8	3Cu:5Ac	<u>6</u>	SW	
		2100	82.0	77.5			ŏ	5	1Cu:4Ci	ś	S	
	8/22	0000	82.0	78.0	85.5	82.0	ŏ	2?	•	ı.	·S	
	0/22	0300	80.0	76.0			ŏ	3?		ĩ	Calm	
		0600	81.0	77.5			ŏ	9	1Cu;8As	2	W	0600 halo observed 45°
		0900	84.5	79.0			ŏ	10	4Cu:4Cs:	4	N to	0915 beginning light shwr.
		0,00	04.)	17.0			v	10	2Ac,As	4	Calm	off) beginning right shwr.
e)		1200	83.5	78.5	84.5	80.0	0.01	10	9Cu;Sc,Ac,Ci	6		r 9:12 from chopper en route to Keith, observed 4
О. —		1200	رەرە	100)	04.)	00.0	0.01	10	Jou, DejRejOI	, U	4	shwrs. northward over lagoon. One, 5-10 miles
Č.		1500	88.5	78.0			0	10	Ac,Ci,Cu	7	E 8-10	
17		1800	83.5	78.0			ŏ	10			E 12-14	across, may have extended over Janet. Other 3 were much smaller 1 mile or so across.
14		_					ŏ		6Cu;3Ac,Ci			
-01- 10- 10-	ø/00	2100	83.5	77.5		 Фл б	0		•••••		E 12-15	10:18 light rain begins from edge of low cloud that
and the second s	8/23	0000	81.5	78.0	88.5	81.5	T		•••••		E 12-14	has drifted in from east. Cloud extends northwar
*/		0300	82.0	78.5			0.10	10	Cu Co 4-	12	E 4-6	from Keith. Rain ended 1100. 0003-0030 Lt.rain.
· · ·		0600	80.0	77.0					Cu,Sc,Ac		E 5-8	0255-0610 light to moderate rain, changing to very
×.,		0900	82.5	79.0			Т	9	Cu,As,Ci		E 8-10	light rain 0610 to 0735, when rain ended.
		1200	87.0	80.0	87.0	80.0	Т	9	8Cu,Sc;lAc, Ci	16	NE 10- 15	1004-1008 light shwrs. 1200 gusts to 20 knots.

A STATE OF THE STATE OF THE STATE

A.S.

.

٠

PLA	CE:	KEITH			THE	lee-hou	rly of	BSERV	ATIONS, AUGUST	18 -	SEPTEMBER	1, 1957 <u>TABLE 8</u> (Continued)
Dat	e and	i Time	TT	TTw	$\underline{\mathbf{T}_{\mathbf{x}}\mathbf{T}_{\mathbf{x}}}$	$\underline{{}^{T_{n}T_{n}}}$	RR	N 	CIMH	FF3	DDFF	REMARKS
8/2	3 1	1500	87.0	79.0			0	10	4Cu;5Ci;1Ac	11	E 5-10	1700-1800 Squall line about 10 miles southwest of
	1	800	83.0	79.0			0	10	2Cu;8Sc		SE 10	Keith. 1800 rain in lagoon between Bruce and
	2	2100	81.5	77.0			0.02	10	8Cu;2Ci	9	SE 10- 15	Keith. 1803 few drops of rain. 1950 few drops of rain. 2008-2017 rain. 2100 light shwr.
8/2	4 C	0000	83.0	78.0	87.5	80.0	0	10	Sc	10	SE 10- 15	0040 few drops of rain.
	0	300	82.0	77.5			Т	10	4Cu;6Ci	9	E 5-15	0300 winds variable. 0440 rain started - stopped
	C	0600	81.0	77.5			0.03	10	4Cu;6Ci	9	SE 5-10	sometime before 0600. 0745 partial rainbow
	C	0900	83.0	78.0			0	10	3Cu;7Ci	9	SW 5-10	southwest of Keith. 0900 rain in lagoon N of
	1	200	83.0	77.0	85.0	79.5	0.21	7	3Cu;3Sc;1Ac	5	SE 5	Bruce-Keith line. 1040 started raining. 1100 rain
	1	500	89.5	81.0			Т	7	6Cu;1Sc,Ac	4	E 5-10	slackened to light shwr. 1115-1300 intermittent
		800	85.5	78.0			0	ġ	2Cu; 3Ac; 3Ci	$\dot{7}$	E 5-10	light shwrs. 1800 halo around hazy sun.
		2100	82.0	77.0			0	3		6	E 12	
8/2		0000	82.0	77.0	90.0	82.0	ō	á			E 15	
-,-		0300	81.5	77.0			ō	3			Ē 15	
		0600	81.0	75.0			õ	7			NE 18	
	-	0900	83.0	76.5			õ	9	1Cu;8Ci,Cs,Ac		SE 10	0900 high thin Ci,Cs.
		1200	88.0	78.0	88.0	81.0	ŏ	ś	1St;7Ci		E 0-5	oyoo mign onin orgoot
		1500	89.0	77.0			ŏ	8	1Cu;1St;6Ci		E 0-5	
		1800	89.0	77.5			ŏ	8	4Cu;4Ci	ī	Calm	
		2100	81.0	76.0			ŏ		404,4010000	ō	Calm	2100 rain started. 2115 rain stopped.
8/2		0000	79.0	75+5	91.0	79.0	Ť			ň	Calm	0215 wind E 15-20 kts. 0225-0235 rain. 0240 wind
0/4		0300	81.0	75.5	/1.00		Ť			4	E 5-10	dropped.
		0600	81.0	76.5			Ť			ĩ	E 0-5	0655 sky cover 3/10;2/10 Cu 1/10 Ci. 0830 -0835
		0000	86.0				ò	6	4Cu;2Ci		E 0-5	rain. 0940 large Cb over lagoon to E. 1013 few
		1200	87.0		87.0	78.5	0.07	6	4Cu&Cb2Ac;	3	E 3-4	drops of rain. 1016 shwr commenced. 1035 shwr
	_	-	•	•	0/•0	(0.)			6Ci	-		stopped. 1200 rain shwr over lagoon to NE.
]	1500	86.5	77•5			0	6	4Cu&CblAc; 6Ci	3	E 2-3	1500 rain shwr to W over ocean.
	נ	1800	85.0	77.0			0	9	4Cu&Cb3Ac; 8Ci	1	Calm	1800 many shwrs in sight in all quadrants. 1910 few drops of rain.
	2	2100	81.0	77.0			0			2	SE 3-5	2100 heavy rain shwr commencing gusty wind.
8/2	27 0	0000	81.5	77.5	88.5	79.0	0.10			9	SE 6-8	2115 shwr stopped.
.,		0300	81.5	76.0			0			10	E 8-10	
		0600	80.5				0	3	2Cu:3Ci	10	E 6-8	0720 shwr commenced. 0732 shwr stopped. 0750 few
		0900	82.5	78.5			0.08	7	4Cu; (Ac);6Ci.		E 4-6	drops of rain. 0845 very light shwr. 0910 few
		1200	86.5	80.5	86.5	78.0	0.01	8	8Cu		SE 5-10	drops of rain. 0900 many shwrs over lagoon. 1040
		1500	88.5	80.0			0	5	5Cu		SE 10- 12	-1130 light shwr.
	נ	1800	87.0	78.0			0	8	2Cu;6Ci	п	SE 10- 12	
	2	2100	82.5	78.0			0			8	SE 8-12	
a/-		r	81.5		88.5	81.5	Ō		•••••	8 7	SE 8-12 SE 5-10	

- -

ALCHINE'S

	8/28	0900 1200 1500 1800 2100 0000 0300	82.5 86.5 88.5 87.0 82.5 81.5 82.0	80.5 80.0 78.0 78.0 77.5 77.5	86.5	78.0	0.08 0.01 0 0 0 0	3 7 8 5 8 	2Cu;3Ci 4Cu;(Ac);6Ci. 8Cu 5Cu 2Cu;6Ci	9 10 12	E 6-8 E 4-6 SE 5-10 SE 10- 12 SE 10- 12 SE 8-12 SE 8-12 SE 8-12	0720 shwr commenced. 0732 shwr stopped. 0750 few drops of rain. 0845 very light shwr. 0910 few drops of rain. 0900 many shwrs over lagoon. 1040 -1130 light shwr.
an a		0600	82.0	.77.0		and the	, Č	3.	2Cu:1Ci		SE 5-10 SE 5-10	
فأحرب ويتربغ معاسيه معان	PLACE	: KEITH	1977 (Serve Serve	All the second	TE	101-100	ily or	s Invi	TTONS, AUGUST	18 -	SEPTEMBER 1	
	iate	and Jime	77	17_	I _x I _x	^r n ^r n	hł.	Ň	CINCH	FF3	CLFF	(Concluded) KEMAKKS
	8/28	0900	84.5	78.0			 ن	8	 3Cu;5Ci	5	s 5-10	
	•, =•	1200	87.0	79.5	87.0	81.0	Č	10	2Cu:10Cs	-	SE 3-5	
		1500	87.5				0	10	2Cu;2Ac;10Cs.	i	Calm	
		1800	83.5	77.5			0	10	3Cu;10Cs	6	E 8-10	
		2100	82.0	78.5			0			11	E 10-12	
	8/29	0000	81.5	77.0	87.5	81.5	0		•••••	13	E 10-15	
		0300	81.0	77.0			0				E 8-10	
		0600	81.5	77.5			C	4	4Cu;2Ci		E 8-10	
		0900	85.0	79.0			0	6	6Cu		E 4-6	
		1200	88.0	80.5	88.0	79.5	0	4	4Cu		NE 12	
		1500	89.0	80.0			0	4	2Cu;1Cb;1Cs		NE 20	1705 light shwr began. 1730 rain began. 1745 rain
		1800	84.5	79.5			0.02	7	3Cu;4Sc		NE 20	ended. 1815 rain began (wind gusty). 1830 rain
		2100	82.5	77.5			0.08		•••••	- •	NE 20	ended. 1920 rain began. 1930 rain ended. 2030
	8/30	0000	83.0	78.5	90.0	80.0	0		•••••		NE 20	lightning to west. 2300 lightning to north.
		0300	82.5	78.0			T		•••••	-	NE 15	
		0600	82.5	77.5			0		1Cu:1Sc:1Ci.Ac		NE 12 NE 10	
		0900 1200	85.5	78.0		82.0	0.29	ر 6			E 5-8	1000 rain shwr began. 1015 stopped. 1020 rain shwr
			85.5	79.0	85.5	02.0	0.29		4Cu;2Ac;4Ci 2Cu;3Ci	3	NE 5-10	began. 1045 stopped. 1200 towering Cu all Quads.
		1500 1800	87.5 88.5	80.0 80.0			ŏ	4	4Cu;2Ci		E 5-8	1500 towering Cu all Quads. 1800 towering Cu all Quads. Rain shwr NE in lagoon.
- •		2100	81.5	78.5			0.16	7	4Cu;4Ci	9	E 5-10	1900 rain shwr began. 1910 stopped. 1920 rain shwr
73	8/31	0000	81.5	78.0	88.5	78.0	0.02			-	E 10-15	began. 1945 stopped. 2000 rain shwr began. 2010
	0/)1	0300	82.5	77.5			0				E 10-15	stopped. 2100 towering Cu all Quads. Moonlight.
		0600	81.5	77.5			Ť	8	3Cu;3Ac;5Ci		E 10-15	problem with constructing on att darage theoretic.
		0900	84.5	79.0			ō	7	3Cu;2Ac;5Ci		E 10-12	1000-1100 calm wind.
		1200	90.0	82.0	90.0	81.5	ō	8	2Cu;1Ac;5Ci		E 5-8	1332-1338 light shwr.
		1500		80.0			T	7	5Cu:2Ac		EŠ	1517-1528 heavy shwr.
		1800	86.0	79.0			0.02	10	2Cu:8Ci.Cs		E 5-8	1800 Cb in NW quadrant. 1850 heavy rain shwr E over
		2100	83.0	77.5			0				E 5-8	lagoon. 1905-1915 gusty winds at 15-20 kts. 2000
	9/1	0000	79.0	76.5	91.0	79.0	0.35				E 3-5	halo around moon. 2325-0008 rain.
	•	0300		77.5			0.10			9	E 5	0420 rain started. 0545-0550 rain.
		0600	80.0	77.0			0.16	3	3Cu	9	SE 8-10	
		0900	83.0	78.5	83.0	78.0	Т	10	4Cu;6Cs	8	E 3-5	

والمحاجب والمحاجب

T

DOLAR

LACE:			77	T _x T _x	TnTn	RR	N	т 18 – 31, 1957 ^С імн	DDFF	
DATE	TDE	11	тт _w	, X, X	-n-n			Tull		(
6/ 18	1240	85.0	76.5	86.0	79.0	0.02	3	3Cu	S Light	
	1225	84.5	78.0		81.5	0	4	4Cu	E 6-8 E 6-8	
e /a	1200	83.5	76.0	86.0	82.0	0	4 8	4Cu;Ci	E 6-8 SE 12- 15	
6/21	1200	82.5	77.5	85.0	77.5	0.11 0.13	9	2Cu;Ac;Ci 2Cu;Ac;Ci	NE 8-10	
8/22	1200	83.0	75.5	84.0 85.0	79.0 80.5	0.21	8	25c;3Ac;7Ci.	NE 10-13	
0/23	1200	83.0	78.5	85.0	77.0	0.27	7	4Cu;2Ac;6Ci.	E 6-8	
8/2.	1200	81.5 84.0	76.0 76.0	86.0	82.0	0	8	2Cu;4Ac;8Ci.	E 3-4	
8/25 8/25	1155 1200	85.0	78.5	88.0	78.0	0.09	7	4Cu;3Ac	SE 4	
8/25 8/27	1200	84.0	78.0	85.0	78.5	0.24	6	5Cu;1Ac	SE 15	
8/28	1130	85.0	79.0	84.0	82.0	0	10	3Cu;10As		
8/29	1200	85.5	79.0	85.0	81.5	0	4	4Cu	NE 10-12	
8/30	1150	84.0	78.0	85.0	78.0	0.05	47	3Cu;2Ac;3Ci.	NE 3-4 E 10-12	
6/ 31	1145	84.5	78.5	87.0	77•5	0.04	ſ	3Cu;3Ac;4Ci.	6 10-12	
					REMARKS	AND TO	WER R	EADINGS		
f in the second se										
		ng Cu 1	to 5.							
8/23	CU to	5W.			hume in	eicht	over	lagoon and islets	• hearry shure	1 -
8/24	Light	rain sr]WT- ⊃e	form #1	יית •∩מכר יית •∩מכר	T_\$2 0.	- ΨΨ	-77.0. Platform	#2 12254 TT_21	• 2 ····
	MAUN	IONEA	ri itad		1	ton	230.	TT-81.0; TT _w -76.	<i>"</i>	,
		- J.	(]							
e /or	Platf	orm #3	(on lad	ider at borizon	Level of	Coundry I	ant.	TOWER: Platfor	יעי #1 1207• דד_8	8/0+
/25	Platf Swelli	orm #3 ng cumu	lus on	horizon	along N	E quadra	ant.	TOWER: Platform	n #1 1207: TT-8	84.0; -75.5
/25	Platf Swelli 76.0.	orm #3 ng cumu Platf	ilus on form #2	horizon 1210: T	along N T-83.0;	E quadra TT75	ant. .0. :	TOWER: Platform Platform #3 1215:	n#1 1207: TT-8 : TT-82.5; TT	 75•5
8/ 25	Platf Swelli 76.0. 1213:	orm #3 ng cumu Platf TT-82.	ilus on form #2 5; TTu	horizon 1210: T ,-75.5.	along M T-83.0; (Platfo	E quadr: TT75 rm #3 a	ant. .0. : nd To	TOWER: Platform Platform #3 1215: p are at same lev	n #1 1207: TT-8 : TT-82.5; TT _v vel; #3 was re	 75•5
	Platf Swelli 76.0. 1213: at le	orm #3 ng cumu Platf TT-82. vel of	lus on form #2 5; TT, top; 1	horizon 1210: T -75.5. Top was	along M T-83.0; (Platfor read star	E quadra TT75 rm #3 an nding on	ant. .O. nd Toy n top	TOWER: Platform Platform #3 1215: p are at same lev platform facing	n #1 1207: TT-8 : TT-82.5; TT _v vel; #3 was re windward.)	_75.5 ead on
	Platf Swelli 76.0. 1213: at le Gentle obser	orm #3 ng cumu Platf TT-82. vel of swells ved unt	lus on form #2 5; TT top; T s, surfa	horizon 1210: T -75.5. Top was the wind ar 1300.	along N T-83.0; (Platfor read star ripples TOWER:	E quadra TT75 rm #3 and nding on Heav Platf	ant. .O. nd Top n top y rai orm #	TOWER: Platform Platform #3 1215: p are at same lev	n #1 1207: TT-8 TT-82.5; TT, vel; #3 was re windward.) (; commenced]	-75.5 Ead on 1230 a
8/ 26	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F	ilus on form #2 5; TT top; T s, surfa il afte Platform	horizon 1210: T -75.5. Top was te wind ar 1300. 1 #3: TT	T-83.0; (Platfor read star ripples TOWER: -82.0;	E quadra TT _w -75 rm #3 a nding on Heav Platf IT _w -77.0	ant. .O. nd Top n top y rai orm # 0.	TOWER: Platform Platform #3 1215; p are at same lev platform facing n shwr. N of MACH 1: TT-83.0; TTw	n #1 1207: TT-6 TT-82.5; TT rel; #3 was re windward.) (; commenced] 78.0. Platfor	-75.5 ead on 1230 a rm #2:
8/ 26	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. I te swel	ilus on form #2 5; TT top; T s, surfa til afte Platform Lls with	horizon 1210: T -75.5. Top was the wind or 1300. 1 #3: TT h white	along N T-83.0; (Platfor read star ripples TOWER: -82.0; caps. C	E quadra TT75 rm #3 a nding of Heav Platf ITw-77. Loud con	ant. .O. nd Top n top y rai orm # O. nditio	TOWER: Platform Platform #3 1215; p are at same lev platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapid	n #1 1207: TT-8 TT-82.5; TT windward.) ; commenced] 78.0. Platfor	-75.5 ead on 1230 a rm #2: ng by
8/ 26	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10;	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. H te swel 3Cu;7	ulus on form #2 .5; TT top; T s, surfa til afte Platform Lls with 7Ci. TC	horizon 1210: T -75.5. op was ce wind or 1300. 1 #3: TT 1 white WER: P	T-83.0; (Platfor read stat ripples TOWER: -82.0; caps. C latform ;	E quadra TT _w -75 rm #3 and nding on Heavy Platf TT _w -77. loud con #1: TT-4	ant. •O. nd Top n top y rai: orm # 0. nditions 82.0;	TOWER: Platform Platform #3 1215; p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TTw- ons changed rapic TTw-78.0. Plat	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) ; commenced 1 78.0. Platfor lly to followir form #2: TT-8	-75.5 ead on 1230 a rm #2: ng by
8/ 26 8/27	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5.	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. I te swel 3Cu;7 Platf	ulus on form #2 5; TT top; T s, surfa til afte Platform Lls with 7Ci. TC form #3:	horizon 1210: T -75.5. fop was ace wind ar 1300. 1 #3: TT white WER: P : TT-81.	T-83.0; (Platfor read star ripples TOWER: -82.0; caps. C latform; 5; TTwr	E quadra TT _w -75 rm #3 a nding of Heav Platf ITw-77. loud con #1: TT-4 76.5.	ant. .O. nd Top n top y rai: orm # O. nditions 82.0; At Sho	TOWER: Platform Platform #3 1215; p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TTw- ons changed rapic TTw-78.0. Plat elter 1132: TT83.	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) ; commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5.	,-75.5 ead on 1230 a rm #2: ng by 1.5;
8/ 26 8/27	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TC	ulus on form #2 5; TT top; T s, surfa til afte Platform Lls with 7Ci. TC form #3: WER: F	horizon 1210: T -75.5. fop was ace wind ar 1300. 1 #3: TT white WER: P t TT-81. Platform	along N T-83.0; (Platfor read star ripples TOWER: -82.0; caps. C latform; 5; TTw #1 1115	E quadr TT75 TM #3 a nding of Heav Platf ITw-77. Loud con #1: TT-4 76.5.	ant. .0. nd Top n top y rai. orm # 0. nditi. 32.0; At Sh. .0;	TOWER: Platform Platform #3 1215; p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TTw- ons changed rapic TTw-78.0. Plat	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) ; commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5.	,-75.5 ead on 1230 a rm #2: ng by 1.5;
8/26 8/27 8/28	Platf Swelli 76.0. 1213: at le Gentle obser TT_w-7 Modera N 10; 77.5. Hazy s 77.5.	orm #3 ng cumu Platf TT-82. vel of swells ved unt te swel 3Cu;7 Platf un. TC Platf	ulus on form #2 .5; TT top; T s, surfa til after Platform Lls with 7Ci. TC form #3: DWER: F	horizon 1210: T -75.5. Op was ar 1300. 1 #3: TT a white WER: P : TT-81. Platform 1125: T	along N T-83.0; (Platfor read star ripples TOWER: -82.0; affor 14form 5; TT 7-83.5;	E quadra $TT_{w}-75$ rm #3 a nding of Heav Platf $TT_{w}-77$ loud con #1: TT-4 76.5. : TT-85 : TT_87	ant. .0. nd Top y rai orm # 0. nditi 82.0; At Sho .0; .0.	TOWER: Platform Platform #3 1215: p are at same lev platform facing n shwr. N of MACH 1: TT-83.0; TTwo ons changed rapid TTw-78.0. Plat elter 1132: TT83. TTw-78.0. Platfo	n #1 1207: TT-8 TT-82.5; TT, rel; #3 was re windward.) G; commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _W -77.5. orm #2 1120: TT	-75.5 ead on 1230 a rm #2: ng by 1.5; T-84.0
8/26 8/27 8/28	Platf Swelli 76.0. 1213: at le Gentle obser TT_w-7 Modera N 10; 77.5. Hazy s 77.5.	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. I te swel 3Cu;7 Platf un. TX Platf Platf	ulus on form #2 .5; TT top; T s, surfa til after Platform Lls with 7Ci. TC form #3: DWER: F	horizon 1210: T -75.5. Op was ar 1300. 1 #3: TT a white WER: P : TT-81. Platform 1125: T	along N T-83.0; (Platfor read star ripples TOWER: -82.0; affor 14form 5; TT 7-83.5;	E quadra $TT_{w}-75$ rm #3 a nding of Heav Platf $TT_{w}-77$ loud con #1: TT-4 76.5. : TT-85 : TT_87	ant. .0. nd Top y rai orm # 0. nditi 82.0; At Sho .0; .0.	TOWER: Platform Platform #3 1215; p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TTw- ons changed rapic TTw-78.0. Plat elter 1132: TT83.	n #1 1207: TT-8 TT-82.5; TT, rel; #3 was re windward.) G; commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _W -77.5. orm #2 1120: TT	-75.5 ead on 1230 a rm #2: ng by 1.5; T-84.0
8/26 8/27 8/28 8/29	Platf Swelli 76.0. 1213: at le Gentle obser TT_w-7 Modera N 10; 77.5. Hazy s 77.5. TOWER: (miss	orm #3 ng cumu Platf TT-82. vel of swell: ved unt 7.0. F te swel 3Cu; Platf un. TX Platf ing).	ulus on form #2 .5; TT top; T s, surfa til afte Platform lls with 7Ci. TC form #3: WER: F form #3 form #1:	horizon 1210: T -75.5. Op was or 1300. 1 #3: TT WER: P TT-81. Platform 1125: T TT-85.	along N T-83.0; (Platfor read star ripples Tower: -82.0; atform ; 5; TTw 5; TTw 5; TTw 5; TTw 5; TTw	E quadra TT75 rm #3 and hding on Heavy Platfi ITw-77.1 loud co- #1: TT-4 76.5 TT-85 TTw-77.1 79.0.1	ant. .0. nd To n top y rai. orm # .0. .0. At Sh. .0; .0. Platfe	TOWER: Platform Platform #3 1215: p are at same lev platform facing n shwr. N of MACH 1: TT-83.0; TTw- ons changed rapid TTw-78.0. Plat elter 1132: TT83. TTw-78.0. Platfo orm #2: TT-85.0;	n #1 1207: TT-8 TT-82.5; TT, rel; #3 was re windward.) S; commenced 1 .78.0. Platfor lly to followin form #2: TT-81 O; TT _W -77.5. Drm #2 1120: TT TT_W -79.0. Pl	-75.55 sad on 1230 a rm #2: ng by 1.5; I-84.0 latfor
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. TOWER: (mies TOWER: Platf	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. H te swel 3Cu;7 Platf un. TV Platf ing). Platf orm #3	ilus on form #2 5; TT, top; T s, surfa latform lls with 7Ci. TC form #3 form #3 form #1 1203: T	horizon 1210: T -75.5. Nop was not wind a #3: TT h white WER: P TT-81. Platform 1125: T : TT-85. 1157: T T-82.2;	along N T-83.0; (Platfor read stat ripples TOWER: -82.0; caps. C: latform; 5; TTw- 5; TTw- 5; TTw- T-83.0; TT-83.0; TTw-77.	E quadr $TT_{u}-75$ $TT_{u}-75$ $TT_{u}-75$ $TT_{u}-77$ $TT_{u}-77$ $TT_{u}-77$ $TT_{u}-77$ $TT_{u}-77$ $TT_{u}-77$ $TT_{u}-77$	ant. .O. ind Top y rai: orm # .O. Million .O. .O. Platfo .S. .O. .O. .O. .O. .O. .O. .O.	TOWER: Platform Platform #3 1215: p are at same lev platform facing n shwr. N of MACH 1: TT-83.0; TTw- ons changed rapic TTw-78.0. Plat elter 1132: TT83. TTw-78.0. Platform platform #2 1200: ndward side) 1204	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c; commenced] 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. orm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT : TT-82.0;	-75.55 ad on 1230 a rm #2: ng by 1 1.5; 1-84.00 latforn -77.55 TT77
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (mies TOWER: Platf Sea:	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. H te swel 3Cu;7 Platf un. TV Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT, top; T s, surfa latform lls with 7Ci. TC form #3 form #1 form #1 1203: T " plus.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT n white WER: P TT-81. Platform 1125: T 1125: T TT-85. 1157: T T-82.2; TOWER	along N T-83.0; (Platfor ripples TOWER: -82.0; caps. C latform; 5; TTw- 5; TTw- T-83.5; 5; TTw- T-83.0; TTw-77. : Platfor	E quadr TT75 TT #3 a: ading of Platf TT77. loud con #1: TT-4 76.5. TT-85 TT77. 1: TT-85 TT77. 5. Top porm #1	ant. .0. .1 nd Top n top y rai orm # 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TOWER: Platform Platform #3 1215: p are at same lev platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Flatform platform #2 1200: ndward side) 1201 TT-84.0; TT _w -78	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c; commenced] 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. orm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :.0. Platform	-75.5 ad on 1230 a 1230 a rm #2: ng by 1 1.5; 1-84.0 1atforn -77.5 TT77 #2 [°] 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (aff 1115 T-83.5; 5; TTw ⁻ T-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.55 ad on 1230 au rm #2: ng by 1 1.5;
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (aff 1115 T-83.5; 5; TTw ⁻ T-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same lev platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Flatform platform #2 1200: ndward side) 1201 TT-84.0; TT _w -78	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.5. ad on 1230 ar rm #2: ng by 1 1.5; 5 1-84.0; 1atform -77.5. TT -77 #2 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (aff 1115 T-83.5; 5; TTw ⁻ T-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.53 ad on 1230 au rm #2: ng by 1 1.5; 1 1.5; 1 1.450 1.450 1.77.5. TT -77. #2 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (aff 1115 T-83.5; 5; TTw ⁻ T-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.5.5 ad on 1230 au 1230 au rm #2: ng by 1 1.5; 1-84.0 1atforn -77.5.7 TT77 #2"120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (aff 1115 T-83.5; 5; TTw ⁻ T-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2: TT-85.0; Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.5. ad on 1230 ar rm #2: ng by 1 1.5; 5 1-84.0; 1atform -77.5. TT -77 #2 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (aff 1115 T-83.5; 5; TTw ⁻ T-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2: TT-85.0; Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.53 ad on 1230 au rm #2: ng by 1 1.5; 1 1.5; 1 1.450 1.450 1.77.5. TT -77 #2 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (aff 1115 T-83.5; 5; TTw ⁻ T-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2: TT-85.0; Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.5. ad on 1230 ar rm #2: ng by 1 1.5; 5 1-84.0; 1atform -77.5. TT -77 #2 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (aff 1115 T-83.5; 5; TTw ⁻ T-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2: TT-85.0; Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.5. ead on 1230 ar rm #2: ng by] 1.5; 7 I-84.0; latform -77.5. TT77 #2 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (aff 1115 T-83.5; 5; TTw ⁻ T-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2: TT-85.0; Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.5. ead on 1230 ar rm #2: ng by] 1.5; 7 I-84.0; latform -77.5. TT77 #2 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (affilite tafform; 5; TTw 5; TTw 5; TTw T-83.0; TT-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2: TT-85.0; Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.5. ad on 1230 ar rm #2: ng by 1 1.5; 5 1-84.0; 1atform -77.5. TT -77 #2 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa cil afte latform ls with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (affilite tafform; 5; TTw 5; TTw 5; TTw T-83.0; TT-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2: TT-85.0; Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.5. ad on 1230 ar rm #2: ng by 1 1.5; 5 1-84.0; 1atform -77.5. TT -77 #2 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa li afte latform lis with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (affilite tafform; 5; TTw 5; TTw 5; TTw T-83.0; TT-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2: TT-85.0; Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.5. ad on 1230 ar rm #2: ng by 1 1.5; 5 1-84.0; 1atform -77.5. TT -77 #2 120
8/26 8/27 8/28 8/29 8/30	Platf Swelli 76.0. 1213: at le Gentle obser TTw-7 Modera N 10; 77.5. Hazy s 77.5. Hazy s 77.5. TOWER: (miss TOWER: Platf Sea: 1T-83	orm #3 ng cumu Platf TT-82. vel of swells ved unt 7.0. F te swel 3Cu;7 Platf un. TX Platf ing). Platf orm #3 code "]	ilus on form #2 5; TT top; T s, surfa li afte latform lis with 7Ci. TC form #3 form #1 1203: T 1 plus. f78.0.	horizon 1210: T -75.5. Nop was new wind or 1300. 1 #3: TT 1 white WER: P TT-81. Platform 1125: T TT-85. 1157: T T-82.2; TOWER Platf	along N T-83.0; (Platfor ripples TOWER: -82.0; (affilite tafform; 5; TTw 5; TTw 5; TTw T-83.0; TT-83.0; TTw-77. : Platfor orm #3 12	E quadr $TT_{u}-75$ rm #3 a hding of Platf $TT_{w}-77.$ loud con #1: $TT-4$ 76.5. TT-85 $TT_{w}-77.$ 10 $TT_{w}-77.$ TT_{w}	ant. .0. 	TOWER: Platform Platform #3 1215: p are at same ler platform facing n shwr. N of MACH 1: TT-83.0; TT _w - ons changed rapic TT _w -78.0. Platform elter 1132: TT83. TT _w -78.0. Platform #2: TT-85.0; Platform #2 1200: ndward side) 1200: TT-84.0; TT _w -78.5. (pc	n #1 1207: TT-8 TT-82.5; TT rel; #3 was re windward.) c: commenced 1 78.0. Platfor lly to followir form #2: TT-81 0; TT _w -77.5. prm #2 1120: TT TT _w -79.0. P1 TT-82.5; TT _w : TT-82.0; :0. Platform pr exposure to	-75.53 ad on 1230 au rm #2: ng by 1 1.5; 1 1.5; 1 1.450 1.450 1.77.5. TT -77 #2 120

ł

ł

ł

ł

73

ļ

1

7

ł

ł

Z

ł

ł

79 83

ł ł

ł ł

£ 87

ł ł

ł ł

80 83

ł ł

I ł

-1/2

*

64

78

75

ou wears he

PLACE: KEITH

72

DOR NRCHIVES

HOURLY RELATIVE HUMIDITIES, AUGUST 18 - SEPTEMBER 1, 1957*

TABLE 9

HOUR:	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400
DATE																								
8/18												67	66	65	64	64	63	6 2	65	71	72	74	75	78
8/19	78	78	76	74	75	83	83	79	73	68	6 6	65	63	65	61	65	71	74	75	75	76	77	78	80
8/20	80	80	80	78	79	74	76	71	68	66	63	59	59	59	60	61	64	66	67	73	76	76	76	78
8/21	80	82	93	83	85	83	79	79	77	78	79	80	79	76	73	74	76	76	80	81	82	83	81	84
8/22	82	82	84	86	87	81	81	81	79	74	78	80	70	66	63	67	72	78	77	77	76	81	85	86
8/23	86	84	86	8 6	86	87	88	84	86	85	82	74	76	73	70	76	80	84	83	82	82	80	30	30
8/24	86	86	82	84	84	85	85	81	80	80	84	82	68	67	69	67	74	72	76	80	80	80	78	80
8/25	80	81	82	79	76	76	77	76	74	72	70	76	68	66	58	59	60	60	66	72	80	84	85	85
8/26	82	83	78	74	78	82	82	80	74	80	74	70	70	72	67	62	67	70	75	82	83	84	82	82
8/27			78			86			84			77			69			66			82			84
8/28			82			80			75			72			67			77			86			82
8/29			82			83			77			71			68			81			80			82
8/30			82			80			72			75			72			69			86			86
8/31			80			83			79			71			71	- -		73			78			89
9/1			83			87			82															

* Because of malfunctioning of the hygrothermograph only 3-hourly values are given 8/27 - 9/1.

PLACE: MACK

76

t.

a the second second

4 . .a

BI-HOURLY TEMPERATURES AND RELATIVE HUMIDITIES, AUGUST 18 - 31, 1957

TABLE 11

HOUR :	 02	.00	04	00	06	00	08	00	10	00	12	00	14	00	16	00	180	00	20	00	22	00	24	.00
	TT	RH	\underline{TT}	RH	TT	RH	TT	RH	TT	RH	\underline{TT}	RH	TT	RH	TT	RH	TT	RH	TT	RH	ΤŢ	<u>RH</u>	11	RH
DATE																								
8/18													85	78	85	76	84	74	82	80	82	75	82	78
8/19	82	74	82	75	82	80	83	76	83	78 ·	84	74	85	75	84	75	83	80	83	72	83	78	83	76
8/20	82	78	82	75	82	72	83	70	83	70	84	72	84	74	84	74	84	74	84	78	83	82	82	84
8/21	81	88	79	91	79	80	81	75	82	70	82	79	83	75	84	74	84	75	83	75	82	76	79	82
8/22	79	80	79	91	80	80	81	75	82	75	83	74	83	72	84	66	85	65	84	70	82	78	81	87
8/23	83	80	82	80	81	82	80	88	79	87	83	85	83	82	84	82	83	82	83	83	83	82	83	78
8/24	83	80	80	82	82	78	83	78	82	80	84	76	86	70	83	72	83	77	83	76	83	77	83	76
8/25	82	80	82	75	82	72	83	75	84	69	84	6 8	84	68	86	68	85	69	84	70	83	82	83	84
8 /2 6	83	85	81	88	82	82	80	80	80	80	84	76	84	72	84	75	81	81	83	80	83	80	82	80
8/27	81	84	80	84	79	84	82	82	81	82	83	81	83	82	83	82	83	85	83	85	83	80	82	82
8/28	82	84	82	86	82	87	83	74	83	74	84	76	83	74	82	79	81	90	81	8 6	81	85	81	83
8/29	81	86	81	86	81	85	82	84	83	79	83	80	81	75	82	80	80*	82	80	82	81	83	80	86
8/30	80	85	80	85	80	80	81	82	81	85	83	74	82	76	82	80	81	86	80	87	77	89	80	90
8/31	80	86	80	82	80	80	81	82	81	87	84	78												

* 1900, 8/29, temperature 76°.

			ELMER		DAILY (OBSERVATIO	DNS, AUGUS	ST 18 - S	EPTEM	BER 1, 1957	TABLE 12
90		PLACE: DATE	TIKE	T	TT _w	$T_{\mathbf{x}}T_{\mathbf{x}}$	$T_n T_n$	RR	N	CLMH	DDFF
08				85+5	78.5	91.0	78.0	0	3	2Cu;1Ci	E 5-10
ω		6/13	0900 0915	85+5	79.0	93.0	84.0	0.02	2	2Cu	E 5-10
83		8/1 ·	C400	84.5	76.0	90.0	81.5	0	3	1Cu;2Ci	E 8-10
77		0/20	0,00	63.0	77.0	89.0	76.5	0.52	10	3Cu;Ac;Cs	s 4 -6
87		6/21 6/22	0900	81.5	77.5	88.0	80.0	0.14	10	9Cu,Sc;(Ac);(Ci)	N Very Lt.
		6/ 23	0700	81.0	78.5	88.0	77.0	0.19	8	5Cu;3Ac;4Ci	NE 8-10
80		6/ 24	0900	85.5	80.0	89.0	76.5	0.09	8	4Cu;2Ac;8Ci	SE 4-6
86		8/25	0908	85.0	78.0	89.0	81.0	0	9	2Cu;1Ac;9Ci&Cs.	E 3-5
81		6/ 26	0900	82.0	78•5	90.0	82.0	0,18	9	6Cu;2Ac;2Ci	Lt. Variable
0		8/27	0900	80.5	77•5	90.0	76.0	0.08	10	6Sc;4Cu	E 10-12
80		8/28	0850	85.0	77•5	88.5	80.0	Т	10	2Cu;8C5&Ci	SE 2-4
83		8/29	0905	86.0	84.5	87•5	83.5	0.01	2	2Cu	NE 0-5
76		8/ 30	0905	82.5	78.0	90•5	80.0	0.13	8	5Cu;2Ac;5Ci	NE 3-6
83		8/31	0910	84.0	79.0			0.13	6	3Cu;4Ac;4Ci	E 8-10
		9/1	1015	84.0	81.0	88.0	77•5	0.20	8	3Cu;4Ac;7Ci	E 6-8
78							REMARI	V C			
87 87							REMARI	70			
87		B/22	0900	Rain.							
5 8		8/23	0900		to the		1400 01001	lug over	+ha]	agoon to the NW.	
00		8/24	0900		-				CHE I	agoon to the hes	
8		8/25	0908		-		istant to		- from	n 0852 to 0905.	
81		8/ 26 8/ 27	0900 0900			14 to 0912		5. DUM	re iroi		
0	. 76	8/ 30	0905				quadrant:				
80	ture	9/1	1015		-		quaorant: e north qu				
80	temperature 76°.		1015	Towers	ng cumu.	ius in the	e north q	uaurant.			
웛	tem										
80	8/29,										
	° °										
86	1900,										
80	*										
		the second s									

8/31

77

* -

-

۰,

por an HILLS

. .

PLACE: ELMER

and the second se

78

×.

BI-HOURLY TEMPERATURES AUGUST 20 - SEPTEMBER 1, 1957

TABLE 13

T. Town Kanner

HOUR:	0200	0400	0600	0800	1000	1200	1400	1600	1800	2000	2200	2400
DATE												
8/20					84	87	88	88	86	82	82	80
8/21	78*	77	78	79	82	85	86	86	85	81	80	80
8/22	79	77	79	81	78	80	86	84	82	82	81	78
8/23	80	78	79	80	80**	84	87	85	83	81	81	82
8/24	81	81	81	81	86	87	87 ***	86	85	82	82	81
8/25	81	81	80	82	87	88	89	89	86	84	81	81
8/26	78	79	80	82	80	84	87	88	84	81	81	81
8/27	78	7 9****	80	81	81	84	86	86	83	81	80	80
8/28	80	80	79	81.	85	84	84	83	80	80	79	79
8/29	79	80	80	81	85	88 ****	88	87	79	80	81	81
8/30	80	80	80	82	78	85	86	86	85	80	80	80
8/31	80	80	80	81	83	84	85	86	85	82	81	77
9/1	79	79	79	80	83	86						

* Just before 0300, 8/21, temperature drops to 76°.

0900, 8/23, temperature 81°. 1300, 8/24, temperature 88°. **

- ***
- **** 0500, 8/27, temperature 77°. ***** 1300, 8/29, temperature 89°.

ζ.,	1.E:	JANET

b

Mary Mary and Area and Area and Area

DAILY RAINFALL, AUGUST 19 - 31, 1957

DATE	TIME	RR		REM	ARKS	
8/19	0915	0.50	Total	since	0915,	8/17/57.
8/20	0915	0				
8/21	0915	0.22				
8/22	0915	0.13				
8/23	0915	0.10				
8/24	0945	0.19				
8/25		¥ ,				
8/26	0945	0.11				·
8/27	0945	0.81				
8/28	0915	0				
8/29	0915	0				
8/30	0915	0.15				
8/31	0915	0.01				

* Amount included in total for next day.

POE ARCHINCE

Just before 0300, 8/21, temperature drops to 76°. 0900, 8/23, temperature 81°. 1300, 8/24, temperature 88°. 0500, 8/27, temperature 77°. 1300, 8/29, temperature 89°.

* * * *

• *

TABLE 14

PLACE:	EIMER-MACK ZONE TIME			LAGOON TRA	verses,	AUGUST 18 - 31, 1957 TAF
DATE	ZONE	TIME	TT _s T	ime tt	TT _w	REMARKS
8/18	1 2 3 4 5	1128 1132 1150 1210 1230 1243 1247	84.5* 1 84.5* 1	137 87.0 155 88.0 215 88.0 233 87.0	79.5	Departed EIMER. 300 yards off EIMER. Off buoy. 100 feet off MACK. Arrived MACK.
	5 4 2 1	1410 1415 1435 1455 1525 1525		420 84.0 442 83.5 502 83.0	78.0	Departed MACK. 100 feet west of MACK. 300 yards off EIMER. Arrived EIMER.
8/19	1 2 3 4 5	1057 1101 1121 1141 1201 1218 1222	84.5* 11	105 84.0 125 83.5 145 83.5 205 83.5	79.0	Departed EIMER. 300 yards off EIMER. Off buoy. 150 feet off MACK. Arrived MACK.
	5 4 3 2 1	1300 1303 1325 1345 1405 1432 1440			79.0 78.5	Departed MACK. 45 feet west of MACK. 300 yards off EIMER. Arrived EIMER.
8/20	1 2 3 4 5	1016 1019 1039 1059 1119 1135 1142	83.5* 10 84.0* 11		77.0 77.0	Departed EIMER. 300 yards off EIMER. Buoy to starboard. 300 feet off MACK. Arrived MACK.
	5 4 3 2 1	1220 1225 1245 1305 1325 1347 1350	84.0* 13	250 84.5 310 84.5 330 84.5	78.0 78.0 77.5	Departed MACK 50 feet west of MACK. Off buoy. 300 yards off EIMER. Arrived EIMER.
8/21	1 2 3 4 5 5	1019 1021 1041 1059 1117 1133 1136 1148	84.0* 11 84.0* 11	043 83.5 102 83.5 118 83.5		Departed EIMER. At green water. Obstruction buoy "A" to port. Black buoy "ll" nearby. OSCAR off starboard bow. 300 yards off MACK. 200 feet off MACK. Arrived MACK. M-boat had to lay off to because of sea condition.
	5 4 3 2 2	1220 1225 1241 1305 1337 1350	84.0* 12 84.0* 13 84.0* 13	83.5 806 82.5	77.0	Departed MACK. 200 feet off MACK. OSCAR off port bow. Black buoy to starboard. Red lighted buoy to starboard.

. *ب*

* ,

÷

.

100 C

80

POF SkerMALES

	TABLE PLACE:	ELMER	-MACK					AUGUST 18 - 31, 1957 <u>TABLE 1</u> (Continued)
RKS	DATE	ZONE	TIME	TT _S	TIME	TT	TT _W	REMARKS
	a/ 21	1	1406 1410	83 • 5				At green water. Arrived ELMER.
	8/22	1 2 3 4 5	1005 1007 1025 1043 1100 1118 1123 1125	83•5 83•7 83•7 83•8 84•0 84•0	1009 1027 1046 1102 1121	80.5		Departed EIMER. Rain shwrs between 1015 and 1100. "A" buoy to port. Buoy to port. 1,500 yards off MACK. 150 feet off MACK. Arrived MACK.
		5 4 3 2 1	1245 1246 1304 . 1323 1342 1356 1404 1406	84.5 84.3 84.2 84.3 84.0 84.0 84.0	1248 1307 1325 1344 1359	83.0 84.0 84.0 84.0 83.5	78.5 78.5	Departed MACK. 50 feet off MACK. Black buoy to port. At green water. Arrived EIMER.
	8/23	1 2 3 4 5	1020 1023 1040 1058 1116 1131 1138 1140	83•5 83•8 83•7 84•0 84•0 84•0	1025 1044 1101 1119 1134	82.0 82.5 83.0	78.5 78.5 79.0 78.5 79.5	Departed EIMER. At green water. Budy "A" to port. Black budy "ll" to port. OSCAR off the starboard bow. OSCAR off the starboard quarter. 150 feet off MACK. Arrived MACK.
		5 4 3 2 2 1	1240 1240 1258 1317 1335 1350 1400 1405	84+3 84+0 84+0 84+0 83+5 83+8	1242 1300 1319 1338 1353		78.5	Departed MACK. 50 feet off MACK. OSCAR off the port quarter. Between a black and a red buoy. Buoy "A" to port. Buoy "8" to starboard. At green water Arrived EIMER.
	6/ 24	1 2 3 4 5	1020 1025 1043 1104 1125 1136 1138	84.0 84.0 84.0 84.0 84.0 84.0	1030 1050 1109 1130	84.5 86.5 83.0 83.0	78.5 78.5	Departed EIMER. 500 yards off EIMER. Black buoy on starboard beam. Red lighted buoy on starboard quarter. OSCAR on starboard beam. 300 feet off MACK. Arrived MACK.
ort. to lay off tow	er	5 4 3 2 2 1	1235 1236 1256 1316 1338 1348 1355 1356	84.8 85.2 84.8 84.7 83.9 84.0	1045 1303 1320 1342 1354	83.0 84.0 84.5	77•5 78•0 78•5 77•5 78•0	Departed MACK. 150 feet off MACK. OSCAR on the port quarter. Black buoy "ll" off starboard beam. BRUCE on port beam. Black channel (inside) buoy on port beam. Inside green water. Arrived ELMER.
oard.	6/25	1 2 3 4 5	1020 1022 1040 1100 1121 1140 1142	84.0 84.0 84.5 84.5 84.5	1025 1045 1103 1125		76.8 77.0	Departed EIMER. At edge of green water. Obstruction buay "A" off starboard bow. Black buoy "11" off starboard beam. OSCAR on starboard bow. Arrived MACK.

Ŵ

DOF PROMARS

Ş

,

81

Ŷ

	PLACE:	ELMER	-MACK		LAGO	ON TRAV	ÆRSES,	AUGUST 18 - 31, 1957 <u>TABL</u> (Contin
	DATE	ZONE	TIME	TT ₅	TIME	TT	ΤΤ _w	<u>REMARKS</u>
•	8/25	5 4 3 2 2 1	1220 1222 1242 1301 1321 1335	84.8 84.8 85.0 85.0 83.9 84.4	1228 1248 1305 1325 1340	85•5 85•5 84•5 85•2 84•5	77.0 76.5 75.6	Departed MACK. 150 feet off MACK. OSCAR on port quarter. Black buoy "11" off port beam. Obstruction buoy "A" off port beam. At red buoy "6". Current (about 6 knots) running into lagoon at red buoy "6". At edge of the green water.
	8/26	2 3	1344 0945 0950 1010	83.5 83.8	1000 1020	84.0 84.0	79.0	Arrived EIMER. Boat departed BRUCE rather than EIMER. 100 yards from shore. Intermittent shwrs. 1015-1100.
•		4 5	1030 1050 1100	83.5 83.2	1035 1055	84.0 82.5		Buoy 400 yards to port. 300 yards off MACK. All readings taken by holding bulb-end into wind. Arrived MACK.
		5 4 3	1230 1235 1255 1315	84.2 84.7 85.0	1240 1300 1320	83.5 84.5 84.0	78.5 78.0 78.0	Departed MACK. 200 yards off MACK. Heavy rain shwr. N of MACK still visible
		2 1	1335 1353 1400	84.0 84.0	1340 1357	84.0 85.0	78.0 78.5	1330. 300 yards south of red buoy "A". 300 yards off EIMER. All readings taken holding bulb-end into wind. Arrived EIMER.
	8/27	1 2 3 4	1007 1010 1030 1050 1110 1120	83.7 83.7 84.1 84.4	1013 1032 1052 1113	84•5 84•5	79.0 79.0 79.5 79.5	Departed EIMER. 300 yards off shore. Red buoy 400 yards to starboard. Arrived MACK.
		5 4 3 2 1	1255 1300 1320 1340 1400 1418 1423	84.5 84.3 84.3 84.3 84.3 84.0	1302 1323 1342 1402 1420	85.0	79.0 79.0 79.0 79.0 79.0	Departed MACK. 300 yards off MACK. Black buoy 300 yards to port. Obstruction buoy 200 yards to port. 300 yards off EIMER. Arrived EIMER.
	8/28	2 3 4 5	0950 0955 1015 1036 1051 1053	83.9 84.0 84.1 84.1	0957 1016 1035 1050	84+5 84+0 84+5 85+0	78.5	Boat departed BRUCE rather than EIMER. At blue water-heading 300°. Heading 300°. Heading 300°. Off MACK. Arrived MACK.
		5 4 3 2 1	1220 1220 1240 1300 1320 1335 1339	84.4 84.0 84.2 83.9 83.5	1225 1242 1303 1324 1334	86.0 85.0 85.0 84.0 84.5	79•0 78•0	Departed MACK. Few yards off MACK. Buoy "11". At edge of blue water. Arrived EIMER.
	8/29	1 2 3 4	1010 1018 1035 1055 1115	83.5* 84.0* 85.0* 84.5*	1020 1038 1057 1118	84.5 84.5 84.5 84.0	78.5 79.0	Departed EIMER. Buoy and REX in line.
							82	DOT ARCHIVES

. **.**

,

. . .

TAB (Contin ARKS	II HACE:	ELMER	-MACK		LAGO	ON TRAV	ERSES,	AUGUST 18 - 31, 1957 <u>TABLE</u> (Conclude
<u> </u>	DATE	ZONB	TIME	TT 5	TIME	TT	тт _w	REMARKS
ort beam.	a/2 9	5	1130 1130	84•5*	1128	85.5	80.0	Arrived MACK.
off port beam. rent (about 6 knots) at red buoy "6". water. "ather than EIMER.		5 4 3 2 1	1222 1222 1240 1300 1320 1335 1340	85+0 84+5 84+5 84+0 84+5	1224 1243 1302 1322 1338	85.5		Departed MACK. Few yards off MACK. Arrived EIMER.
.015-1100.	, e/ 30	1	1013 1015	83•3	1020	80.5	77.0	Departed EIMER. 150 yards off EIMER. Rain shwr. 300 yards ahead.
All readings taken by o wind.		2	1033	83•3	1037	80.5	77.0	obstruction buoy "A" on starboard beam. Rain shwr. 1000 yards off port bow.
		3 4 5	1055 1115 1133	83•8 84•4 84•4	1100 1119		76.5 79.0	OSCAR on starboard bow. OSCAR on starboard beam. 200 feet off MACK. Many shwrs. over lagoon :
MACK still visible at			1135				·	start of traverse; all dissipated by noon. Arrived MACK.
d buoy "A". All readings taken by wind. starboard.		5 4 3 2 2 1	1211 1213 1225 1245 1306 1320 1325 1327	85•4 85•2 85•2 84•8 84•5 84•5	1229 1248 1310 1323	83.5 83.0	77•0 78•5 79•0 79•0	Departed MACK. 150 feet off MACK. OSCAR on port beam. Black buoy "11" 500 yards ahead. Obstruction buoy "A" off port beam. Cement barge off port beam. At blue water's edge. Arrived EIMER.
o port.	8/ 31	1 2 3 4 5	1023 1025 1045 1105 1125 1135 1138	83.9 83.8 84.2 84.4 84.5	1027 1048 1108 1127	84.0 84.0	79.0 78.5 79.0 79.0	Departed EIMER. At edge of blue water. Obstruction buoy "A" on port quarter. Black buoy "11" astern 1000 yards. OSCAR off starboard beam. 300 feet off MACK. Arrived MACK.
ards to port ther than <u>EIMER</u> . 300°.		5 4 3 2 1	1245 1250 1315 1338 1401 1420 1422	84.5 84.5 84.4 83.9 83.8	1252 1317 1340 1408	85.5 85.0	79.0 78.0 80.0 79.5	Departed MACK. 1000 yards off MACK. OSCAR on port quarter. Black buoy "11" on port quarter. Red lighted buoy "12" off port beam. At edge of blue water. Arrived EIMER.

* Temperatures read to nearest 0.5° F. only.

4

the state of the s

۰.

DOF ARCHITLS

83

¥

PLACE: BETWEEN BRUCE, KEITH, ELMER

i

1

.

and the

2

March Street in all March 201

LAGOON TRAVERSES, AUGUST, 1957

Traverse 1	Vo. 1, BRUCE	<u>-KEITH</u>			
DATE	TIME	TTs	TIME	TT _	REMARKS
20th	0945	83.7	0945	88.0	In shallow water by ERUCE departing for KEI
	0950	83.8	0950	86.0	
			0955	85.0	
	1000	84.2	1000	85.0	
			1005	85.0	
	1010	84.2	1010	86.0	Near obstruction buoy "A".
		a . o	1015	85.0	
	1020	84.0	1020	85.0 85.0	
	1020	84.2	1025 1030	84.5	
	1030 1040	84.2	1040	84.5	
	1040	04.4	1045	85.0	
	1050	84.0	1050	84.5	
	20,0		1055	85.0	
	1100	84.0	1100	85.0	
			1105	85.0	
	1110	84.2	1110	85.5	
	1115	84.4	1115	85.0	
	1120	84.6	1120	87.0	Water shoaling.
	1125	84.6	1125	86.0	100 yards from shore.
	1128	84.2	1128	89.0	At shore - KEITH.
	1203	83.8	1203	87.0	About 50 yards from shore.
	1205	84.6	1205	86.0	50 yards to blue water. Course 110°.
	1210 1220	84.6	1210	85.5	Deep water. Course 115°. Thermometer broke, observations discontinue
	1220				Inermometer broke, observations discontinue
Traverse N	10.2, ELMER	-KEITH-B	RUCE		4
DATE	TIME	TTs	TIME	TT	REMARKS
		**s	1,4,44,5	** ~	· · · · · · · · · · · · · · · · · · ·
23rd	1030	ø, 0	1006	a . 0	Departed ELMER.
	1025 1030	84.0 83.8	1025 1030	84.0 87.0	EIMER landing. Heading 245-250°. Hazy sun.
	10,0	0,.0	1035	84.0	heading xit)-x)0 . hazy suit.
	1040	84.0	1040	84.0	Heading 245°.
			1045	84.5	
	1050	84.0	1050	84.5	Heading 250°.
			1055	84.5	Passing buoy.
	1100	84.2	1100	85.0	Heading 250°. 1104 passing buoy.
			1105	85.0	i
	1110	84.2	1110	85.0	Heading 250°.
		.	1115	85.0	
	1120	84.2	1120	85.0	Heading 250°.
	1100	ou /	1125	85.0	
	1130	84.6	1130	85.0	1
	1140	84+4	1135 1140 -	85.0 85.5	j.
	1140	04+4	1145	85.0	1
	1150	84.4	1150	85.0	
	1155	84.4	/-	0,00	At edge of blue water.
	1200	83.3			At buoy.
	1205	84.0			Halfway from buoy to shore on KEITH.
	1210	85.1			At KEITH, but still in water (at edge of f
	1220	84.0			Halfway from shore to buoy (starting now :
					BRUCE)
	1225	83.8			At buoy.
	1320	.			Departed KEITH.
	1325	84.4	1325	86.0	At edge of blue water.
					84 DOL ARCHINE
					and the second
					00 ¹
					¥
a and margaret	S. march Security State	and the set			and the second

Profession and the

Y

TABLE

TAB	LACE: B	ETWEEN BRUCE	, agith				TABLE 14 (Continued)
				LAG	OON TRA	VERSES	, AUGUST, 1957
	TRYACHE	No. 2. ELKER	-KEITH-	BRUCE			
RKS	DATS .	TDE	TT.	TIME	TT		REMARKS
BRUCE departing for KET		1120	84+4	1330	84.0	I	Heading 70° true.
	Ord	1330	044+44	1335	84.0		
		1340	84.2	1340	84.0	l -	Heading 70° true.
				1345	84+5		
		1350	84.4	1350	84+5		Heading 75° true.
· "A".	4			1355	84.5		
		1400	84+4	1400	84.0		Heading 75° true.
				1405	84.5		
		1410	84+4	1410	84.0		
				1415	84.5		
		1420	84+4	1420	84.5		
				1425	84.5		
		1430	84+3	1430	84.0		
			.	1435	83.0		() and with light the stars
		1440	84.1	1440	84.0		Cloudy with light shwrs.
			a , a	1445	83.0		100 mende 6 of human MAN
		1450	84•2	1450	84.0		100 yards S of buoy "A".
			<u> </u>	1455	83.0		
		1500	84•2	1500	83.0		Hearry main on DRUGE
		1510	6 1 - 1	1505	82.0		Heavy rain on BRUCE.
ore.		1510	84.1	1510	83.0		At adapt of blue set of
		1515	84+1	1515	82.0 86.0		At edge of blue water.
• Course 110°.		1518	84.8	1518	85.0		200 yards off shore.
		1521 1525	84•9 85•3	1521 1525	85.5		100 yards off shore. Along shoreline at BRUCE.
ervations discontinue.		1)2)	ر ډره	1527	84.8		Inshore.
KS		o. 3. KEITH-	BRUCE				
	DATE	TIME	TT	TIME	TT	TT _w	REMARKS
	28 th	1045					Departed KEITH.
sun.				1043	88-0	81.0	Edge of vegetation on shore at KEITH.
		1045	85.0*	1045	86.5	79.0	Edge of water.
		1050	84.0#	1052	85.0	79.0	5 yards from KEITH.
		1055	84.0*	1057		80.0	100 yards from buoys at KEITH.
		1100	84.0#	1102	84.0	80.0	
		1110	84+5*				
sing buoy.		1120	84.5*	1122	85.5	79•5	
		1130	84.5*	1132	85.0	79.0	
		1140	84.5*	1142	85.0	79.0	
		1150	84+5*	1152	84.5	78.5	
		1200	84.0*	1202		79.0	
		1210	84.0*	1212		78.5	
		1215					Buoy "A".
		1220	84.0*	1222	85.0	79.0	-
		1230	84.0*	1232		78.0	
		1235	84.0#	1237	85.0	78.0	
		1240	84.0*	1241		78.0	
		1242	84+5+	1242	85.0	78.0	100 yards from BRUCE.
		1244	84.5*	1244	85.0	77.5	25 yards from BRUCE.
e on KEITH.		1245	85.0*	1245	85.0	78.5	Edge of water.
ater (at edge of sho				1247		78.5	Edge of vegetation on BRUCE.
by (starting now for						-	

**

÷.

1

.¥

÷

ě.

DOL: NRI HICKS

•2

. 7 ·

LAGOON TRAVERSES, AUGUST, 1957

DATE	TIME	TT _s	TIME	TT	TT _w	<u>REMARKS</u>
31 s t	0930					Departed BRUCE.
			0927	86.0	79.5	Edge of vegetation on BRUCE.
	0929	84.2	0929	85.0	79.0	Edge of water.
	0951	84.2	0951	86.5	80.0	50 yards from water's edge.
	0954	84.0	0954	86.0	79.5	Edge of blue water.
	1000	84.0	1000	86.5	80.0	Course 250°.
	1015	84.2	1015	86.5		Course 250°.
	1030	84.2	1030	86.0	79.5	Course 250°.
	1045	84.6	1045	86.0	79.5	Course 240°.
	1100	84.6	1100	87.0	80.5	Course 240°. 1103 passed red buoy (50
			2225	077 0	a 0 0	drum on coral head.
	1115	84.7	1115		80.0	Course 240°.
	1125	84.7	1125		80.0	Course 240°.
	1130	84.7	1130		80.0	
	1132	84.6	1132	86.5		Between KEITH buoys.
	1134	85.3	1134	86.5		10 yards from water's edge.
	1136	86•4	1136	85.5		Edge of water.
	2000		1138	86.0	79•5	Edge of vegetation on KEITH.
	1200					Departed KEITH.
		a (a	1155	88.0		Edge of vegetation.
	1157	86.9	1157	86.5		Edge of water.
	1158	85.6	1158	87.0	81.0	15 yards from water's edge.
	1203	84.7	1203	85.0	79.5	Passed buoy.
	1208	84.7	1208	87.0	80.5	Course 080°.
	1225	85.1	1225	86.0	79.5	Course changed to 070°.
	1240	84.9	1240	86.0		Course from 070 to 065°.
	1255	84.7	1255	85.5	79.5	Course 060°.
-	1310	84•6	1310	86.0	80.0	Passed obstruction buoy; Course 060°. 1318 - 1321 rain shwr.
	1325	84.6	1325	85.5	79.5	Passed lighted buoy: Course 065°.
	1340	84.4	1340	85.5	79.5	Course 065°.
	1350	84.2	1350	86.0	79.0	Passed buoy "B-1".
	1356					Arrived EIMER.

DOD VECHNES

 $\frac{\underline{TA}}{(Conc}$

a second high a land a second of X-

~

COF STREPTICES

(Conclust	PLACE:	LAGOON-OCEAN		LAGOON	N-OCEAN	TRAVER	<u>TABLE 17</u> SES, AUGUST, 1957
ARKS	DATE	TIME	TT s				REMARKS
	18 15	1025	83•5				From helicopter. About 500 yards off EIMER reef, in ocean.
on BRUCE. 's edge.		1042	83.7				From helicopter. About 500 yards off KEITH reef, in ocean.
	DATE	TIME	TT _s	TIME	IT	TT.w	R E M A R K S
passed red buoy (50 gain	23rd	1150					Departed EIMER
		1156	83.0*	1158	85.0	80.0	In deep channel entrance.
		1203	83.0*	1206	84.5	79•5	Off entrance buoy "2".
s edge.		1217	83.0*	1219	85.0	80.0	Outside E of BRUCE.
n KEITH.		1232	83.0*	1235	86.0	80.0	Outside NE of SAM.
	ř	1248	83.0*	1250	85.0	80.0	Outside E of BRUCE.
s edge.		1304	83.5*	1306	85.5	80.0	Outside E of ELMER.
		1320	83.5*	1322	85.0	79•5	Outside E of FRED.
)°• 55°•		1333	83.0*	1335	84.5	79.0	Off black "1" buoy, SW of FRED.
10y; Course 060°.		1342	84.0*	1350	85.0	79•5	In lagoon W of Sand Island.
r. Course 065°.		1400					Arrived ELMER.

87

2 4 S. 20

a Sher Brind

																	<u>TA</u>	
	DATE	TIME	POSITION/COURSE	Ng .	DDFF	WX	P	TT	TT _w	TTs		c_L		с _м	c _H		WAVES	
											AMT. 8ths	TYPE	HT. 00 ft.			DD	PERIOD	HT. ft.
	8/18	0200 0400	B ikini B ikini	2 2	Lt.Airs Lt.Airs	03 02	72 70	82 81	78 78		2 2	2 2	20 20					
		0600	B ikini	2	Lt.Airs	02	72	80	78	٠	2	2	20					
		0800	Bikini	2	Lt.Airs	02	72 86	83	- 78		2	2	20					
		1000 1200	B ikini B ikini	2	09-05	02	80	87	80 N Q	R	2 E P (2 DR 1	20 5					
		1400	Bikini						NO			OR 1	-					
		1600	B ikini						NO	R	E P (ORT						
		1800	B ikini	4	11-08	03	76	86	80		3	2	20		l			
		2000	B ikini	6	11-05	02	92	82	78		6	2	20					
		2200	Bikini	2	11-05	01	90	82	78		2	2	20					
		2400	B ikini	0	11-05	02	90	82	78		-	-						•
8			0400-0600 Positie 0600-0800 Positie 0800-1000 Positie	on as b	efore. No	change	in we	eather	in past		rs. Ba	rometer	steady		ght var	iable	airs.	
			1000-1200 Positic 1200-1400 Positic 1400-1600 Positic 1600-1800 Positic	on as i on as i on as i on as i Lity ur on as i on as i	pefore. Vis pefore. Clo pefore. Clo pefore. Cum alimited. H pefore. Ban pefore. Clo	bibilit; bud cov ear ove nulus c baromet cometer buds di	y unl: er ind rhead louds er ris came ssolv: . Bas	imited creasing all and sing. up .1 ing. romete	• Low S ng. Sho ks of cu round ho 6 in pas Visibil: r stead;	5W swell ower in umulus corizon. st 2 hou ity unl:	l. sight cloud a Filam urs. C imited. ibility	to NW. 11 arou ents of louds 1	East t ind hori r strand	o sout zon, t s of c	th bree neavies cirrus	st to cloud	eastward. s overhea	.d.
	8/ 19	0200	1000-1200 Positia 1200-1400 Positia 1400-1600 Positia 1600-1800 Positia Visibia 1800-2000 Positia wind. 2000-2200 Positia 2200-2400 Positia Bikini	on as i on as i on as i Lity un on as i on as i on as i	pefore. Vis pefore. Cla pefore. Cla pefore. Cum nlimited. E pefore. Ear pefore. Cla pefore. No 10-05	bibilit, oud cov ar ove: nulus c. caromet rometer ouds di clouds 18	y unl: er ind rhead louds er ris came ssolv: . Ba: 85	imited creasing all a sing. up l ing. romete 81	• Low S ng. Sho ks of cu round ho 6 in pas Visibil: r stead 78	5W swell ower in umulus corizon. st 2 hou ity unl:	l. sight cloud a Filam urs. C imited. ibility 5	to NW. ll arou ents of louds unlim 2	East t und hori r strand becoming ited. 20	o sout zon, t s of c	th bree heavies cirrus develo	st to cloud	eastward. s overhea	.d.
	8/19	0400	1000-1200 Positia 1200-1400 Positia 1400-1600 Positia 1600-1800 Positia Visibii 1800-2000 Positia 2000-2200 Positia 2200-2400 Positia Bikini Bikini	on as i on as i on as i Don as i Lity un on as i On as i On as i 6 6	pefore. Vis pefore. Cla pefore. Cla pefore. Cum limited. En pefore. Ean pefore. Cla pefore. No 10-05 11-05	bibilit; oud cov ear ove nulus c. barometer ouds di clouds 18 18	y unl: er ind rhead louds er ris came ssolv: . Ba: 85 87	imited preasing all asing. up l ing. romete 81 81	• Low S ng. Sho ks of cu round ho 6 in pas Visibil: r stead: 78 78	5W swell ower in umulus corizon. st 2 hou ity unl:	l. sight cloud a Filam urs. C imited. ibility 5 5	to NW. 11 aron ents of louds unlim 2 2	East t ind hori r strand becoming ited. 20 20	o sout zon, i s of (more	th bree heavies cirrus develo l	st to cloud	eastward. s overhea	.d.
	8/ 19	0400 0600	1000-1200 Positia 1200-1400 Positia 1400-1600 Positia 1600-1800 Positia Visibii 1800-2000 Positia 2000-2200 Positia 2200-2400 Positia Bikini Bikini Bikini	on as i on as i on as i Lity un on as i on as i on as i	pefore. Vis pefore. Cla pefore. Cla pefore. Cum nlimited. E pefore. Ear pefore. Cla pefore. No 10-05	bibilit, oud cov ar ove: nulus c. caromet rometer ouds di clouds 18	y unl: er ind rhead louds er ris came ssolv: . Ba: 85	imited creasing all a sing. up l ing. romete 81	 Low S ng. Shoks of curround ho 6 in pass 6 in pass 78 78 77 	SW swell ower in umulus corizon. st 2 hou ity unl: y. Vis:	l. sight cloud a Filam urs. C imited. ibility 5 5 3	to NW. 11 aron ents of 10uds 1 • unlim 2 2 2	East t ind hori r strand becoming ited. 20 20 20	o sout zon, t s of c more	th bree heavies cirrus develo	st to cloud	eastward. s overhea	.d.
	8/ 19	0400	1000-1200 Positia 1200-1400 Positia 1400-1600 Positia 1600-1800 Positia Visibii 1800-2000 Positia 2000-2200 Positia 2200-2400 Positia Bikini Bikini	on as 1 on as 1 on as 1 on as 1 on as 1 on as 1 on as 1 6 6 3	pefore. Vis pefore. Cla pefore. Cla pefore. Cum limited. En pefore. Ean pefore. Cla pefore. No 10-05 11-05	bibilit; oud cov ear ove nulus c. barometer ouds di clouds 18 18	y unl: er ind rhead louds er ris came ssolv: . Ba: 85 87	imited preasing all asing. up l ing. romete 81 81	• Low S ng. Sho ks of cu round ho 6 in pas Visibil: r stead: 78 78	5W swell ower in umulus corizon. st 2 hou ity unl:	l. sight cloud a Filam urs. C imited. ibility 5 5 3	to NW. 11 aron ents of louds unlim 2 2	East t ind hori r strand becoming ited. 20 20 20	o sout zon, i s of (more	th bree heavies cirrus develo l	st to cloud	eastward. s overhea	.d.
	8/ 19	0400 0600 0800	1000-1200 Positia 1200-1400 Positia 1400-1600 Positia 1600-1800 Positia Visibi 1800-2000 Positia 2000-2200 Positia 2200-2400 Positia Bikini Bikini Bikini Bikini Bikini	on as 1 on as 1 on as 1 on as 1 on as 1 on as 1 on as 1 6 6 3 3	pefore. Vis pefore. Cla pefore. Cla pefore. Cum limited. En pefore. Ean pefore. Cla pefore. No 10-05 11-05 08-10	bibilit, oud cover ar over ulus cover constrometer ouds di clouds 18 18 01	y unl: er ind rhead louds er ris came ssolv: . Bai 85 87 86 80 80 80	imited creasing. Ban all a sing. up .1 ing. romete 81 81 82	• Low S ng. Sho ks of cu round ho 6 in pas 78 78 77 N O 80 79	SW swell ower in umulus corizon. st 2 hou ity unl: y. Vis:	l. sight cloud a Filam uurs. C imited. ibility 5 5 3 E P	to NW. 11 arou ents o: 10uds 1 unlim 2 2 2 0 R	East t ind hori strand becoming ited. 20 20 20 T S	o sout zon, i s of (more	th bree heavies cirrus develo l	st to cloud	eastward. s overhea	.d.
	8/19	0400 0600 0800 1000 1200 1400	1000-1200 Positia 1200-1400 Positia 1400-1600 Positia 1600-1800 Positia Visibii 1800-2000 Positia 2000-2200 Positia 2200-2400 Positia Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini	on as 1 on as 1 on as 1 city un on as 1 on as 1 on as 1 6 6 3 3 3 3	pefore. Vis pefore. Classifier pefore. Classifier pefore. Classifier pefore. Ean pefore. Classifier pefore. Classifier pefore. Classifier pefore. Classifier pefore. Classifier pefore. No 10-05 11-05 08-10 08-10 08-10 09-10	bibilit; oud cov ar ove nulus co- content conter buds di clouds 18 18 01 01 02 02 02	y unl: er ind rhead louds er ris came ssolv: . Bai 85 87 86 80 80 80 74	imited creasil all asing. up l' ing. romete 81 82 82 87 86 87	 Low S ng. Shoks of curround he 6 in pass 7 is tead 78 78 77 78 78 77 80 79 79 	SW swell ower in umulus corizon. st 2 hou ity unl: y. Vis:	l. sight cloud a Filam urs. C imited. ibility 5 3 E P 3 3 3 3	to NW. 11 aron ents of louds 2 2 0 R 2 2 0 R 2 2 2 2 2 2 2 2 2 2 2	East t ind hori r strand pecoming ited. 20 20 T S 20 20 T S 20 20 20 20 20 20 20 20 20 20 20 20 20	o sout zon, i s of (more	th bree heavies cirrus develo l	st to cloud	eastward. s overhea	.d.
	8/19	0400 0600 0800 1000 1200 1400 1600	1000-1200 Positia 1200-1400 Positia 1400-1600 Positia 1600-1800 Positia Visibii 1800-2000 Positia 2000-2200 Positia 2200-2400 Positia Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini	on as 1 on as 1 on as 1 bity un on as 1 on as 1 on as 1 6 6 3 3 3 3 2	Defore. Vis Defore. Classifier Defore. Classifier Defore. Classifier Defore. Ear Defore. Classifier Defore. Classifier Defore. Classifier Defore. No 10-05 11-05 08-10 08-10 09-10 07-08	bibilit; oud cov ear ove nulus co- content conter buds di clouds 18 18 01 01 02 02 02 01	y unl: er ind rhead louds er ris came ssolv: . Bai 85 87 86 80 80 74 72	imited creasi all asing. up l' ing. romete 81 82 81 82 87 86 87 86	 Low Sing. Shoks of curround has of curround has been been been been been been been bee	SW swell ower in umulus corizon. st 2 hou ity unl: y. Vis:	l. sight cloud a Filam urs. C imited. ibility 5 3 E P 3 3 2	to NW. 11 aron ents of louds 2 2 2 0 R 2 2 2 2 2 2 2 2 2 2	East t ind hori r strand pecoming ited. 20 20 T S 20 20 T S 20 20 20 20 20 20 20	o sout zon, h s of c more	th bree heavies birrus develo	st to cloud	eastward. s overhea	.d.
	8/ 19	0400 0600 0800 1000 1200 1400 1600 1800	1000-1200 Positia 1200-1400 Positia 1400-1600 Positia 1600-1800 Positia Visibii 1800-2000 Positia 2000-2200 Positia 2200-2400 Positia Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini	$\begin{array}{c} \text{on as } \\ \\ \text{on as } \\ \\ \text{on as } \\ \\ \\ \text{on as } \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Defore. Vis Defore. Classifier Defore. Classifier Defore. Classifier Defore. Ean Defore. Classifier Defore. Classifier Defore. Classifier Defore. No 10-05 11-05 08-10 08-10 09-10 09-10 07-08 06-10	bibilit, oud cov ear ove nulus co- content conter buds di clouds 18 18 01 01 02 02 02 01 02	y unl: er ind rhead louds er ris came ssolv: . Bai 85 87 86 80 80 74 72 77	imited creasi all a sing. up .1 ing. romete 81 82 81 82 87 86 87 86 87 86 84	 Low Sing. Shoks of curround here is the second here is the second here is the second second	SW swell ower in umulus corizon. st 2 hou ity unl: y. Vis:	l. sight cloud a Filam urs. C imited. ibility 5 3 E P 3 3 3 2 2	to NW. 11 aron ents of louds 2 2 2 0 R 2 2 2 2 2 2 2 2 2 2	East t ind hori r strand becoming ited. 20 20 T S 20 20 20 20 20 20 20 20 20 20 20	o sout zon, h s of c more	th bree heavies birrus develo	st to cloud	eastward. s overhea	.d.
	8/19	0400 0600 0800 1000 1200 1400 1600	1000-1200 Positia 1200-1400 Positia 1400-1600 Positia 1600-1800 Positia Visibii 1800-2000 Positia 2000-2200 Positia 2200-2400 Positia Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini Bikini	on as 1 on as 1 on as 1 bity un on as 1 on as 1 on as 1 6 6 3 3 3 3 2	Defore. Vis Defore. Classifier Defore. Classifier Defore. Classifier Defore. Ear Defore. Classifier Defore. Classifier Defore. Classifier Defore. No 10-05 11-05 08-10 08-10 09-10 07-08	bibilit; oud cov ear ove nulus co- content conter buds di clouds 18 18 01 01 02 02 02 01	y unl: er ind rhead louds er ris came ssolv: . Bai 85 87 86 80 80 74 72	imited creasi all asing. up l' ing. romete 81 82 81 82 87 86 87 86	 Low Sing. Shoks of curround has of curround has been been been been been been been bee	SW swell ower in umulus corizon. st 2 hou ity unl: y. Vis:	l. sight cloud a Filam urs. C imited. ibility 5 3 E P 3 3 2	to NW. 11 aron ents of louds 2 2 2 0 R 2 2 2 2 2 2 2 2 2 2	East t ind hori r strand pecoming ited. 20 20 T S 20 20 T S 20 20 20 20 20 20 20	o sout zon, h s of c more	th bree heavies birrus develo	st to cloud	eastward. s overhea	.d.

-

. e

MEX. CONSISTER

ě 1

* ..

1. A. C.

A Address of

都にする

Sec.

	1000 1200 1400 1600 1800 2000 2200	Bikini Bikini Bikini Bikini Bikini Bikini		3 08-10 3 08-10 3 09-10 2 07-08 2 06-10 2 08-10	02 02 01 02	80 80 74 72 77 80	N 87 80 86 79 87 79 86 79 86 79 84 78)	E P (3 3 2 2 2) R T 2 2 2 2 2 2	S 20 20 20 20 20 20		 1			
	2400	Bikini Bikini		0 05-10 0 05-10	02	80 80	83 77 82 76 82 77		2 - -	2 - -	20 	0 	1	ntari vikiri	an Silan in constant	
ى يۇرىيە 🖗 ۋېتىرى بىرىيە بىرىيە بىرىيە بىرىيە	PLACE: EX	VETCE-EIKINI	ka kilo ole a si ka sa	BI- I X	OURLY CESE	EVATION	s, ksts -	T-15T 61	s, 2005	19 -		e 1,	1771	ing and	(Continu	
	LATE TIME	PUE 1710A/0	OFFE N	a leff	al.	P	TT TT.	: ⁷⁷ 3	ANT.	il TIPL	<u></u>	[€] N	'n		A	
									dtr.s		e ft.			•• ••		ſt.
	8/19															
		0400-0600	Excellent Position a breeze. H Position a	rizon. Ligh visibility as before. Excellent vi as before. as before.	except to Occasiona isibility Visibilit	ward ra l light except y excel y excel	in squal; rain squ in rain s lent. S lent. L	ls. Sky a ualls. S squalls. ky cleari ow southw	nostly c arometer ng. Low est swel	loudy. rising swell l.	slowly from so	r. Sli Duthwes	ight ea st.	.st-sout	heaster	ly
89		0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200	Position a 2 hours. Position a Position a Variable 2 Position a Position a Position a	As before. Visibility as before. As before. As before. As before. As before. As before. As before.	Cumulus of unlimited No change Towering from east No change Visibilit No clouds	to east cumulus to east in wea cy excel cy excel s. Barc e in wea	ather con clouds -northea ather. llent. llent. Lo pmeter st	ditions. around ho sterly. w confuse eady. Vi	rizon. Unlimite d swell. sibility	Clear c d visit	overhead bility.	d. Ba	romete		-	
68	8/20 0200 0L00	0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2000 2200-2200 2200-2400 Bikini	Position a 2 hours. Position a Position a Position a Position a Position a Position a	as before. Visibility as before. As before. As before. As before. As before. As before. As before. As before. As before. As before.	Cumulus of unlimited No change Towering from east No change Visibilit No clouds No change	e in wea cumulus to east in wea cy excel cy excel s. Barc e in wea 78	ather con s clouds -northea ather. Llent. Llent. Lo ometer st ather. B 82 77	ditions. around ho sterly. w confuse eady. Vi arometer	rizon. Unlimite d swell. sibility steady. 2	Clear d d visit unlimi Visibi 2	overhead bility. ited. ility u 20	d. Ba	romete		-	
89	0400	0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200 2200-2400 Bikini Bikini Bikini	Position a 2 hours. Position a Position a Position a Position a Position a Position a	as before. Visibility as before. As before. As before. As before. As before. As before. As before. As before. As before. 2 05-10 2 05-10 2 10-03	Cumulus of unlimited No change Towering from east No change Visibilit No clouds No change 03 02 02	in wea cumulus to east in wea cy excel s. Barc in wea 78 76 76	ather con s clouds -northea ther. Llent. Lometer st ather. B 82 77 82 78 82 77	ditions. around ho sterly. w confuse eady. Vi arometer	rizon. Unlimite d swell. sibility steady. 2 2 2	Clear c d visit vunlimi Visibi 2 2 2	overhead bility. ited. ility u 20 20 20	d. Ba	romete		-	
89	0400 0600 0800	0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200 2200-2400 Bikini Bikini Bikini Bikini	Position a 2 hours. Position a Position a Position a Position a Position a Position a	as before. Visibility as before. As before.	Cumulus of unlimited No change Towering from east No change Visibilit No clouds No change 03 02 02 02 02	e in wea cumulus to east in wea cy excel y excel s. Barc e in wea 78 76 76 79	ther con clouds -northea ther. llent. Lometer st ther. B 82 77 82 78 82 77 83 77	ditions. around ho sterly. w confuse eady. Vi arometer	rizon. Unlimite d swell. sibility steady. 2 2 2 2 2	Clear c d visit unlimi Visibi 2 2 2 2	ited. ility u 20 20 20 20	d. Ba	romete		-	
89	0400	0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200 2200-2400 Bikini Bikini Bikini Bikini Bikini 11°27.5°N	Position a 2 hours. Position a Position a Position a Position a Position a Position a	as before. Visibility as before. As before.	Cumulus of unlimited No change Towering from east No change Visibilit No clouds No change 03 02 02 02 02 02 02	e in wea cumulus to east in wea cy excel y excel s. Barc e in wea 78 76 76 76 79 93	ather con s clouds t-northea ther. Ilent. Ilent. Lo Deneter st ather. B 82 77 82 78 82 77 83 77 83 77 86 79	ditions. around ho sterly. w confuse eady. Vi arometer 	rizon. Unlimite d swell. sibility steady. 2 2 2 2 2 2 2	Clear c d visit unlimi Visibi 2 2 2 2 2 2 2 2 2	ited. ility u 20 20 20 20 20 20	d. Ba	romete	r dropp	-	wly.
89	0400 0600 0800 1000	0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200 2200-2400 Bikini Bikini Bikini Bikini 11°27.5'N 165°25'E 11°26'N	Position a 2 hours. Position a Variable Position a Position a Position a Position a Position a Position a 253	as before. Visibility as before. as before. as before. as before. as before. as before. as before. as before. 2 05-10 2 05-10 2 05-10 2 08-05 3 08-05	Cumulus of unlimited No change Towering from east No change Visibilit No clouds No change 03 02 02 02 02 02	in wea cumulus to east in wea cy excel cy excel cy excel a. Barc e in wea 78 76 76 79 93 91	ather con s clouds t-northea ther. llent. Lo pmeter st ather. B 82 77 82 78 82 77 83 77 83 77 86 79 88 80	ditions. around ho sterly. w confuse eady. Vi arometer 	rizon. Unlimite d swell. sibility steady. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Clear c d visit unlimi Visibi 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ited. ility u 20 20 20 20 20 20 20	d. Ba	romete	r dropp 08	-	vly.
89	0400 0600 0800 1000 1200	0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2200 2200-2400 Bikini Bikini Bikini Bikini Bikini 11°27.5'N 165°25'E 11°26'N	Position a Position a Position a Position a Position a Position a Position a Position a Position a Position a 253 269	as before. Visibility as before. as before. b	Cumulus of unlimited No change Towering from east No change Visibilit No clouds No change 03 02 02 02 02 02 02 02 02 02	e in wea cumulus to east in wea cy excel y excel s. Barc e in wea 78 76 76 76 79 93	ather con a clouds t-northea ather. llent. llent. Lont. B2 77 B2 78 B2 78 B2 77 B3 77 B6 79 B8 80 B8 79	ditions. around ho sterly. w confuse eady. Vi arometer 86	rizon. Unlimite d swell. sibility steady. 2 2 2 2 2 2 2	Clear c d visit unlimi Visibi 2 2 2 2 2 2 2 2 2	ited. ility u 20 20 20 20 20 20	d. Ba	romete	r dropp	-	wly.
	0400 0600 0800 1000 1200 1400	0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200 2200-2400 Bikini Bikini Bikini Bikini Bikini Bikini Dikini 11°27.5°N 165°05°E 11°26°N 164°46°E 11°27°N 164°26°E	Position a Position a Position a Position a Position a Position a Position a Position a Position a Position a 253 269 269	as before. Visibility as before. as before. b	Cumulus of unlimited No change Towering from east No change Visibilit No clouds No change 03 02 02 02 02 02 02 02 02 02 02 02 02 02	in wea cumulus to east in wea cy excel cy excel s. Barco e in wea 78 76 76 79 93 91 86	ather con a clouds t-northea ather. llent. llent. Lont. B2 77 B2 78 B2 78 B2 77 B3 77 B6 79 B8 80 B8 79	ditions. around ho sterly. w confuse eady. Vi arometer 86 86	rizon. Unlimite d swell. sibility steady. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Clear c d visib Wisibi 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ited. ility u 20 20 20 20 20 20 20 20 20 20 20 20 20	d. Ba	romete	r dropp 08 08	-	wly.
	04,00 0600 0800 1000 1200 1400 1600 1800 2000	0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200 2200-2400 Bikini Bikini Bikini Bikini Bikini Bikini 11°27.5'N 165°05'E 11°26'N 164°46'E 11°27'N 164°26'E 11°27'N 164°07'E	Position a Position a Position a Position a Position a Position a Position a Position a Position a Position a 253 269 269 265	as before. Visibility as before. 2 05-10 2 05-10 2 08-05 3 08-05 2 08-10 2 08-08	Cumulus of unlimited No change Towering from east No change Visibilit No clouds No change 02 02 02 02 02 02 02 02 02 02 02 02 02	in wea cumulus to east in wea cy excel cy excel s. Barco in wea 78 76 76 76 79 93 91 86 82	ather consider ather. llent. llent. llent. ather. llent. ather. b 82 78 82 77 83 77 86 79 88 88 79 88 79	ditions. around ho sterly. w confuse eady. Vi arometer 8 86 86	rizon. Unlimite sibility steady. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Clear c d visit Unlimi Visibi 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	verhead ility. ited. ility w 20 20 20 20 20 20 20 20 20 20 20 20 20	d. Ba nlimit 	romete .ed. 1 1 1 1	r dropp 08 08 08 08	-	*ly.
89	0400 0600 0800 1000 1200 1400 1600 1800	0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200 2200-2400 Bikini Bikini Bikini Bikini Bikini Bikini Bikini Di'27.5'N 165 25'E 11 26'N 164 46'E 11 27'N 164 26'E 11 27'N	Position a 2 hours. Position a Position a Position a Position a Position a Position a Position a Position a 253 269 269 265 265 265 E 265	as before. Visibility as before. as 05-10 as 08-05 as 08-05 as 08-08 as 08-08 as 04-08	Cumulus of unlimited No change Towering from east No change Visibilit No clouds No change 02 02 02 02 02 02 02 02 02 02 02 02 02	in wea cumulus to east in wea cy excel s. Barco in wea 78 76 76 76 79 93 91 86 82 82	ather consistent ather. ather. llent. llent. bather. llent. bather. bather. llent. llent. bather. <	ditions. around ho sterly. w confuse eady. Vi arometer 86 86	rizon. Unlimite sibility steady. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Clear c d visit unlimi Visibi 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	verhead ility. ited. ility u 20 20 20 20 20 20 20 20 20 20 20 20 20	d. Ba nlimit 0	romete l l l l l 9	r dropp 08 08 08 08 08 04	-	

0000-0200 LST Cargo Pier, Enyu Is., Bikini Atoll: Lat ll°30.7'N-Long 165°35.5'E. Sky mostly clear with scattered cumulus clouds around horizon. Light northeasterly breeze. Bright moonlight with unlimited visibility. Barometer steady.

PLACE: ENIWETOK-BIKINI				BI-HOURLY	OBSEF	RVATIC	DNS,	msts -	T-1ST 618,	AUGUS	ST 18 -	SEPTEM	BER 1	, 1957		TAI (Cont:	BIE 18 Inued)
DATE	TIME	POSITION/COURSE	Ng	DDFF	WX	Р	ΤT	TT _w	$^{\mathrm{TT}}\mathbf{s}$	AMT.	C _L TYPE	HT.	С <mark>М</mark>	с _Н	DD	WAVES PERIOD	HT.
8/20										8ths	4	00 ft.					ft.

LOG ENTRIES: 0200-0400 Position as before. No change in weather for past 4 hours. Barometer dropping slowly. 0400-0600 Position as before. Visibility excellent. Low SW swell. 0600-0800 Position as before. Visibility excellent. Low SW swell. 0800-1000 Position as before. Cumulus clouds all around horizon. Strands of cirrus overhead. Barometer rising. Visibility unlimited. 1000-1200 En route Bikini to Parry Ist: Lat 11°27.5'N-Long 165°25'E. No change in weather. Visibility unlimited. 1200-1400 (1400 Position: 11°26'N-Long 165°05'E) Sky mostly clear with towering cumulus clouds around horizon. Thin strands of cirrus overhead. Bright sunshine. Visibility unlimited. Light northeasterly breeze and sea. Barometer dropping slightly in past 2 hours. 1400-1600 (1600 Position: 11°26'N-Long 164°46'E) No change in weather for past 4 hours. 1600-1800 (1800 Position: 11°27'N-Long 164°26'E) Visibility excellent. Low short easterly swell. Long low NW swell. 1800-2000 (2000 Position: 11°27'N-Long 164°07'E) Visibility excellent. Low short easterly swell. Long low NW swell. 2000-2200 (2200 Position: 11°25'N-Long 163°50.0'E) Clouds forming. Barometer jumped .10 in past 2 hours. Visibility unlimited. 2210: rain squalls on radar scope & 315°T 24.0 mi. off port bow. 2253: lightning observed in NE. 2200-2400 (2400 Position: 11°24.0'N-Long 163°32'E) Rain squalls on radar scope. Visibility unlimited. Lightning north and northeast. Barometer steady. 8/21 11°25'N 0200 270 18-12 18 88 81 78 85 2 20 2 163°17'E L 18 3 0400 11°25'N 162°59'E 265 8 19-10 18 86 80 77 85 7 2 20 1 18 3 2 0600 11°26'N 162°43'E 21-05 80 84 82 78 2 20 21 1 258 L L 0800 11°25'N 7 21-05 03 86 83 78 7 20 1 162°25'E VAR 21 77 7 17 17-08 01 86 83 20 1 1000 Eniwetok 6 5 1 1200 5 18-10 01 80 83 77 7 20 1 18 1 Eniwetok 78 20 19 1 5 76 7 1400 Eniwetok 19-12 16 84 4 1 1600 N O RΕ P 0 RΤ S Eniwetok N O 1800 R Е Ρ 0 \mathbf{R} T S Eniwetok 2000 Eniwetok N O R Е Ρ 0 R T S 78 2 20 19 1 2200 19-08 01 83 Eniwetok 1 82 1

LOG ENTRIES:

2400

Eniwetok

RIES: 0000-0200 En route Bikini to Parry Is.: (0200 Position: Lat 11°25'N-Long 163°17'E). 0020: wind shifted from ESE to south. Moderate southerly wind 10 to 12 knots. Numerous small rain squalls noted on radar. Flashes of lightning observed to NW. Unlimited visibility. Barometer dropped .04 in past 2 hours. Light southerly sea and low southeasterly swell.

N O

0200-0400 (0400 Position: Lat 11°25'N-Long 162°59'E) Numerous light rain squalls. Good visibility except in squalls.

REP

ORTS

	2200 2400	Eniwetok 1 Eniwetok	19-08 01	82 83	78 NOR	E P O R l 2 E P O R	20 TS		19 -	1
		0200-0400 (0400 Positi	southeasterly on: Lat ll°25'N-L	imited visib swell. ong 162°59'E	ion: Lat ll° nots. Numero ility. Barom) Numerous l	25'N-Long 16 us small rai eter dropped ight rain sq	03°17'E). n squalls 1 .04 in pa ualls. Go	st 2 hours.	Light sout	s or herly
	PLACE: ETM	and the second	BI-BOURLY CE	and a state of the second second					-	Linued)
	LATE TIME	PUCITION/COLESE N	icff al	P II	rr _a rr _s		FL al.	ੱਸ `ਸ	n A i sa I Frantiti	
	8/21					ðtr.s	u ft.			ſt.
			Visibility 12-15 m etok lagoon. tefore. weather a before. Visibili before. Moderate before. Visibili before. Visibili before. No chang	iles. Hain s as before exactly unlimited southerly with ty unlimited ty excellent e in wind or	equalls around cept sky clean . Barometer : inds. Excell . Low short : . Low SW swe weather cond	i horizon. E Fing slightly falling. Sou ent visibili SW swell. Il. itions. Vis	arometer s 7. Baromet Itherly win ty. ibility unl	teady. Lig er dropped ds. .imited.	ht southerly	5eA
ŢŚ	8/22 0200 0400 0600 1000 1200 1400 1600 1800 2000 2200 2400	Eniwetok 7 Eniwetok 7 Eniwetok 8 Eniwetok 8 Eniwetok 8 Eniwetok 6 Eniwetok 7 Eniwetok 7 Eniwetok 6 Eniwetok 6 Eniwetok 6 Eniwetok 6		80 83 79 83 80 83 86 81 90 82 84 86 82 84 80 82 82 84 80 82 82 81 86 83	78 78 78 79 79 80 78 78 78 78 78 78 78	7 7 6 6	7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7 20 2 20 2 20 2 20		19 18 20 	
	LOG ENTRIES:	0000-0200 Anchored of slight sout 0200-0400 Position as wind sudder 0400-0600 Position as	f Parry (Elmer) Is herly sea. Excell before. Light ra ly shifted to east before. Occasion . Barometer dropp before. Light NW r) Is., deep water before. Wind dim before. Visibili before. Thunderh before. No chang before. Thunderh before. Swells d	• in Anchora ent visibili in squalls. erly. Rain al light rai ing slowly. breeze. Ba pier. Sky inishing. B ty unlimited eads remain e in weather eads all aro ecreasing.	ge "Cl". Lig ty with rain Long, low, c squalls movi n squalls. C Excellent vi rometer stead overcast. Mc arometer risi . Barometer in southerly	squalls to s hoppy southe ng from east 500-0600: n sibility. y. Sky most derate rain. ng. Visibil falling. Th direction.	outh. Bard rly swell. erly direct oted freque ly overcas Northeas ity about o underheads Clouds form	ometer stea Light sou tion. ent shiftin t. terly breez 5 mile due forming i	dy. therly sea. g of wind fr e. to rain. n S. Clearin	0340: om E to ng in NE.

DATE	TIME	POSITION/COURSE	Ng	DDFF	WX	Р	\mathbf{TT}	TT_{W}	TT _s		C_{L}		СM	c _H		(Cont WAVES	, mue
										AMT. 8ths	TYP	E HT. OO ft.			DD	PERIOD	HT ft
8/23	0200	Eniwetok	7	08-10	15	82	82	78		7	2	20					
, -	0400	Eniwetok	8	08-12	60	82	82	78		7	7	20		1			
	0600	Eniwetok	8	07-12	60	80	81	78		8	7	20					
	0800	Eniwetok	7	07-12	18	80	82	78		6	7	20		1.			
	1000	Eniwetok	7	06-12	15	84	82	78		7	7	20		1			
	1200	Eniwetok	6	11-10	15	88	87	80		6	7	20		1			
	1400	Eniwetok	6	12-15	02	68	87	82		6	2	20		9			
	1600	Eniwetok	6	12-15	02	67	87	82		6	2	20		9			
	1800	Eniwetok	8	13-15	02	68	84	80		8	7	20					
	2000	Eniwetok	8	13-12	80	72	84	78		8	7	20					
	2200	Eniwetok		-			-	NO	R	ЕΡ	OR	r s					
	2400	Eniwetok						N O	R		OR '	r s					
		visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached	ity ex as befon as b maneuv Exce l, old	efore. Fre ering off P llent visib cargo pier,	alls. rain. quent arry (l ility. Parry	North Baro light Elmer) (Elme	easter meter rain s Is. a er) Is.	ly bree steady. qualls. waiting Heavy	ze 10- 10 t ; instr 7 rain	12 knot 5 12 mi actions falling	s. Ba les vi to be to no	rometer sibility ach. Ra rtheastw	droppi . Skj .in squ ard ap	ng slo v overo alls t oproxim	owly. ast. o NE. nately	Baromet 12 miles	er
		visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1200-1400 Positic 1400-1600 Positic 1800-2000 Positic 2000-2200 Positic	ity ex as bef maneuv Exce l, old on as b on as b on as b on as b on as b on as b	cept in squ ore. Light efore. Fre ering off P llent visib cargo pier, efore. Dar efore. Bar efore. Bar efore. Win efore. Win efore. Win	alls. rain. quent f arry (1 ility. Parry k cumu ometer k cloud ds SE ads same asiona	North Baro Light Elmer) (Elme lonimb falli ds to 15 kno e as a l spri	easter meter rain s rain s r) Is. er) Is. ous clo ng rap NE as ots. W bove. .nkles	ly bree steady. qualls. waiting bleavy buds to bidly. before. /isibili Barome of rain	ze 10- 10 t instr v rain northe Winds ty 10. eter ri	12 knot 0 12 mi 12 mi 12 mi 13 miles 14 miles 15 miles 15 miles 14 miles 15 miles	s. Ba les vi to be to no . Occ . Bar	rometer sibility ach. Ra rtheastw asional ometer s	droppi • Sky in squ ard ap light steady.	ng slo v overo nalls t oproxim rain f	owly. ast. o NE. nately	Baromet 12 miles	er
¢ /01	0200	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1200-1400 Positic 1400-1600 Positic 1600-1800 Positic 1800-2000 Positic 2000-2200 Positic	ity ex as bef m as b maneuv Exce l, old on as b on as b on as b on as b on as b on as b on as b	cept in squ pre. Light efore. Fre ering off P llent visib cargo pier, efore. Dar efore. Bar efore. Dar efore. Win efore. Win efore. Win	alls. rain. quent : arry (I illity. Parry k cumu: ometer k cloud ds SE : ads same asional d veer	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a l spri ing to	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. V bove. .nkles o south	ly bree steady. qualls. waiting bleavy buds to bidly. before. (isibili Barome of rain b. Sky	ze 10- 10 t instr v rain northe Winds ty 10. eter ri	12 knot 12 mi 12 mi 14 mi 14 mi 14 mi 14 mi 14 mi 15 mi 16 mi	s. Ba les vi to be to no . Ucc . Bar Slight	rometer sibility ach. Ra rtheastw asional ometer s showers	droppi • Sky in squ ard ap light steady.	ng slo v overo nalls t oproxim rain f	owly. ast. o NE. nately	Baromet 12 miles	er
8/24	0200	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1200-1400 Positic 1400-1600 Positic 1600-1800 Positic 1800-2000 Positic 2000-2200 Positic 2200-2400 Positic	ity ex as bef m as b maneuv Exce l, old on as b on as b on as b on as b on as b on as b on as b	cept in squ pre. Light efore. Fre ering off P llent visib cargo pier, efore. Dar efore. Bar efore. Dar efore. Win efore. Win efore. Win efore. Win 16-12	alls. rain. quent : arry (I ility. Parry k cloud ds Sa ds sam asiona d veer: 01	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a e as a l spri ing to 77	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. W bove. nkles south 83	ly bree steady. qualls. waiting bleavy bidly. before. (isibili Barome of rain b. Sky 78	ze 10- 10 t instr v rain northe Winds ty 10. eter ri	12 knot 12 mi 12 mi 14 ni 15 ni 16 ni	s. Ba les vi to be to no . Ucc Bar Slight	rometer sibility ach. Ra rtheastw asional ometer s showers 20	droppi • Sky in squ ard ap light steady.	ng slo v overo nalls t oproxim rain f	owly. ast. o NE. nately	Baromet 12 miles	er
8/24	0400	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1200-1400 Positic 1400-1600 Positic 1600-1800 Positic 1800-2000 Positic 2000-2200 Positic 2200-2400 Positic	ity ex as bef on as b maneuv Exce l, old on as b on as b	cept in squ pre. Light efore. Fre ering off P llent visib cargo pier, efore. Dar efore. Dar efore. Win efore. Win efore. Win efore. Win 16-12 14-08	alls. rain. quent : arry (I ility. Parry k cloud ds SE : ds sam ds sam d veer: 01 01	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a l spri ing to 77 76	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. W bove. nkles s south 83 83	ly bree steady. qualls. waiting bleavy bidly. before. (isibili Barome of rain b. Sky 78 78	ze 10- 10 t instr v rain northe Winds ty 10. eter ri	12 knot 12 mi 12 mi 14 mi 15 miles 15 miles 15 miles 15 miles 16 miles 17 miles 18 miles 19 miles 19 miles 19 miles 19 miles 10 mil	s. Ba les vi to be to no . Ucc Bar Slight 2 2	rometer sibility ach. Ra rtheastw asional ometer s showers 20 20	droppi • Sky in squ ard ap light steady.	ng slo v overo nalls t oproxim rain f	owly. ast. o NE. nately	Baromet 12 miles	er
8/24	0400 0600	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1200-1400 Positic 1400-1600 Positic 1600-1800 Positic 2000-2200 Positic 2200-2400 Positic Eniwetok Eniwetok Eniwetok	ity ex as bef on as b maneuv Exce l, old on as b on as b 1	cept in squ pre. Light efore. Fre ering off P llent visib cargo pier, efore. Dar efore. Bar efore. Bar efore. Win efore. Win efore. Win 16-12 14-08 14-05	alls. rain. quent : arry (I illity. Parry k cumu: ometer k cloud ds SE : dds samd assional d veer: 01 01 01	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a l spri ing to 77 76 75	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. W bove. nkles o south 83 83 82	ly bree steady. qualls. waiting bidly. before. (isibili Barome of rain b. Sky 78 78 78	ze 10- 10 t instr v rain northe Winds ty 10. eter ri	12 knot 12 mi 12 mi 14 falling 15 falling 16 falling 16 falling 17 miles 18 falling 10 miles 10	s. Ba les vi to be to no . Ucc Bar Slight 2 2 2	rometer sibility ach. Ra rtheastw asional ometer s showers 20 20 20 20	droppi Sky in squ ard ap light steady. s of ra	ng slo v overo nalls t oproxim rain f	owly. ast. o NE. nately	Baromet 12 miles	er
8/24	0400 0600 0800	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1400-1600 Positic 1600-1800 Positic 1800-2000 Positic 2000-2200 Positic 2200-2400 Positic Eniwetok Eniwetok Eniwetok Eniwetok	ity ex as bef on as b maneuv Exce l, old on as b on as b	cept in squ ore. Light afore. Fre ering off P llent visib cargo pier, efore. Dar efore. Bar efore. Dar efore. Win efore. Win efore. Win 16-12 14-08 14-05 14-05	alls. rain. quent : arry (I illity. Parry k cumu ometer k cloud ds SE : ds sam asional d veer: 01 01 01 05	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a l spri ing to 77 76 75 80	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. W bove. nkles s south 83 83	ly bree steady. qualls. waiting bleavy bidly. before. (isibili Barome of rain b. Sky 78 78	ze 10- 10 t instr v rain northe Winds ty 10. eter ri	12 knot p 12 mi actions falling astward veering 0 miles sing. st. 6 2 1 5	s. Ba les vi to be to no . Ucc . Bar Slight 2 2 2 2 2 2 2	rometer sibility ach. Ra rtheastw asional ometer s showers 20 20 20 20 20	droppi Sky in squ ard ap light steady s of ra 4	ng slo v overo nalls t oproxin rain f Ain.	wly. ast. o NE. ately allin	Baromet 12 miles	er
8/24	0400 0600 0800 1000	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1200-1400 Positic 1400-1600 Positic 1600-1800 Positic 2000-2200 Positic 2000-2200 Positic 2200-2400 Positic Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok	ity ex as bef on as b maneuv Exce l, old on as b on as b 7	cept in squ pre. Light efore. Fre ering off P llent visib cargo pier, efore. Dar efore. Bar efore. Bar efore. Win efore. Win efore. Win 16-12 14-08 14-05	alls. rain. quent : arry (I illity. Parry k cumu: ometer k cloud ds SE : dds samd assional d veer: 01 01 01	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a l spri ing to 77 76 75	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. V bove. nkles o south 83 83 82 83	ly bree steady. squalls. waiting Heavy buds to bidly. before. /isibili Barome of rain 1. Sky 78 78 78 78 78 78 78 80	ze 10- 10 t ; instr v rain northe Winds ty 10. eter ri l. overca	2 knot 2 knot 2 mi 4 ctions 5 falling astward veering 0 miles 5 ing. 6 2 1 5 5	s. Ba les vi to be to no . Ucc . Bar Slight 2 2 2 2 2 2 2	rometer sibility ach. Ra rtheastw asional ometer s showers 20 20 20 20 20 20	droppi Sky in squ ard ap light steady. s of ra	ng slo v overo nalls t oproxim rain f	owly. ast. o NE. nately	Baromet 12 miles	er
8/24	0400 0600 0800 1000 1200	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1400-1600 Positic 1600-1800 Positic 2000-2200 Positic 2000-2200 Positic 2000-2200 Positic 2000-2400 Positic Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok	ity ex as bef on as b maneuv Exce l, old on as b on as b 7	cept in squ ore. Light afore. Fre ering off P llent visib cargo pier, efore. Dar efore. Bar efore. Dar efore. Win efore. Win efore. Win 16-12 14-08 14-05 14-05	alls. rain. quent : arry (I illity. Parry k cumu ometer k cloud ds SE : ds sam asional d veer: 01 01 01 05	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a l spri ing to 77 76 75 80	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. V bove. nkles o south 83 83 82 83	ly bree steady. squalls. waiting before. visibili Barome of rain b. Sky 78 78 78 78 78 78 78 78 78 78 78 78 78	ze 10- 10 t ; instr v rain northe Winds ty 10. eter ri e overca	12 knot p 12 mi actions falling astward veering 0 miles 5 ing. 8 t. 6 2 1 5 5 E P	s. Ba les vi to be to no . Ucc Bar Slight 2 2 2 2 2 2 0 R	rometer sibility ach. Ra rtheastw asional ometer s showers 20 20 20 20 20 20 20 20 20	droppi Sky in squ ard ap light steady s of ra 4	ng slo v overo nalls t oproxin rain f Ain.	wly. ast. o NE. ately allin	Baromet 12 miles	er
8/24	0400 0600 0800 1000 1200 1400	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1200-1400 Positic 1600-1800 Positic 2000-2200 Positic 2000-2200 Positic 2000-2200 Positic 2000-2400 Positic Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok	ity ex as bef on as b maneuv Exce l, old on as b on as b 7	cept in squ ore. Light afore. Fre ering off P llent visib cargo pier, efore. Dar efore. Bar efore. Dar efore. Win efore. Win efore. Win 16-12 14-08 14-05 14-05	alls. rain. quent : arry (I illity. Parry k cumu ometer k cloud ds SE : ds sam asional d veer: 01 01 01 05	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a l spri ing to 77 76 75 80	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. V bove. nkles o south 83 83 82 83	ly bree steady. squalls. waiting Heavy buds to bidly. before. /isibili Barome of rain 1. Sky 78 78 78 78 78 78 78 80	ze 10- 10 t ; instr v rain northe Winds ty 10. eter ri a. overca R R	12 knot p 12 mi actions falling astward veering 0 miles sing. 5 5 E P E P E P	s. Ba les vi to be to no . Ucc Bar Slight 2 2 2 2 2 0 R 0 R	rometer sibility ach. Ra rtheastw asional ometer s showers 20 20 20 20 20 20 20 20 20 20 20 20 20	droppi Sky in squ ard ap light steady s of ra 4	ng slo v overo nalls t oproxin rain f Ain.	wly. ast. o NE. ately allin	Baromet 12 miles	er
8/24	0400 0600 0800 1000 1200 1400 1600	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1200-1400 Positic 1600-1800 Positic 2000-2200 Positic 2000-2200 Positic 2000-2200 Positic 2000-2400 Positic Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok	ity ex as bef m as b maneuv Exce l, old on as b on as	cept in squ ore. Light afore. Fre ering off P llent visib cargo pier, efore. Dar efore. Dar efore. Dar efore. Win efore. Win efore. Win 16-12 14-08 14-05 14-05 11-05	alls. rain. quent : arry (I illity. Parry k cumu: ometer k cloud ds SE ids same asional d veer: 01 01 01 05 15	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a l spri ing to 77 76 80 84	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. W bove. nkles o south 83 83 83 86	ly bree steady. qualls. waiting Heavy buds to bidly. before. (isibili Barome of rain 1. Sky 78 78 78 78 78 78 78 78 78 78 78 79 80 N O N O N O	ze 10- 10 t ; instr v rain northe Winds ty 10. eter ri a. overca R R	12 knot p 12 mi actions falling astward veering 0 miles 5 ing. 5 5 E P E P E P E P E P	s. Ba les vi to be to no . Ucc Bar Slight 2 2 2 2 2 0 R 0 R 0 R 0 R	rometer sibility ach. Ra rtheastw asional ometer s showers 20 20 20 20 20 20 20 20 20 20 20 20 20	droppi Sky in squ ard ap light steady s of ra 4	ng slo v overc malls t oproxin rain f Ain.	wly. ast. o NE. ately allin	Baromet 12 miles	er
8/24	0400 0600 1000 1200 1400 1600 1800	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1200-1400 Positic 1600-1800 Positic 2000-2200 Positic 2000-2200 Positic 2000-2400 Positic Eniwetok	ity ex as bef m as b maneuv Exce l, old on as b on as b o 7 7 6	cept in squ ore. Light efore. Fre ering off P llent visib cargo pier, efore. Dar efore. Dar efore. Win efore. Win efore. Win 16-12 14-08 14-05 11-05 10-05	alls. rain. quent : arry (I ility. Parry k cumu: oometer k clouw ds SE : ds samu asiona: d veer: 01 01 05 15	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a l spri ing to 77 76 75 80	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. V hove. nkles o south 83 83 82 83 86 85	ly bree steady. qualls. waiting buds to bidly. before. visibili Barome of rain 1. Sky 78 78 78 78 78 78 78 78 78 78 78 78 78	ze 10- 10 t ; instr v rain northe Winds ty 10. eter ri a. overca R R	12 knot p 12 mi actions falling astward veering 0 miles sing. 5 5 E P E P E P E P 4	s. Ba les vi to be to no . Ucc Bar Slight 2 2 2 2 2 0 R 0 R 0 R 0 R 2 2 2 2 2 2 2	rometer sibility ach. Ra rtheastw asional ometer s showers 20 20 20 20 20 20 20 20 20 20 20 20 20	droppi Sky in squ ard ap light steady s of ra 4	ng slo v overo malls t pproxim rain f Ain. 1	wly. ast. o NE. ately allin	Baromet 12 miles	er
8/24	0400 0600 0800 1000 1200 1400 1600	visibil 0200-0400 Moored 0400-0600 Positic 0600-0800 Vessel steady. 0800-1000 Beached 1000-1200 Positic 1200-1400 Positic 1600-1800 Positic 2000-2200 Positic 2000-2200 Positic 2000-2200 Positic 2000-2400 Positic Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok	ity ex as bef m as b maneuv Exce l, old on as b on as	cept in squ ore. Light afore. Fre ering off P llent visib cargo pier, efore. Dar efore. Dar efore. Dar efore. Win efore. Win efore. Win 16-12 14-08 14-05 14-05 11-05	alls. rain. quent : arry (I illity. Parry k cumu: ometer k cloud ds SE ids same asional d veer: 01 01 01 05 15	North Baro light Elmer) (Elme lonimb falli ds to 15 kno e as a 1 spri ing to 77 76 75 80 84 84	easter meter rain s Is. a er) Is. ous clo ng rap NE as ots. W bove. nkles o south 83 83 83 86	ly bree steady. qualls. waiting Heavy buds to bidly. before. (isibili Barome of rain 1. Sky 78 78 78 78 78 78 78 78 78 78 78 79 80 N O N O N O	ze 10- 10 t ; instr v rain northe Winds ty 10. eter ri a. overca R R	12 knot p 12 mi actions falling astward veering 0 miles 5 ing. 5 5 E P E P E P E P E P	s. Ba les vi to be to no . Ucc Bar Slight 2 2 2 2 2 2 0 R 0 R 0 R 0 R	rometer sibility ach. Ra rtheastw asional ometer s showers 20 20 20 20 20 20 20 20 20 20 20 20 20	droppi Sky in squ ard ap light steady s of ra 4	ng slo v overc malls t oproxin rain f Ain.	wly. ast. o NE. ately allin	Baromet 12 miles	er

٠,

92

ALC: NO

1

DOF

 Source Shivetok 1 10-05 02 82 03 73 4 2 20 - 1 LOB ENTRES: SOUC-200 Moored and backed port size to the arguing plane party (Rise) 12 - 12 20 - 1 REAL ELECTRONIC CONSTRUCTION OF THE STRUCTURE Party (Rise) 12 - 12 and a structure structure to the structure of the structure plane p				1000 1200 1400 1600 1800 2000	Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok	נ 6 נ 7	4-05 1-05 0-05	05 15 03	80 84 84	83 7 86 8 N N N 85 8	0 0 0	R I R I R I	E P	0 0	2 2 R 1 R 1 R 1	S S	4 4	l	11		
PLACE INSTRUCT. BL-BORLI GESZERATION, KCTS - 1-151 614, BLOGST 10 - SUTTHERE 1, 197 PLACE INSTRUCT. 1ATE TIME R. DITLO, DURLE hg 117 11 <th></th> <th></th> <th>:</th> <th>2200 2400</th> <th>Eniwetok Eniwetok</th> <th>1 1</th> <th>0-05</th> <th>01</th> <th>86 88</th> <th>83 7' 83 78 N</th> <th>) } 0</th> <th>R E</th> <th>4 4 1 5 P</th> <th>0</th> <th>2 2 8 T</th> <th>20 20</th> <th>- - -</th> <th>1 -</th> <th></th> <th></th> <th></th>			:	2200 2400	Eniwetok Eniwetok	1 1	0-05	01	86 88	83 7' 83 78 N) } 0	R E	4 4 1 5 P	0	2 2 8 T	20 20	- - -	1 -			
 FLACE: INTRETWOET, BEL-BOOLD GESCHATORS, RCTS - 1-157 614, JUCOT 10 - SUTTNEER 1, 197 (forthing of the first fi			OG ENT	RIES:	0000-0200 Moore	and beache	d port si	de to	old o	argo pie	r Par	гу _ф (Е	lmer). <u>.</u>		ight, ec	uth _m sc	uthese	tening		
 LATE TIRE A. HINGACKELE bg 1117 •1 F TZ TL, TL, TL, TL, TL, TL, TL, TL, TL, TL,			PLACE:	ENTA	an a		Stand Stranger and	19	and the contraction of	and the second	and services	Street Bring Street		in in	and the second	Ar dama di Angela da Angela da	Section of the	a ini nata ina dala	terrent da de serve	1.1.1	
 8/24 LOG ENTRES: 0200-0400 Position as before. Sky clearing, targeter steady. 0400-0600 Position as before. Sky heating clear with number clouds on horizon to easterly. Excellent visitility. Earometer steady. 0600-0600 Position as before. Sky becoming overcast with cumulus and thin altocumulus at various levels. Farometer rising, Unlimited visibility. Light southeasterly brease. 0800-100 At annoto: Lat 1P22.0 Fusibility excellent. Occasional light sprinkles of rain. 1000-100 At annoto: Lat 1P22.0 Fusibility excellent. Low southerly swell. Low, short NE swell. 1000-100 No entry 1600-1800 At Parry (Elmer) Is. Visibility excellent. Low southerly swell. Low, short NE swell. 1000-2000 Position as before. Visibility unlimited. Barometer rising. Clear in S. Thunderheads in N. 1800-2000 Position as before. Weather same as above. 2000-2000 Position as before. No change in weather. 8/25 0200 Enivetok 3 10-05 03 86 82 78 3 2 20 0600 Enivetok 3 10-05 03 86 84 79 4 2 20 7 1000 Enivetok 4 09-05 03 86 84 79 4 2 20 7 1000 Enivetok 4 09-4irs 02 86 88 80 4 2 20 1400 Enivetok 6 It.Airs 10 75 87 79 4 2 20 7 200 - 200 Enivetok 6 It.Airs 10 78 87 79 4 2 20 9 2 1400 Enivetok 6 It.Airs 10 78 87 79 4 2 20 9 2 1400 Enivetok 6 Atres 10 78 83 78 6 7 20 2200 Enivetok 6 Atres 10 78 83 78 6 7 20 2200 Enivetok 6 Atres 10 78 83 78 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 83 778 6 7 20 2200 Enivetok 6 Atres 10 78 8			LATE	71me	RUITION/COURCE	العر	liff	-1	ř			3					5- M	11		<u></u>	н
 8/00-6600 Position as tefore. Sky mestly clear with cumulus clouds on horizon to easterly. Excellent visitility. Earometer steady. 6/00-600 Position as tefore. Sky becoming overcast with cumulus and thin altocumulus at various levels. Earometer rising. Unlimited visitility. Light southeasterly breeze. 0/00-1000 At anchor: Lat 11*24.5%-Long 162*22*5. Visibility excellent. Occasional light sprinkles of rain. 1/00-1200 Position as before. Visibility excellent. Low southerly swell. Low, short NE swell. 1/00-1600 No entry 1/00-1600 No entry 1/00-1600 No entry 1/00-200 Position as before. Visibility excellent. Low southerly swell. Low, short NE swell. 1/00-1600 No entry 1/00-200 Position as before. Visibility excellent. Low southerly swell. Low, short NE swell. 1/00-2000 Position as before. Visibility excellent. Low southerly swell. Thunderheads in N. 2/00-2/00 Position as before. No change in weather. 8/25 0/000 Enivetok 3 10-05 03 86 83 78 3 2 20 0/000 Enivetok 3 10-05 03 86 83 78 3 2 20 0/000 Enivetok 4 09-05 03 86 84 79 4 2 20 7 1/00 Enivetok 4 09-Airs C2 86 88 80 4 2 20 1/200 Enivetok 4 09-Airs C2 86 88 80 4 2 20 1/200 Enivetok 6 Lt.Airs 03 78 79 7 4 2 2 20 9 2 2000 Enivetok 6 Airs 16 78 83 78 6 7 20 2/000 Enivetok 6 Airs 80 78 83 78 6 7 20 2/000 Enivetok 6 Airs 80 78 83 78 6 7 20 2/000 Enivetok 4 Airs 01 78 78 4 2 20 2/000 Enivetok 4 Airs 01 78 78 4 2 20 2/000 Enivetok 4 Airs 01 78 78 4 2 20 2/000 Enivetok 6 Airs 80 78 83 78 6 7 20 2/000 Enivetok 6 Airs 80 78 83 78 6 7 20 2/000 Enivetok 4 Airs 01 78 78 4 2 20 2/000 Enivetok 6 Airs 80 78 83 78 6 7 20 2/000 Enivetok 4 Airs 01 78 78 4 2 20 2/000 Enivetok 6 Airs 80 78 83 78 6 7 20 2/000 Eni		٤	8/24										6	2							1
 rieing. Unlimited visibility. Light southeasterly breeze. 0800-0100 At anchor: Lat 12*2.4:NN-Long L6*2*2* Visibility excellent. 1000: heavy rain squall of about 10 minute duration. 1130: vessel commenced to roll in 10 NE Swell. 1200-1400 Position as before. Visibility excellent. Low southerly swell. Low, short NE swell. 1200-1400 At Parry (Einser) Is. Visibility unlimited. Harometer rising. Clear in E. Thunderheads in N. 1200-2000 Position as before. Neather same as above. 2000-2200 Position as before. No change in wether. 2000-2200 Fosition as before. No change in wether. 2000-2200 Position as before. No change in wether. 2000-2200 Fosition as before. No change in wether. 2000-2200 Position as before. No change in wether. 2000 Enivetok 4 09-03 01 86 82 78 3 2 20 7 1000 Enivetok 4 09-43 01 86 86 80 4 2 2 00 7 1000 Enivetok 6 Li.Airs 03 75 87 79 4 2 2 20 7 2000 Enivetok 6 Li.Airs 03 75 87 79 4 2 2 20 9 2 2000 Enivetok 6 Airs 16 78 83 78 6 7 20 2000 Enivetok 6 Airs 80 78 85 78 6 7 20 2000 Enivetok 6 Airs 80 78 85 78 6 7 20 2000 Enivetok 6 Airs 10 78 78 4 2 20 2000 Enivetok 6 Airs 10 78 78 4 2 20<th></th><td>I</td><td>OG ENT</td><td>RIES:</td><td>0400-0600 Posit:</td><td>ion as befor</td><td>e. Sky m</td><td>learin</td><td>g. Ea clear</td><td>rometer with cum</td><td>steady ulus c</td><td>louds</td><td>on</td><td>hori</td><td>.zon t</td><td>o east</td><td>erly.</td><td>Excel</td><td>lent vi</td><td>sibility</td><td>•</td>		I	OG ENT	RIES:	0400-0600 Posit:	ion as befor	e. Sky m	learin	g. Ea clear	rometer with cum	steady ulus c	louds	on	hori	.zon t	o east	erly.	Excel	lent vi	sibility	•
 1000-1200 Position as before. Visibility excellent. 1000; heavy rain squall of about 10 minute duration. 1130; vessel commenced to roll in low ME swell. 1200-1400 Position as before. Visibility excellent. Low southerly swell. Low, short NE swell. 1400-1600 No entry 1600-1800 At Parry (Elmer) Is. Visibility unlimited. Barometer rising. Clear in E. Thunderheads in N. 1600-2000 Position as before. Clouds diminishing. Visibility unlimited. Thunderheads in N. 2000-2200 Position as before. No change in weather. 8/25 0200 Eniwetok 3 10-05 03 86 82 78 3 2 20 0400 Eniwetok 3 10-05 03 86 82 78 3 2 20 0600 Eniwetok 3 10-05 03 86 84 79 4 2 20 7 1000 Eniwetok 4 09-03 01 86 86 80 4 2 20 1000 Eniwetok 4 09-03 01 86 88 79 4 2 20 1000 Eniwetok 6 1t.Airs 03 75 87 79 4 2 20 7 1000 Eniwetok 6 Airs 10 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2000 Eniwetok 7 Airs 00 787 78 4 2 20 2000 Eniwetok 7 Airs 01 787 78 4 2 20 2000 Eniwetok 7 Airs 01 787 78 4 2 20 2000 Eniwetok 7 Airs 00 78 78 4 2 20 2000 Eniwetok 7 Airs 01 78 78 4 2 20 2000 Eniwetok 7 Airs 00 78 78 4 2 20 2000 Eniwetok 8 Airs 10 78 78 4 2 20 2000-200 Position as before. Clouds be					rising	. Unlimite	d visibil	ity₊	Light	southeas	terly	breez	e.								eter
 1400-1600 No entry 1600-1800 At Party (Elmer) Is. Visibility unlimited. Barometer rising. Clear in E. Thunderheads in N. 1800-2000 Position as before. Clouds diminishing. Visibility unlimited. Thunderheads in N. 2200-2400 Position as before. No change in weather. 8/25 0200 Eniwetok 3 10-05 03 86 82 78 3 2 20 04000 Eniwetok 2 10-08 01 82 82 78 3 2 20 0600 Eniwetok 3 10-05 03 86 82 78 3 2 20 0800 Eniwetok 4 09-05 03 86 84 79 4 2 200 7 1000 Eniwetok 4 09-05 01 86 88 40 4 2 200 1200 Eniwetok 4 09-03 01 86 88 40 4 2 200 1200 Eniwetok 4 09-Airs 02 86 88 40 4 2 200 1200 Eniwetok 6 Lt.Airs 03 75 87 79 4 2 200 9 2 1200 Eniwetok 6 Airs 16 78 83 78 6 7 20 2200 Eniwetok 4 Airs 16 78 83 78 6 7 20 2200 Eniwetok 4 Airs 10 78 8-7 78 4 2 200 2200 Eniwetok 4 Airs 10 78 8-7 78 4 2 200 2200 Eniwetok 4 Airs 10 78 8-7 78 4 2 200 2200 Eniwetok 4 Airs 10 78 8-7 78 4 2 200 2200 Eniwetok 4 Airs 10 78 8-7 78 4 2 200 2200 Eniwetok 5 Airs 80 78 83 78 6 7 200 2200 Eniwetok 4 Airs 10 78 78 4 2 200 2000 Eniwetok 5 Airs 80 79 8-178 4 2 200 2000 Eniwetok 5 Airs 80 79 8-10043. Barometer dropping slowly. 0200-0400 Position as before. Clouds beroming more developed. Unlimited visibility. 0200-0400 Position as before. Cumulus clouds around horizon. Light breeze. Calm sea in lagoon. Earometer steady. 0400-1600 Position as before. Visibility unlimited. 1000 Position as before. Visibility unlimited. 1000-1200 Position as before. Visibility unlimited. <l< td=""><th></th><td></td><td></td><td></td><td>1000-1200 Positi vessel</td><td>on as before commenced</td><td>e. Visit to roll i</td><td>ility n low</td><td>excell NE swe</td><td>ent. 10</td><td>00: he</td><td>avy r</td><td>ain</td><td>squá</td><td>all o:</td><td>f about</td><td>: 10 mi</td><td>inute c</td><td></td><td></td><td>:</td></l<>					1000-1200 Positi vessel	on as before commenced	e. Visit to roll i	ility n low	excell NE swe	ent. 10	00: he	avy r	ain	squá	all o:	f ab o ut	: 10 mi	inute c			:
2000-2200 Position as before. Clouds diminishing. Visibility unlimited. Thunderheads in N. 8/25 0200 Eniwetok 3 10-05 03 86 82 78 3 2 20 0400 Eniwetok 2 10-06 01 82 82 78 3 2 20 0400 Eniwetok 3 10-05 03 86 83 78 3 2 20 0500 Eniwetok 4 09-03 01 86 84 79 4 2 20 7 1000 Eniwetok 4 09-03 01 86 80 4 2 20 7 1200 Eniwetok 4 09-Airs 02 86 80 4 2 20 1 1600 Eniwetok 6 1.4.irs 10 75 87 79 4 2 20 9 2 2 0 2 200 Eniwetok 6 Airs 80 78 6 7 20					1400-1600 No ent 1600-1800 At Par	ry ry (Elmer) :	Is. Visi	bility	/ unlim	ited. H		-				-			ds in N	•	
3 0000 Eniwetok 2 10-08 01 82 82 78 2 2 20 3 0000 Eniwetok 6 09-05 03 86 83 78 3 2 20 1000 Eniwetok 4 09-03 01 86 86 80 4 2 20					2000-2200 Posit:	on as befor	e. Cloud	is dimi	ini s hin		bility.	r unli	mite	ed.	Thun	derhead	ls in l	N•			
B OB00 Eniwetok 6 O9-05 03 86 84 79 4 2 20 7 1000 Eniwetok 4 09-Airs 02 86 86 80 4 2 20 1400 Eniwetok 4 09-Airs 02 86 88 80 4 2 20 1400 Eniwetok 4 09-Airs 02 86 88 80 4 2 20 1400 Eniwetok 6 It.Airs 03 75 87 79 4 2 20 9 2 2000 Eniwetok 6 Airs 16 78 83 78 6 7 20 2100 Eniwetok 4 Airs 01 78 78 4 2 20 2200 Eniwetok 4 Airs 01 7			(0400	Eniwetok	2 1	0-08	01	82	82 78	3		2		2	20					
1200Enimetok409-Airs0286888042201400EnimetokNNREP0RTS1600Enimetok6Lt.Airs037587794220922000Enimetok6Airs1678837867202000Enimetok6Airs0178-7842202000Enimetok4Airs01787842202400Enimetok4Airs01787842202400Enimetok4Airs01787842202400Enimetok4Airs01787842202400Enimetok4Airs01787842202000Enimetok4Airs01787842202000Position as before.Veather unchanged in past 4 hours.04/00-000000-000Position as before.01/004Position as before.10/00000-1000Position as before.Cuals becoming more developed.Unlimited visibility.10/00-1200 <th>29</th> <td>5</td> <td>(</td> <td>0800</td> <td>Eniwetok</td> <td>6 0</td> <td>905</td> <td>03</td> <td>86</td> <td>84 79</td> <td>)</td> <td></td> <td>4</td> <td></td> <td>2</td> <td>20</td> <td>7</td> <td></td> <td></td> <td></td> <td></td>	29	5	(0800	Eniwetok	6 0	905	03	86	84 79)		4		2	20	7				
1600 Eniwetok No R E P 0 R T S 1800 Eniwetok 6 LtAirs 03 75 87 79 4 2 20 9 2 2000 Eniwetok 6 Airs 16 78 83 78 6 7 20 2000 Eniwetok 6 Airs 80 78 83 78 6 7 20 2100 Eniwetok 4 Airs 01 78 78 4 2 20 2100 Eniwetok 4 Airs 01 78 78 4 2 20 2100 Eniwetok 4 Airs 01 78 78 4 2 20 2000 0000-0200 Moored at old cargo pier, Parry (Elmer) Is., Eniwetok Atoll. Light southeasterly breeze. Visibility unlimited. 1000-0200 Position as before. Clouds becoming more developed. Unlimited visibility. 0200-0400 Position as before. Clouds becoming more developed. Unlimited vis							• •														
1800Eniwetok6Lt.Airs037587794220922000Eniwetok6Airs16788378672C2200Eniwetok6Airs80788378672C2400Eniwetok4Airs01787842202400Eniwetok4Airs017878422010G ENTRIES:0000-0200Moored at old cargo pier, Parry (Elmer) Is., Eniwetok Atoll. Light southeasterly breeze. Visibility unlimited. Scattered cumulus clouds. Barometer dropping slowly. 0200-0400 Position as before. Weather unchanged in past 4 hours. 0400-0600 Position as before. Clouds becoming more developed. Unlimited visibility. 0600-0800 Position as before. Clouds becoming more developed. Barometer steady. Light easterly breeze. 0800-1000 Position as before. Cumulus clouds around horizon. Light breeze. Calm sea in lagoon. Earometer steady Unlimited visibility. 1000-1200 Position as before. Weather unchanged. 1200-1400 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1600-1800 Position as before. Visibility unlimited. 1800-2000 Position as before. Heavy rain shower approaching from ENE direction.Thunderheads gathering all over. 1800-2000 Position as before. Heavy rain shower												RE	P								
2000Eniwetok6Airs1678837867202200Eniwetok6Airs8078837867202400Eniwetok4Airs017878422010C ENTRIES:0000-0200 Moored at old cargo pier, Parry (Elmer) Is., Eniwetok Atoll. Light southeasterly breeze. Visibility unlimited. Scattered cumulus clouds. Barometer dropping slowly. 0200-0400 Position as before. Clouds becoming more developed. Unlimited visibility. 0600-0800 Position as before. Clouds becoming more developed. Barometer steady. Light easterly breeze. 0800-1000 Position as before. Clouds becoming more developed. Barometer steady. Light easterly breeze. 0800-1000 Position as before. Weather unchanged 1200-1200 Position as before. Weather unchanged. 1200-1400 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1600-1800 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1400-2000 Position as before. Visibility unlimited. 1600-1800 Position as before. Visibility unlimited. No wind. Barometer steady. Thunderheads gathering all over. 1800-2000 Position as before. Heavy rain shower approaching from ENE direction.						6 Lt	Airs	03	75			ĸĔ		0			9	2			
 2400 Eniwetok 4 Airs 01 78 78 4 2 20 IOG ENTRIES: 0000-0200 Moored at old cargo pier, Parry (Elmer) Is., Eniwetok Atoll. Light southeasterly breeze. Visibility unlimited. Scattered cumulus clouds. Barometer dropping slowly. 0200-0400 Position as before. Weather unchanged in past 4 hours. 0400-0600 Position as before. Clouds becoming more developed. Unlimited visibility. 0600-0800 Position as before. Clouds becoming more developed. Barometer steady. Light easterly breeze. 0800-1000 Position as before. Cumulus clouds around horizon. Light breeze. Calm sea in lagoon. Barometer steady Unlimited visibility. 1000-1200 Position as before. Weather unchanged. 1200-1400 Position as before. Visibility unlimited. 1400-1600 Position as before. Weather unchanged. 1200-1400 Position as before. Weather unchanged. 1200-1400 Position as before. Wisibility unlimited. 1400-1600 Position as before. Wisibility unlimited. No wind. Barometer steady. Thunderheads gathering all over. 1800-2000 Position as before. Heavy rain shower approaching from ENE direction. 			:	2000	Eniwetok	6	Airs	16	78	83 78	3		6		7	20					
unlimited. Scattered cumulus clouds. Barometer dropping slowly. 0200-0400 Position as before. Weather unchanged in past 4 hours. 0400-0600 Position as before. Clouds becoming more developed. Unlimited visibility. 0600-0800 Position as before. Clouds becoming more developed. Barometer steady. Light easterly breeze. 0800-1000 Position as before. Cumulus clouds around horizon. Light breeze. Calm sea in lagoon. Earometer steady Unlimited visibility. 1000-1200 Position as before. Weather unchanged. 1200-1400 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1600-1800 Position as before. Visibility unlimited. No wind. Barometer steady. Thunderheads gathering all over. 1800-2000 Position as before. Heavy rain shower approaching from ENE direction.													•		-						
 0200-0400 Position as before. Weather unchanged in past 4 hours. 0400-0600 Position as before. Clouds becoming more developed. Unlimited visibility. 0600-0800 Position as before. Clouds becoming more developed. Barometer steady. Light easterly breeze. 0800-1000 Position as before. Cumulus clouds around horizon. Light breeze. Calm sea in lagoon. Barometer steady 1000-1200 Position as before. Weather unchanged. 1200-1400 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1600-1800 Position as before. Visibility unlimited. No wind. Barometer steady. Thunderheads gathering all over. 1800-2000 Position as before. Heavy rain shower approaching from ENE direction. 		IJ	OG ENTI	RIES:												outhea	sterly	breeze	e. Vis	ibility	
 0600-0800 Position as before. Clouds becoming more developed. Barometer steady. Light easterly breeze. 0800-1000 Position as before. Cumulus clouds around horizon. Light breeze. Calm sea in lagoon. Barometer steady Unlimited visibility. 1000-1200 Position as before. Weather unchanged. 1200-1400 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1600-1800 Position as before. Visibility unlimited. No wind. Barometer steady. Thunderheads gathering all over. 1800-2000 Position as before. Heavy rain shower approaching from ENE direction. 					0200-0400 Posit:	ion as befor	e. Weath	her und	changed	i in pas	: 4 hou	irs.	-								
 0800-1000 Position as before. Cumulus clouds around horizon. Light breeze. Calm sea in lagoon. Earometer steady Unlimited visibility. 1000-1200 Position as before. Weather unchanged. 1200-1400 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. 1600-1800 Position as before. Visibility unlimited. 1800-2000 Position as before. Heavy rain shower approaching from ENE direction. 																	⊳ht ea	sterlv	breeze		
1000-1200 Position as before. Weather unchanged. 1200-1400 Position as before. Visibility unlimited. 1400-1600 Position as before. Visibility unlimited. Calm, no swell. 1600-1800 Position as before. Visibility unlimited. No wind. Barometer steady. Thunderheads gathering all over. 1800-2000 Position as before. Heavy rain shower approaching from ENE direction. 2000/22000 Position as before.					0800-1000 Posit Unlim	ion as befor ited visibil	e. Cumu] ity.	lus cl	oudsar	round ho:	izon.	Ligh	nt br	reez	e. C	alm se	a in l	agoon.	Baron	eter ste	ady.
1400-1600 Position as before. Visibility unlimited. Calm, no swell. 1600-1800 Position as before. Visibility unlimited. No wind. Barometer steady. Thunderheads gathering all over. 1800-2000 Position as before. Heavy rain shower approaching from ENE direction.																					
1600-1800 Position as before. Visibility unlimited. No wind. Barometer steady. Thunderheads gathering all over. 1800-2000 Position as before. Heavy rain shower approaching from ENE direction.	The second				1400-1600 Posit	ion as befor	e. Visi	bility	unlim	ited. C											
1800-2000 Position as before. Heavy rain shower approaching from ENE direction.	د بریک و منبع						e. Visil	bility	unlim	ited. N	o wind	Bar	romet	ter	stead	y. Th	underh	eads g	atherir	ng all ov	er.
	1.10										ening i	rom H	SNE C	aire	ction	•					
2000-2200 Fosition as before. Slight rain shower. 2200-2400 Position as before. Barometer steady. Visibility unlimited. No wind.											ility u	unlimi	ited.	• N	o win	d.					

2.....

-

Mary St.

(in

ALC: N

	PLACE:	ENIWEI	OK-BIKINI		BI-HOURLY	OBSE	ERVATIO	NS, M	ists - 1	r- l st 618	B, AUGU	ST 18	- SEPTEN	ÆR 1,	1957		<u>TAF</u> (Conti	<u>LE 18</u> nued)
	DATE	TIME	POSITION/COURSE	Ng	DDFF	WX	Р	ΤT	ТТ _w	TT_s	AMT. 8ths	CL TYPE	HT. CO ft.	с _М	C _H	DD	WAVES PERIOD	HT. ft.
	8/26	0200 0400 0800 1200 1400 1600 1800 2000 2200 2400	Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok	75566446555	08-05 Lt.Airs 14-03 14-05 14-03 14-08 12-08 12-08 12-05 12-05 12-05 11-05	60 18 18 02 81 02 03 15 02 02	78 74 73 74 79 75 72 68 70 73 76	81 81 82 85 88 87 85 87 85 84 83	79 78 78 80 81 80 80 79 78 78 78 78 78 N 0	Rj	75566446555 P 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2					
16	LOG EN	TRIES:	0000-0200 Moored a Visibili 0200-0400 Position 0400-0600 Position 0600-0800 Position 0800-1000 Position 1000-1200 Position 1200-1400 Position 1400-1600 Position 1600-1800 Position 1800-2000 Position 2000-2200 Position 2200-2400 Position	ity 1(1 as 1 1 as 1	D-12 miles exc before. Sky o before. Visib before. Visib before. Visib before. Visib before. Visib before. Visib before. Visib before. Visib before. Visib	ept lear ilit ilit ilit ilit ilit ilit ilit ili	in squa ing. R y excel y excel ing. V y excel y excel y excel y excel y excel	lls. ain : lent lent lent lent lent lent lent	Barom squalls Calm ility e Show	eter fall around) , no swel xcellent ers to no	ling sl horizon ll.	owly. Lig	Light (easter]	ly air:		n squall:	5.
DUE FRE MARK	8/27	0200 0400 0600 1000 1200 1400 1600 1800 2000 2200 2400	Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok	864344 222	10-08 09-05 10-08 13-10 12-10 12-10 12-10 12-10	60 18 01 01 80 02 02	74 74 74 78 76 78 78 78	81 82 83 82 86 83 83 83	78 78 78 79 80 N 0 N 0 80 80 80 80	R E R E R E	P O	RΤ	S	1				

×

		1200 1400 1600 1800 2000 2200 2400	Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok	4 2 2 2 2	12-10 12-10 12-10 12-10	80 02 01 02 02	78 76 78 78 78 78	83 83	79 80 N 0 N 0 80 80	R		P0 P0 2 2	2 2 R T R T R T 2 2	20 20 S S 20 20 20					· .
	LOG EN	TRIES:	0000-0200 Beached					83	80			2	2	20					
and the second second second	inter and the second	Careen days and a	0000-0200 Beached a	Bar	moored, ol ometer ste	d cargo p adv. Evo	ier, I	Parry (Elmer)	Is.	Sky	over	cast.	Light	rain s	aualle	ta Ca	ntla an	+ 7
							¢1.TBN	VIBLO	ility.	axcep	in,	rain,	Squal;	Ls.	and the set of the			HOIE EAS	certy.
an alternation also also also also al	7140		THE BLACKER	en e	in and the second second		1/140	ال وحال	ر کتری	3 . 10	يخرين		ر الم	s		يشية أساسط	and the statements	united a state	
	LATE	TIME	PUS 1710N/DOUESE	Ν.	llef	E I	Ð		· •••	-			~		~	•			Line()
	i A i 5	ي. ماريك د	PLAN I I I UNIT COURCE	Ng	ملدنا كا		r	* *	•••	п,	1	HT.	UL TIPL		с <mark>н</mark>	<u>~11</u>			hī.
												tas		u :			• •	t in the	11 [1.
	8/27																		
	LOG E	ntries ; ·	0200-0400 Position 0400-0600 Position 0600-0800 Position 0800-1000 Position 1000-1200 Position 1200-1400 Position 1400-1600 Position 1600-1800 Position 1800-2000 Position 2000-2200 Position	as as as as as as as as as as	tefore. W tefore. W before. W before. W tefore. W before. W before. W before. W	eather as eather as isitility isitility isitility isitility isitility isitility isitility	tefor tefor reauc excel excel excel excel excel rexcel rexcel rexcel	re. Si re. ced in llent. llent. llent. llent. nited.	sho∦er	ring. 5.	<u>t</u> ar	œete	r steā	Cry dy. ay.					
95	8/28	0200 0400 0600 0800 1000 1200 1400 1600 1800	Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok 11°24'N	42247878	10-10 10-08 13-08 13-08 13-08 13-08 16-04 Airs 09-05	03 01 02 03 02 16 60 03	76 76 78 78 78 77 78 76	82 82 83 87 85 86 83	79 79 79 80 80 81 79			42246877	22222222	20 20 20 20 20 20 20 20		1 1 1			
		1000	162°39'E	8	07-15	02	80	81	78			8	2	20			07	5	3
		2000 2200	11°23'N 162°56'E 11°25.0'N						N O	R	. E	ΡO	RT	S					
			163°13.0'E	8	07-15	80	90	82	78			8	7	20			07	5	3
		2400	11°25.0*N	٦	ר ליי	د 0	00	d n	78			h	2	20			09	r	2
	LOG EN	TRIES:	0200-0400 Position 0400-0600 Position 0600-0800 Position 0800-1000 Position 1000-1200 Position 1200-1400 Moored a horizon 1400-1600 Departin	Par as as as as nd t to e g vi Lig	tly overca before. S before. W before. W before. W before. M beached as asterly an a deep ent bt easterl	st. Unli ky clear isibility isibility o change before. d souther rance fro y breeze.	imited ing. y unlin y unlin y unlin in we Light cly. om Par	visib mited. mited. mited. ather. rain ry (EL	(Elmer) ility. Low v Iow v Thund squall: mer) I:	vester vester lerhea s. Go s. Sk	ly sa ly sa ds fa pod v ty ov	well. well. ormin isibi ercas	ng in t lity. st. Th	he ENE Earom underh	• eter si eads an	teady. round	Rair h oriz o	n squall	s on

PLACE: ENIWETOK-BIKINI	BI-HOURLY	OBSERV	VATIC	DNS, M	STS -	T-LST 618,	AUGUS	ST 18 - SEPTE	MBER 1,	1957		<u>TAE</u> (Conti	IE 18
DATE TIME POSITION/COURSE Ng	DDFF	WX	Р	TT	тт _w	ТТ <mark>з</mark>		CL	С _М	с _Н		WAVES	
8/28							AMT. 8th s	TYPE HT. OO ft.			DD	PERIOD	HT. ft.

LOG ENTRIES: 1800-2000 (2000 Position: Lat 11°23'N-Long 162°56'E) Visibility excellent. Medium average NE swell. Slight NE sea. 2000-2200 (2200 Position: Lat 11°25.0'N-Long 163°13.0'E) En route Parry (Elmer) Is. to Bikini. Slight showers of rain. Visibility about 10.0 miles. Easterly sea (slight). Sky overcast. Barometer rising. 2310: lightning in the east. Long bright flashes.

2200-2400 (2400 Fosition: Lat ll°25.0[†]N-Long 163°32.0[†]E - on course 090° true) Thunderheads and lightning in the E. Visibility unlimited. Barometer steady.

8/29	0200	11°25'N																	
		163°49'E	090	3	10-10	01	86	82	78	85	3		2	20		10	5	3	
	0400	11°25.5'N																	
		164°07'E	090	4	10-12	03	86	82	78	85	4		2	20		10	5	3	
	0600	11°25'N																	
		164 °25 'E	090	2	06-10	01	83	83	79		2		2	20		06	4	3	
	0800	11°25'N																	
		164°43'E							N Ü	R	E P	0	R T	S					
	1000	11°24.0'N																	
		165°00'E	087	4	07-10	03	86	84	80		3		2	20	 1	07	4	3	
	*1200	Bikini	085	4	07-10	02	87	85	79		3		2	20	 1	07	4	3	
	1400	Bikini		4	06-12	02	86	85	79		3		2	20	 l			-	
	1600	Bikini		5	05-12	03	85	86	80		5		2	20	 			-	
	1800	Bikini		5	07-12	02	83	84	79		5		2	20					
	2000	Bikini		2	06	01	85	83	78		2		2	20					
	2200	Bikini		2	06-12	02	86	83	79		2		2	20	 			-	
	2400	Bikini							N O	R	ΕP	0 1	RΤ	S					

LOG ENTRIES: 0000-0200 (0200 Position: Lat 11°25'N-Long 163°49'E) Sky clearing. Cumulus clouds to S. Barometer dropping slowly. Unlimited visibility. Light southeasterly wind and sea.

- 0200-0400 (0400 Position: Lat 11°25.5'N-Long 164°07'E) No change in weather for past 4 hours.
- 0400-0600 (0600 Position: Lat ll°25'N-Long 164°25'E) Visibility excellent. Slight ENE sea. Moderate average NE swell.
- 0600-0800 (0800 Position: Lat 11°25'N-Long 164°43'E) Visibility excellent. Slight northeasterly sea. Moderate average NE swell.
- 0800-1000 (1000 Position: Lat 11°24.0'N-Long 165°00'E) Visibility unlimited. Thunderheads all around horizon. Cirrus clouds overhead.
- *1000-1200 (1200 Position: Approaching Bikini Atoll) No change in weather.
- 1200-1400 Moored at Enyu Is., Bikini Atoll. Moderate NE wind 12-15 knots. Unlimited visibility. Rain squalls in distance around horizon. Barometer steady.

1400-1600 Position as before. Weather as before. Rain squalls to easterly.

2000 JROO BOOTHING TO SHEEPING THE TREAT OF THE

96

· · ·

	PLACE: EXE LATE TIME	1600-1800 Positi 1600-1800 Positi 1800-2000 Positi 2000-2000 Positi	Position: Lat ge NE swell. Position: Lat clouds overhea Position: Appr at Enyu Is., B ice around horiz on as before. on as before.	11°24.0°N-Lon d. oaching Bikin ikini Atoll. on. Barometer Weather as ber	g 165°00' i Atoll) Moderate r steady. fore. Ra cellent. cellent.	E) Visibil No change NE wind 12 in squalls	ity unlimi in weather -15 knots. to easterly	t. Slight r ted. Thunde Unlimited y.	northeaster erheads all visibility	rly sea. 1 around f 7. Rain s	norizon. squalls in	
	8/29							00 10			•	
	LOG ENTRIES:	2200-2400 Positi	on as before. I	No change in w	eather.							
	8/30 0200 0400 0800 1000 1200 *1400 1600	Bikini Bikini Bikini Bikini Bikini 253 11°26'N 165°09'E 270	4 06-10 6 06-10 4 06-10 4 06-10 3 10-10 3 07-10 3 08-10 4 08-10	03 82 01 78 02 75 02 73 81 73	82 82 83 85 86 87 87	79 79 78 79 80 80 81 81	4 6 4 2 2 2 4	2 20 2 20 2 20 2 20 2 20 2 20 2 20 2 20	1 1 1			
	1800	11°25'N	-	-								
97	2000 2200 2400	164°51°E 270 11°25°N 164°34°E 11°26.0°N 164°16.5°E 270 11°26.0°N 164°00.0°E 270	4 07-10 3 07-10	16 85	85	83 NOR 80 80	3	2 20 RTS 2 20	1	07 07	3 2 3 2	
COUT AND INTER	LOG ENTRIES:	slowly 0200-0400 Positi 0400-0600 Positi 0600-0800 Positi 0800-1000 Positi clouds 1000-1200 Positi *1200-1400 (1400 around 1400-1600 (1600 1600-1800 (1800 1800-2000 (2000 2000-2200 (2200 Cumulu 2200-2400 (2400	 Light east-n. on as before. on as before. on as before. on as before. overhead. 110 on as before. Position: Depa horizon. Sky Position: Lat Position: Lat Position: Lat as clouds all ar 	ier, Bikini At ortheasterly of No change in a Visibility ex Visibility ex Visibility un O: moderate of Visibility un rting Bikini) overhead clea: 11°26'N-Long 11°25'N-Long 11°25'N-Long 11°26.0'N-Lon 000000000000000000000000000000000000	wind. weather p cellent. cellent. limited. rain show limited. Moderat r. Barom l65°09'E) l64°51'E) l64°34'E) g 164°16. Baromet	y partly ov ast 4 hours Barometer er from ENE Moderate r e easterly eter rising No change Visibilit Visibilit 5'E - cour er rising.	except sk falling. direction ain shower wind and s slowly. in weathe y excellen y excellen se 270° tr Lightning	y becoming m Thunderheads s. ea. Unlimit r past 4 hou t. Low NE s ue - 8.85 f (Moderate)	nore overca s all aroun ted visibil urs. Swells. fom speed)	ast. nd horizor Lity. Thu	n. Cirrus underheads	
	8/31 0200 0400	11°26*N 163°42*E 270 11°26*N 163°24*E 270	4 08-12 4 07-12			80 80	4 4	2 20 2 20		08 07	42 42	

DATE	TIME .	POSITION/C	OURSE	N ₈	DDFF	ЖW	P	TT	ТТ _w	TT _s		CL		С _М	с _н		(Cont WAVES	muec
											AMT. 8ths	TYPE	HT. 00 ft.			DD	PERIOD	HT. ft.
3/31	0600	11°27'N																
	0800	163°06'E 11°25'N	270	4	07-15	02	78	83	79		4	2	20			07	4	2
	0000	162°51'E	267	4	07-15	15	78	83	79		4	2	20			07	I.	2
	*1000	Eniwetok	267	6	09-10	03	80	90	82		3	2	20	_	٦	09	4 4	2
	1200	Eniwetok	201	6	10-10	02	84	87	80				20		1 1	09	4	2
	1400	Eniwetok		-	09-10		84 78	88	80		3	2			Ŧ			
				4		01					4	2	20					
	1600	Eniwetok		4	09-10	02	74	88	81		4	2	20					
	1800	Eniwetok		4	10-10	02	75	86	80		4	2	20					
	2000	Eniwetok		4	10-10	02	80	84	78		4	2	20					
	2200	Eniwetok		3	10-10	02	82	83	78		3	2	20					
	2400	Eniwetok		4	10-10	81	84	82	79		4	7	2 0 ·					
		0200-0400	(0400 P	ositior	thes to W. 1: Lat 11	26'N-L	ong 16	53°24'E) Brig	ght ligh	tning f	lashes	to NW.	Baro	meter	d ro pp:	ing slowl	у.
		0400-0600 0600-0800 *0 8 00- 1 000	(0400 P No chan (0600 P (0800 P (1000 P blown i	ositior ge in v ositior ositior ositior n strea	n: Lat ll weather for h: Lat ll h: Lat ll h: Approa aks. Thun	r past / 27'N-L 25'N-L ching Pa derhead	4 hour ong 16 ong 16 arry (s all	"8. 53°06'E 52°51'E (Elmer) around) Visi) Visi Is.) horizo	ibility ibility Visibil on.	excelle excelle	nt. M nt. I	oderate ow NE s	NE sw well.	ell.			
		0400-0600 0600-0800 *0 8 00-1000 1000-1200 1200-1400	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached visibil	osition ge in w osition osition n strea n: Par and mo ity. H	n: Lat 11 weather for h: Lat 11 h: Lat 11 h: Approa aks. Thun- rry (Elmer bored at P Barometer	r past A 27'N-L 25'N-L ching Pa derhead derhead) Is. H arry (E droppin	4 hour ong 16 ong 16 arry (s all No cha lmer) g slow	rs. 53°06'E (Elmer) around ange in Is. C vly.) Visj) Visj Is.) horizo weathe umulus	ibility ibility Visibil on. er.	excelle excelle ity unl	nt. M nt. I imited	oderate ow NE s . East	NE sw well. erly b	ell. preeze.	Hig	h cirrus	clou
		0400-0600 0600-0800 *0 8 00-1000 1000-1200 1200-1400 1400-1600	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached visibil Positio	osition ge in w osition osition n strea n: Pan and mo ity. H n as be	n: Lat 11 weather for h: Lat 11 h: Lat 11 h: Approa aks. Thun- rry (Elmer bored at P Barometer efore. No	r past A 27'N-LL 25'N-LL ching Pa derhead) Is. 1 arry (E droppin change	4 hour ong 16 ong 16 arry (s all No cha lmer) g slow in we	s. 53°06'E (Elmer) around ange in Is. C dy. eather.) Visj) Visj Is.) horizo weathe umulus	ibility ibility Visibil on. er.	excelle excelle ity unl	nt. M nt. I imited	oderate ow NE s . East	NE sw well. erly b	ell. preeze.	Hig	h cirrus	clou
		0400-0600 0600-0800 *0 8 00-1000 1000-1200 1200-1400 1400-1600 1600-1800	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached visibil Positio Positio	osition ge in w osition osition n strea n: Pan and mo ity. H n as be n as be	n: Lat 11 weather for h: Lat 11 h: Lat 11 h: Approa aks. Thun- rry (Elmer bored at P Barometer sfore. No sfore. Vi	r past A 27'N-LL 25'N-LL 25'N-LL ching Pa derhead) Is. H arry (E droppin change sibilit;	4 hour ong 16 arry (s all No cha lmer) g slow in we y exce	s. 3°06'E 2°51'E (Elmer) around ange in Is. C vly. eather. ellent.) Visj) Visj Is.) horizo weathe umulus	ibility ibility Visibil on. er.	excelle excelle ity unl	nt. M nt. I imited	oderate ow NE s . East	NE sw well. erly b	ell. preeze.	Hig	h cirrus	clou
		0400-0600 0600-0800 *0 8 00-1000 1000-1200 1200-1400 1400-1600 1600-1800	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached visibil Positio Positio	osition ge in w osition osition n strea n: Pan and mo ity. H n as be n as be	n: Lat 11 weather for h: Lat 11 h: Lat 11 h: Approa aks. Thun- rry (Elmer bored at P Barometer efore. No	r past A 27'N-LL 25'N-LL 25'N-LL ching Pa derhead) Is. H arry (E droppin change sibilit;	4 hour ong 16 arry (s all No cha lmer) g slow in we y exce	s. 3°06'E 2°51'E (Elmer) around ange in Is. C vly. eather. ellent.) Visj) Visj Is.) horizo weathe umulus	ibility ibility Visibil on. er.	excelle excelle ity unl	nt. M nt. I imited	oderate ow NE s . East	NE sw well. erly b	ell. preeze.	Hig	h cirrus	clou
		0400-0600 0600-0800 *0800-1000 1000-1200 1200-1400 1400-1600 1600-1800 1800-2000	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached visibil Positio Positio Positio	ositior ge in v ositior ositior n strea n strea n as be n as be n as be n as be	n: Lat 11 weather for h: Lat 11 h: Lat 11 h: Approa aks. Thun- rry (Elmer bored at P Barometer efore. No efore. Vi efore. Vi efore. Vi	r past / 27'N-L 25'N-L ching Pa derhead) Is. 1 arry (E droppin change sibilit;	4 hour ong 16 arry (s all No cha lmer) g slow in we y exce y exce	rs. 53°06'E (Elmer) around ange in Is. C vly. eather. ellent.) Visj) Visj Is.) horizo weatha umulus	ibility ibility Visibil on. er. clouds	excelle excelle ity unl around	nt. M nt. I imited	oderate ow NE s . East n. Lig	NE sw well. erly b ht eas	ell. preeze. terly	Hig breez	h cirrus e. Unlim	clou
		0400-0600 0600-0800 *0800-1000 1200-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached Visibil Positio Positio Positio around	ositior ge in v ositior ositior n strea n strea n as be n as be n as be n as be n as be n as be	n: Lat 11 weather for h: Lat 11 h: Lat 11 h: Approa aks. Thun- rry (Elmer bored at P Barometer efore. No efore. Vi efore. Vi efore. Vi	r past / 27'N-L 25'N-L ching P. derhead:) Is. 1 arry (E droppin change sibilit; sibilit;	4 hour ong 16 ong 16 arry (s all No cha lmer) g slow in we y exce y exce y exce y unl:	rs. 53°06'E 52°51'E (Elmer) around ange in Is. C vly. eather. ellent. ellent. imited.) Visi) Visi Is.) horizo weatho weatho umulus Baron	ibility ibility Visibil on. er. clouds	excelle excelle ity unl around .sing.	nt. M nt. I imited horizo Light	oderate ow NE s . East n. Lig easterl	NE sw well. erly b ht eas y bree	ell. reeze. terly	Hig breez Cumulu	h cirrus e. Unlim s clouds	clou
9/1	0200	0400-0600 0600-0800 *0800-1000 1200-1200 1200-1400 1400-1600 1600-1800 2000-2200 2200-2400 Eniwetok	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached Visibil Positio Positio Positio Positio around Positio	ositior ge in v ositior ositior n strea n strea n as be n as be n as be horizor n as be	1: Lat 11 weather for h: Lat 11 h: Lat 11 h: Approa aks. Thun- try (Elmer bored at P Barometer bored at P Barometer bore. Vi efore. Vi efore. Vi efore. Vi efore. Ra	r past / 27'N-L 25'N-L ching Pa derhead) Is. arry (E droppin change sibilit; sibilit; in show 02	4 hour ong 16 ong 16 arry (s all No cha lmer) g slow in we y exce y unl: ers. 82	s. 3°06'E (2°51'E (Elmer) around around around ins. C ellent. ellent. imited. Visibi 81) Visi) Visi Is.) horizc weathe umulus Baron lity al	ibility ibility Visibil on. er. clouds	excelle excelle ity unl around .sing. niles in 3	nt. M nt. I imited horizo Light the F	oderate ow NE s . East n. Lig easterl . Unli 20	NE sw well. erly b ht eas y bree	ell. reeze. terly	Hig breez Cumulu	h cirrus e. Unlim s clouds	clou
9/1	0400	0400-0600 0600-0800 *0800-1000 1200-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200 2200-2400 Eniwetok Eniwetok	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached Visibil Positio Positio Positio Positio around Positio	ositior ge in v ositior ositior n strea and mo ity. F n as be n as be n as be horizor n as be	1: Lat 11 weather for h: Lat 11 h: Lat 11 h: Approa aks. Thun- try (Elmer bored at P Barometer bored at P Barometer efore. No efore. Vi efore. Vi efore. Ra 10-08 10-08	r past / 27'N-L 25'N-L ching Pa derhead) Is. 1 arry (E droppin change sibilit; sibilit; in show 02 03	4 hour ong 16 ong 16 arry (s all No cha lmer) g slow j exce y exce y exce y unl: ers. 82 80	<pre>S. j⁹C6[†]E (2[°]51[†]E (Elmer) around ange in Is. C Jy. eather. ellent. imited. Visibi 81 82</pre>) Visi) Visi Is.) horizo weathe umulus Baron lity a) 79 79	ibility ibility Visibil on. er. clouds	excelle excelle ity unl around sing. ules in 3 4	nt. M nt. I imited horizo Light the E 2 2	oderate ow NE s . East n. Lig easterl . Unli 20 20	NE sw well. erly b ht eas y bree	ell. reeze. terly	Hig breez Cumulu	h cirrus e. Unlim s clouds	clou
9/1		0400-0600 0600-0800 *0800-1000 1200-1200 1200-1400 1400-1600 1600-1800 2000-2200 2200-2400 Eniwetok	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached Visibil Positio Positio Positio Positio around Positio	ositior ge in v ositior ositior ositior n strea n as be n as be n as be n as be n as be n as be s horizor n as be d horizor n as be	1: Lat 11 weather for h: Lat 11 h: Lat 11 h: Approa aks. Thum- rry (Elmer bored at P barometer efore. No efore. Vi efore. Vi efore. Vi efore. Ra 10-08 10-08 10-10	r past / 27'N-L 25'N-L ching Pa derhead) Is. arry (E. droppin change sibilit; sibilit; in show 02 03 02	4 hour ong 16 ong 16 arry (s all No cha lmer) g slow in we y exce y exce y unl: ers. 82 80 82	<pre>S. j⁹C6[†]E 52°51[†]E (Elmer) around ange in Is. C *ly. sather. ellent. imited. Visibi 81 82 81</pre>) Visi) Visi Is.) horizo weathe umulus Baron lity al 79 79 78	ibility ibility Visibil on. er. clouds	excelle excelle ity unl around .sing. niles in 3 4 4	nt. M nt. I imited horizo Light the F 2 2 2	oderate ow NE s . East n. Lig easterl : Unli 20 20 20	NE sw well. erly b ht eas y bree	ell. reeze. terly	Hig breez Cumulu	h cirrus e. Unlim s clouds	clou
9/1	0400	0400-0600 0600-0800 *0800-1000 1200-1200 1200-1400 1400-1600 1600-1800 1800-2000 2000-2200 2200-2400 Eniwetok Eniwetok	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached Visibil Positio Positio Positio Positio around Positio	ositior ge in v ositior ositior n strea n strea n as be n as be n as be horizor n as be dorizor n as be	1: Lat 11 weather for i: Lat 11 i: Lat 11 i: Approa aks. Thum- rry (Elmer bored at P Barometer ofore. No efore. No efore. Vi efore. Vi efore. Vi efore. Ra 10-08 10-08 10-10 11-10	r past / 27'N-L 25'N-L ching Pa derhead) Is. 1 arry (E droppin change sibilit; sibilit; in show 02 03	4 hour ong 16 ong 16 arry (s all No cha lmer) g slow j exce y exce y exce y unl: ers. 82 80	<pre>S. j⁹C6[†]E (2[°]51[†]E (Elmer) around ange in Is. C Jy. eather. ellent. imited. Visibi 81 82</pre>) Visi) Visi Is.) horizo weathe umulus Baron lity a) 79 79	ibility ibility Visibil on. er. clouds	excelle excelle ity unl around sing. ules in 3 4	nt. M nt. I imited horizo Light the F 2 2 2 2 2	oderate ow NE s . East n. Lig easterl : Unli 20 20 20 20 20	NE sw well. erly b ht eas y bree	ell. reeze. terly	Hig breez Cumulu	h cirrus e. Unlim s clouds	clou
9/1	0400 0600	0400-0600 0600-0800 *0800-1000 1200-1200 1200-1400 1400-1600 1600-1800 2000-2200 2200-2400 Eniwetok Eniwetok Eniwetok	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached Visibil Positio Positio Positio Positio around Positio	ositior ge in v ositior ositior ositior n strea n as be n as be n as be n as be n as be n as be s horizor n as be d horizor n as be	1: Lat 11 weather for h: Lat 11 h: Lat 11 h: Approa aks. Thum- rry (Elmer bored at P barometer efore. No efore. Vi efore. Vi efore. Vi efore. Ra 10-08 10-08 10-10	r past / 27'N-L 25'N-L ching Pa derhead) Is. arry (E. droppin change sibilit; sibilit; in show 02 03 02	4 hour ong 16 ong 16 arry (s all No cha lmer) g slow in we y exce y exce y unl: ers. 82 80 82	<pre>S. j⁹C6[†]E 52°51[†]E (Elmer) around ange in Is. C *ly. sather. ellent. imited. Visibi 81 82 81</pre>) Visi) Visi Is.) horizo weathe umulus Baron lity al 79 79 78	ibility ibility Visibil on. er. clouds	excelle excelle ity unl around .sing. niles in 3 4 4	nt. M nt. L imited horizo Light the E 2 2 2 2 2 2 2 2	oderate ow NE s . East n. Lig easterl : Unli 20 20 20	NE sw well. erly b ht eas y bree	ell. reeze. terly	Hig breez Cumulu	h cirrus e. Unlim s clouds	clou
9/1	0400 0600 0800	0400-0600 0600-0800 *0800-1000 1200-1200 1200-1400 1400-1600 1600-1800 2000-2200 2200-2400 Eniwetok Eniwetok Eniwetok	(0400 P No chan (0600 P (0800 P (1000 P blown i Positio Beached Visibil Positio Positio Positio Positio around Positio	ositior ge in v ositior ositior ositior n strea n as be n as be n as be n as be n as be n as be s horizor n as be d horizor n as be	1: Lat 11 weather for i: Lat 11 i: Lat 11 i: Approa aks. Thum- rry (Elmer bored at P Barometer ofore. No efore. No efore. Vi efore. Vi efore. Vi efore. Ra 10-08 10-08 10-10 11-10	r past / 27'N-L 25'N-L ching Pa derhead) Is. 1 arry (E. droppin change sibilit; sibilit; in show 02 03 02 03	4 hour ong 16 ong 16 arry (s all No cha lmer) g slow in we y exce y exce y unl: ers. 82 80 82 84	<pre>S. j⁹C6'E j²Cjl'E (Elmer) around ange in Is. C vly. sather. ellent. imited. Visibi 81 82 81 82 81 82</pre>) Visi) Visi Is.) horizo weathe umulus Baron lity al 79 79 78 79	ibility ibility Visibil on. er. clouds	excelle excelle ity unl around .sing. niles in 3 4 4 6	nt. M nt. I imited horizo Light the F 2 2 2 2 2	oderate ow NE s . East n. Lig easterl : Unli 20 20 20 20 20	NE sw well. erly b ht eas y bree mited	ell. reeze. terly eze. () elsewł	Hig breez Cumulu	h cirrus e. Unlim s clouds	clou

1. 6

-

		risin	g.			A TOT	отттоў а	οουτ 8	miles i	n the E	• Unl:	imited	elsewhe	re. Barometer
9/1	0200 0400 0600 0800 1000 1200 1400 1600	Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok Eniwetok	3 4 6 4 4	10-08 10-08 10-10 11-10 15-10 15-10 11-10	02 8: 03 8: 02 8: 03 8: 03 8: 01 8: 02 8: 02 8:	82 81 82 81 82 83 85 86	79 79 78 79 81 80 80		3 4 6 4 4	~ ~ ~ ~ ~ ~ ~ ~ ~	20 20 20 20 20 20 20 20	666	1	
and the second second second	1800	Eniwetok Eniwetok	Katalia antika	01.05	0		N O	R	EP(D R T			ــ مەربىيەن كارونىچ	and the second second second
71 4	7. 77	ETCK-RILLIN	te - Sectoria sec	مج المنامين	TY OCCUVA		and the second second		n se	an ana sa		a esta	andres i voi	
						1100.5	00-,						4777	(Concluded)
. 41:	. 715.E	R. ITTUN/COLECE	N _A	11 FF	¥1 P							`		·····
										Tirt.	ci. Cit.		• .	ана Аларана — Сане С 1 ар
9/1	22 00	Eniwetok	3	16-10	<u>د</u> ع بر	ć:			ز	2	26			
	2400	Eniwetok	2	10-10	62 yi 62 yi	رة 33	77		2	2	20			
LOG	ENTRIES:	0000-0200 Beache breeze			arry (Elmer Dility. Ba				us cloud	s aroun	d h ori :	zon.	Light so	utheasterly
		0200-0400 Positi			0				lauda	11-14-44			a Trinh	t. 00.000 - 0.000
		0400-0600 Positi wind.	Baromete	-	• •	ercast	With Cum	uius c	Touds.	UNITUNIT	ed vis	101110	.y∙ rīgu	t southeasterly
		0600-0800 Positi						it 8 hc	ours with	n except	ion of	sky b	ecoming	more overcast.
		0800-1000 Positi 1000-1200 Positi						w evol	٦					
		1200-1200 Positi 1200-1400 Positi						W PMCT	.⊥ ●					
		1400-1600 Positi												
		1600-2000 Positi	on as bef	ore. No	change in	weather	•							
		2000-2200 Positi	on as hef	ore. No	change in	weather	-							
		2200-2400 Positi			change.	10000.000	•							

DOF TROMPT

Part C. Observational Data, Second Intensive

Phase (January 25 -- February 8, 1958)

NOTES: TABLES 19-32

TABLE 19. FRED: HOURLY OBSERVATIONS AND DAILY SUMMARY.

See Notes for Table 4, pp. 39f.

TABLE 20. FRED: RAWINSONDE OBSERVATIONS.

See Notes for Table 5, p. 41.

TABLE 21. BRUCE: THREE-HOURLY OBSERVATIONS.

See Notes for Table 6, pp. 41-43, as well as the note below.

Experienced observers made the observations at BRUCE during the following interval are inclusive): 1200 Jan 25 -- 0900 Jan 27.

TABLE 22. BRUCE: HOURLY RELATIVE HUMIDITIES.

See Notes for Table 9, p. 44.

TABLE 23. BRUCE AND KEITH: SPECIAL OBSERVATIONS.

 \underline{TT}_{s} BRUCE. These measurements were made with an unshielded mercury-in-glass thermor graduated to half-degrees C. Readings were taken with the thermometer bulb at a depth of 6 inches beneath the surface of the water, with the reading being made to the nearest ter a degree C. at that time when the mercury column had become steady at a minimum value. I values of the several observations were converted to °F. in each instance and are estimate be correct within 0.2°F. in 9 out of 10 instances and within 0.5°F. in all instances (see for Table 7, pp. 43-44, and note that the mean based on several observations will be some more accurate than any single observation).

 $\underline{TT_{5}}$ KEITH values were read with the same type of thermometer described immediately with the bulb at depths of 3-6 inches. Values were, however, read only to the nearest hi degree. Values given represent a mean of several readings as shown and are accurate with 0.3° C.

<u>TT</u> and <u>TT</u> were measured with an Asmann psychrometer (graduated in whole degrees F. read to the nearest 0.5°F., and are correct within 0.4°F. <u>Heights</u> are correct within 6^{\pm}

DOF NEL MAYES

1 24. KEITH: THREE-HOURLY OBSERVATIONS.

Yee Notes for Table 6, pp. 41-43, as well as the note below.

Experienced observers made the observations at KEITH during the following interval (times

inclusive;: 1200 Jan 25 -- 0900 Feb 4.

LE 25. KEITH: HOURLY RELATIVE HUMIDITIES.

Notes for Table 9, p. 44.

MACK: DAILY OBSERVATIONS.

Tee Notes for Table 10, pp. 44-45, as well as note below.

Experienced observers made the observations at MACK on the following dates: Jan 26-30

Inclusive); Feb 3, 6, 7.

the following interval (ti

ive

II on Jan 25-29 (inclusive) was obtained from max and min thermometers after re-setting.

ABLZ 27. MACK: BI-HOURLY TEMPERATURES AND RELATIVE HUMIDITIES.

gee Notes for Table 11, p. 45.

ARLE 28. ELMER: DAILY OBSERVATIONS.

300 Notes for Table 12, p. 46, as well as note below.

Experienced observers made the observations at ELMER on the following dates: Jan 26 -

ABLE 29. JANET AND YVONNE: DAILY RAINFALL.

Hk is accurate to 0.01 inch.

Time is accurate to within 5 minutes.

ABLE 10. ELMER-MACK: LAGOON TRAVERSES.

Lee Notes for Table 15, pp. 46-47, as well as notes below.

LOCATIONS by Zones are in doubt as follows: 1330, Jan 25 observation is near Zone 3, and by be a few hundred yards within that zone; 1345, Jan 27 observation may also be just within one 3; 1338, Jan 29, may also be just within Zone 3; 1344, Feb 6, may be up to a few hundred ards within Zone 2.

If from Jan 25 through Jan 29 was obtained from same thermometer used for \underline{TT}_{3} (Fahrenheit eraduated in tenths of a degree F.) and are correct within 0.2° F. where read to be nearest tenth and within 0.4° F. where read to the nearest 0.5° F.

vercury-in-glass thermometrie eter bulb at a depth of 1 made to the nearest tenth at a minimum value. Mean nstance and are estimated . in all instances (see Nor servations will be somewhat

only to the nearest half and are accurate within

d in whole degrees F.), are correct within 6 inch

101

all the to

TABLE 32. LAGOON-OCEAN: LAGOON-OCEAN TRAVERSES. See Notes for Table 17, p. 48.

derestan.

Sec. W.

COS CENTRE

		a na anna an								1.5 M	1944 - S. 1944 -			_					ъ.	-
		PLACE	I PHED				HOURLY	015	ERVATIONS A	ND DAILY SUM	LARY JANUARY	25 - M	opin/Mar	8, 5	958	and the second state of th		The Loss of the		
		DATE	TIME	Р	TT	TT _w	RH	N	(A:	OUDS AND OrSC mount-type-di	irection-heig	ght)		N _U	PPLE	TIMES OF RAINFALL	LAILY	JIAMMUU	ſ	
									lst Layer	2nd Layer	3rd Layer	4th I	ayer				$\mathbf{x}^{\mathrm{T}}\mathbf{x}^{\mathrm{T}}$	TnTn	RH	
		1/25	0058	965	80.0	75.0	79	1	1CuE25	0	0	0		1	ENE14					
			0157 0259	960 960	7 9•7 79•7	74•2 74•2	77 77	0 0	0 0	0 0	0 [.] 0	0 0		0	ENE12					
			0258	900 955	79.7	74-2	77	ŏ	ŏ	ŏ	ŏ	ŏ		0	ENE13 ENE16					
			0457	950	80.0	74.2	76	ŏ	ŏ	0.	ŏ	ŏ		ŏ	NE18					
			0559	950	80.0	74.2	76	ō	ō	ŏ	Õ .	ŏ		ŏ	NE14					
•			0656	960	78.4	74.0	81	7	7ScE25e	0	0	õ		7	NE14	0644-0655				
			0759	970	77.3	74.8	89	5	13cE15	4CuE25	0	0		5	NE15	0725-0732				
			0858	980	79.9	75.3	81	3	3CuE25	0	0	0		3	ENE16					
			0957	995	81.7	76.1	77	4	2CuE25	2Ac 80	0	0		4	ENE18					
		*	1059	000	82.3	76.6	77	3	3CuE25	0	0	0		3	ENE18					
			1158	995	82.0	75.8	75	3	3CuE25	0	0	0		3	ENE18					
			1257	980	85.1	77.0	69	4	4CuE25	0	0	0		4	ENE17					
			1358	960	83.3	76.2	72	3	3CuE25	0	0	C		3	ENE15					
			1456	940	83.8	76.4	71 72	1	1CuE20 1CuE20	0 1Ac 80	0 0	0		1	ERE16					
			1559	920 920	83.6	76.3	72 82	2 3	3CuE20		0	0 0		2	ELE16					
			1659 1755	920	81.5 82.3	77.0 75.4	73	3	3CuE20	ŏ	0	ŏ		3	ENE16 ENE16					
	ц		1859	920	81.3	75.6	82	2	2CuE2O	õ	õ	õ		2	ENEI6					
	103		1958	945	80.2	75.2	79	2	2CuE21	õ	õ	ŏ		2	ENE15					
			2058	950	79.8	74.6	79	7	7CuE22e	0	0	Ō		7	ENE15					
			2157	960	79.8	74.8	80	4	4CuE22	0	0	0		Ĺ.	ENE16					
			2255	960	79•4	74.1	78	3	3CuE21	0	0	0		3	ENE17					
			2355	960	79•4	74•3	79	2	2CuE21	0	0	0		2	NE17		85	77	Т	
		1/26	0058	960	79•7	74.3	83	2	2CuE21	0	0	0		2	ENE18					
			0159	950	79.3	74•4	80	0	0	0	0	0		0	ENE16					
			0256	940	79.0	74.5	81	0	0	0	0	0		0	ENE16					
			0356	935	78.9	74.5	8 <u>1</u>	0	0	0	0	0		0	ENE16					
			0459	930	78.4	75.0	85 85	0 0	0	0	0 0	0 0		0	ENE15					
			0556 0656	940 950	78.4 78.2	75.0 75.1	87	3	3CuE25	0	0	0		0	ENE18					
			0759	960	78.6	72.9	76	8	2CuE25	6Cs	ŏ	ő		3	ENE19 NE17					
			0858	970	80.0	72.8	72	8	2CuE25	6Cs	ŏ	ŏ		3 3	NE17 NE16					
1.1			0957	990	82.8	73.0	63	8	2CuE25	6Cs	õ	ŏ		3	NE17					
	.e.		1059	000	83.3	74.3	66	8	2CuE25	6Cs	õ	ŏ		3	NE17					
	The second se		1158	990	83.1	74•4	66	8	2CuE25	6Cs	0	ō		3	NE15					
			1257	970	84.9	74.8	62	5	3CuE25	2Cs	0	ō		5	NE15					
			1359	940	84.4	74.2	62	5	3CuE25	2Cs	0	Ō		5	NE16					
	3		1458	925	84.7	74.1	61	8	1CuE25	7Cs	0	Ó		4	NE15					
			1557	910	82.9	75.2	70	7	1CuE25	6Cs	0	0		2	NNE15					
			1658	900	82.2	75.0	72	6	2CuE25	5Cs	0	0		3	NNE14					
			1755	885	82.0	74.2	70	6	2CuE25	6C s	0	0		3	NNE15					

A REAL PROPERTY AND A REAL

N. W. C.

2

A state of the sta

DATE	TIME	P	ΤT	TT_{W}	RH	N		OUDS AND OBSC mount-type-di			NO	DDFF	TIMES OF RAINFALL	DAIL	(Conti I SUMMA	
							1st Layer	2nd Layer	3rd Layer	4th Layer				$\mathbf{\tilde{T}_x^T}_x$	$\mathbf{T_n T_n}$	RR
1/26	1856	885	80.2	74.0	75	4	4CuE21	0	0	0	4	NE14				
	1958	890	80.0	74.0	75	3	3CuE21	0	0	0	3	NE16			×.	
	2055	900	79.8	73.6	75	2	2CuE21	0	0	0	2	NE16				
	2155	910	79.6	73.0	73	0	0	0	0	0	0	NE19				
	2256	910	79.4	72.5	72	0	0	0	0	0	0	NE20				
	2355	920	79.1	73.1	73	0	0	0	0	0	0	NE21		85	78	C
/27	0059	915	79.1	73.1	75	0	0	0	0	0	0	NE21				
	0158	905	79.0	73.0	75	0	0	0	0	0	0	NE22				
	0256	895	78.8	73.8	79	0	0	0	0	0	0	NE22				
	0359	885	78.8	73.8	79	0	0	0	0	0	0	NE20				
	0458	885	78.6	73.7	79	0	0	0	0	0	0	NE22				
	0556	870	78.8	73.8	79	0	1CuE25	0	0	0	0	NE22				
	0656	870	79.0	73.0	75	1	1CuE25	0	0	0	1	NE24				
	0757	870	79.0	72.0	71	1	1CuE25	0	0	0	1	ENE16				
	0859	875	80.0	72.0	68	1	1CuE25	0	0	0	1	ENE22				
	0958	890	81.8	72.4	64	1	1CuE25	0	0	0	1	ENE18				
	1058	895	83.3	74.2	65	1	1CuE25	0	0	0	1	ENE18				
	1159	905	84.4	74.0	61	1	1CuE25	0	0	0	1	ENE22				
	1257	880	83.4	73.4	62	l	1AcE80	0	0	0	l	ENE18				
	1358	855	83.4	73-4	62	1	1CuE25	0	0	0	1	E18				
	1459	840	83.1	74.1	63	3	1CuE25	2AcE80	0	0	3	E18				
	1557	825	83.4	73•4	62	3	3CuE25	0	0	0	3	E20				
	1658	825	82.9	72.9	63	8	1CuE25	7Cs	0	0	3	ENE16				
	1756	845	83.1	73.0	62	8	1CuE25	7Cs	0	0	3	ENE18				
	1859	850	80.1	71.9	67	8	1CuE25	7Cs	0	0	3	ENE14				
	1958	870	79.8	71.7	68	7	1CuE25	6C s	0	0	3	ENE16				
	2058	885	79.9	71.4	66	1	1CuE25	0	0	0	1	ENE16				
	2157	890	79.6	71.5	67	1	1CuE25	0	0	0	1	ENE18				
	2259	900	79.7	72.6	71	3	3CuE25	0	0	0	3	ENE16		0 1		
	2359	910	79.6	72.6	71	5	5CuE25	0	0	0	5	ENE16		84	79	
/28	0058	905	79.1	71.9	71	0	0	0	0	0	0	NNE16				
	0157	905	78.9	71.9	71	0	0 .	0	0	0	0	NNE16				
	0255	890	78.9	71.5	70	0	0	0	0	0	0	NNE16				
	0357	875	78.9	71.5	70	0	0	0	0	0	0	NE18	0120 0112			
	0458	870	78.0	71.7	73	2	2CuE21	0	0	0	2	NNE15	0438-0442			
	0555	865	78.0	71.6	73	2	2CuE21	0	0	0	2	NNE16				
	0657	870	78.0	71.6	73	1	1CuE25	0	0	0	1	NNE16				
	0758 0859	880	78.6	71.0	69 70	4	1CuE25 1CuE25	3Ci 3Ci	0	0	1	NNE14 NNE16				
the first	0859	890 905	79.7	72.2	62	4	1CuE25	201	0	0	-	E14				

1.1

2

(Continued)

104

DOG NEW TRANS

		2359	910	79.6	72.6	71	5	5CuE25	0	U 0	0	3					
	1/28	0058 0157	905 905	79.1 78.9	71.9 71.9	71 71	0 0	0 0	0	0	0 0	5 0	ENEI NNEI		84	79	0
		0255	890	78.9	71.5	70	ő	0	0 0	0	0	ŏ	NNEL	.¤ 6			
		0357 0458	875 870	78.9	71.5	70	Õ	0	õ	0	0	0	NNE1	.6			
		0555	865	78.0 78.0	71•7 71•6	73	2	2CuE21	0	õ	0 0	0	NEL				
		0657	870	78.0	71.6	73 73	2 1	2CuE21 1CuE25	0	0	õ	2 2	NNE1 NNE1		+2		
		0758 0859	880	78.6	71.0	73 69	1 4	1CuE25	0 3Ci	0	0	1	NNEL				
and the state of the	to to down	0958	890 905	79•7 82•1	72.2 72.1	70 62	4	1CuE25	3Ci	ŏ	0	1	NNEL				
		D.0577	910	\$2-2	12.0	62	4	1CuE25	Sin 3Cincin	0	Ô.	L L	NNE10		the second states of the second	and the literature	
	7.4	1 712D	à marai sanà	a la seconda da second	ala matana tanàna d	an set far an s	A 1	1	D DUD 20		le d'an						
	.ATE	1.042	,	77	בנג	325	3			OLEING PHENG				TUES OF		Continue	0
		م له 7 ه	•		•••	3 	-		mount-type-d	lrettige-cel		2	LT EA	CALSEALL		Taking t	
								lat Layer	254 iAyer	3rd Layer	uto Layer				11 A		
	1/28	1159	895	83.2	73.2	c.2	4	104E25	301	U .	L	1	212				
		1258 1357	865 835	84.2 85.0	72.2 73.5	56 58	4	101225 101225	301 201	ů C	с. -	1	20217 E14				
t-		1459	820	84.1	73.2	60	3	101825	201	ů ů	с С	1	214 E15				
		1557	800	84.1	73.2	60	3	10u£25	2 01	C	ĉ	1	E16				
2		1658	795	82.0 82.4	72.8	65 66	1 C	1ວນ <u>2</u> 25 ວັ	C O	C .	Ú.	1 0	ENEI4				
		1759 1856	800 810	80.5	73.6 72.7	69	C	C CACNE100	C C	C C	Č	č	E13 E13				
		1959	830	80.4	72.6	69	õ	C	õ	õ	C C	0	E14				
		2058	850	80.0	73.1	72	0	0	0 C	0	0	Û	E15				
		2159 2257	860 870	80 . 1 79 . 8	71.0 72.4	64 70	0 1	0 1CuE 25	0	0 0	0 0	0 1	E16 ENE15				
		2359	870	79•4	72.6	72	3	3CuE25	0	õ	0	3	ENE13		85	78	<u>.</u>
	1/29	0056	855	79.1	72.5	73	2	2CuE21	0	0	0	2	ENE15				
		0158	850	79 •2	73.1 72.8	75 74	2 2	2CuE21 2CuE21	0 0	0 0	0 0	2	E16				
		0255 0355	850 845	79 .1 78 .8	74 . 8	83	3	200E21 300E21	0	0	0	2 3	E16 E15				
۲		0458	845	78.8	74.6	82	2	2CuE21	0	0	0	2	E15				
105		0555	845	78.8	74.8	82	2	2CuE21	0	0 0	0	2	E14				
		0659 0758	845 850	79.0 79.3	74•5 74•8	81 81	3	2CuE21 3CuE21	60 s 0	0	0 0	2 3	E16 E18				
		0857	865	80.3	75.0	78	3	3CuE21	õ	õ	õ	3	E19)			
		0958	880	82.2	75.5	73	2	2CuE21	0	0	0	2	E15				
		1056 1156	885 865	82.1 82.8	75•5 75•0	73 70	2 2	2CuE21 2CuE21	0 0	0	0 0	2 2	E16 E13				
		1258	845	83.0	75.1	69	2	2CuE21	õ	õ	õ	2	E14				
		1359	815	85.1	77.0	70	2	1CuE21	1Ci	0	0	1	E14	+			
		1456 1559	795 770	84 . 8 84.3	77 . 1 77.6	73 74	2 3	1CuE21 3CuE21	1Ci 0	0 0	0 0	1 3	E12 E13				
5		1657	765	84•0	76.0	69	3	3CuE21	0	õ	0	3	Elé))			
		1759	790	84.0	76.0	69	3	3CuE25	0	0	0	3	ENELA	F			
1. A.		1858	800	81.3	75.2	75	3	2CuE25	1Ac 80	0	0	3	ENE15	5			
7.		1957 2059	810 820	80•5 80•5	75.0 75.0	81 81	3 2	3CuE25 2CuE25	0	0 0	0 0	3 2	E14 ENE14	•			
		2158	840	80.2	75.0	79	2	2CuE25	Ō	õ	ō	2	ENE16	>			
the second s		2257	840	80.2	75.0	79	2	2CuE25	0	0	0	2	ENEL	, , ,	05		0
por set me		2359	840	80.2	75.0	79	2	2CuE25	0	0	0	2	ENEL	1	85	79	0
	1/30	0058	840	78.3	73.0	77	4	4CuE25	0	0	0	4	NE12				
		0159 0257	840 830	77•4 77•1	73 . 2 73 . 0	83 83	4 2	4CuE25 2CuNE25	0 0	0 0	0 0	4 2	NNE12 NNE18				
		0358	820	77.2	73.1	83	2	2CuNE25	õ	ŏ	ŏ	$\tilde{2}$	NNEL				

PLACE: DATE	: FRED TIME	P	ТT	ТТ _w	HOURLI RH	Y OBS N	CL	ND DAILY SUM OUDS AND OBS mount-type-d	CURING PHENO	MENA	RY 8, N _O	1958 DDFF	TIMES OF RAINFALL	DAIL	<u>TAB</u> (Conti: (SUMMA)	
							lst Layer	2nd Layer	3rd Layer	4th Layer				$T_{\mathbf{x}}T_{\mathbf{x}}$	$T_n T_n$	RR
1/30	0456 0559 0659 0759 0856 0957 1056 1158 1259 1359 1456 1558 1658 1759 1857 1958 2059 2157 2258	810 800 810 825 840 850 845 825 805 765 765 765 765 765 800 810 815 830 815 830	77.2 76.8 76.9 78.0 79.1 81.2 83.1 84.2 85.0 84.6 85.8 85.3 84.0 85.8 85.3 84.0 80.8 80.8 80.0 80.2	73.4 74.7 74.7 69.8 75.0 76.8 78.6 78.6 78.6 78.6 78.0 78.1 78.2 78.0 76.5 76.0 76.5	850073058460036199984	118883255585222226	1CuNE25 1CuNE25 2CuE25 2CuE25 2CuE25 1CuE25 2CuE25	0 0 6Ac 80e 6Ac 80e 2Ac 80 0 1Ac 100 3Cs 3Cs 6Cs 3Cs 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	118552142232222226	NNE10 NNE11 ENE10 NNE8 ENE9 E10 E12 E8 E8 E10 E8 E8 E10 E8 E8 E10 E12 E12 E14 E14				
1/31	2359 0058 0159 0258 0356 0457 0559 0658 0757 0855 0959 1058 1159 1258 1358 1455 1558 1656 1756	855 855 855 850 8300 8005 810 8005 810 805 8455 8455 8455 8455 8455 7950 7800	80.2 80.3 80.1 79.6 79.5 79.4 79.8 80.2 83.5 83.9 83.5 83.9 83.5 84.3 82.6 83.9 83.6 83.6 83.6	76.5 76.2 76.1 75.8 75.6 75.3 75.6 75.2 75.2 75.2 76.2 76.2 76.2 76.2 76.2 76.2 76.8 78.4 77.8 76.9 76.9 76.9 76.0	84 84 83 83 83 83 83 83 83 83 83 83 83 83 83	8 8884222222245400333	8AcE80e 8Ac 80e 8Ac 80e 2CuE25 2CuE25 2CuE25 2CuE25 2CuE21 2CuE21 2CuE21 2CuE21 2CuE21 2CuE21 2CuE21 3CuE21 3CuE21 3CuE21 3CuE21 3CuE21	0 0 6Ac 80e 2Ac 80 1Ac 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			8 8 8 4 2 2 2 2 2 2 2 4 5 4 3 3 3 3 3	E15 E16 E14 E13 E14 E13 E14 E12 E13 E14 E14 E14 E14 E14 E14 E14 E14 E14 E14	1245-1250 1315-1321	86	77	C

. 3⁰.

.

....

20

50,

بر بر بربر س

DOF THE ME				
	107			
2/2	2/1	1/31	PLACI DATE	-
0057 0158 0259 0356 0458 0557 0658 0759 0858 0957 1059 1158 1259 1358 1458	0058 0157 0259 0357 0458 0559 0758 0856 0956 1058 1259 1356 1457 1558 1657 1756 1856 1958 2056 2159 2259 2358	2256 2356	E: FREI TIME	
870 860 855 845 845 845 845 850 870 905 905 885 870 840	845 830 815 775 810 830 850 870 885 860 840 805 825 840 805 825 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 855 840 845 855 840 845 855 840 855 840 855 840 855 840 855 855 840 855 855 855 855 855 855 855 855 855 85	850 845	р Р	855 845 835 825 795 780 780 790 810 825 830
78.3 79.1 78.0 78.0 78.8 79.4 79.4 79.7 80.3 78.1 80.2 80.1 80.1 80.3 81.7	79.9 79.8 79.8 79.8 79.8 79.8 79.8 80.0 80.2 82.0 81.6 83.0 84.2 84.3 84.4 84.4 84.4 82.2 84.4 80.3 80.4 80.0 78.3 78.3	80.0 79.9	TT	83.5 83.9 83.5 84.3 82.6 84.1 83.9 83.6 81.0 80.4 80.0 80.1
75.8 76.1 75.5 75.4 75.4 75.4 75.4 75.7 75.8 77.1 76.3 76.2 76.4 76.6	76.2 75.2 75.2 75.5 75.5 75.5 75.0 76.0 76.0 76.0 76.2 76.0 76.0 77.5 76.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75	76.0 76.2	тт	76.2 77.8 78.4 77.8 76.9 76.8 77.0 76.9 76.0 76.0 75.3 76.0
89 87 89 85 81 83 81 83 81 87 84 83 80	842 822 822 822 822 822 822 825 827 81 738 86 86 87 737 777 79 89 89	83 84		/0 71 76 80 75 78 72 73 74 80 80 80 83 83
2 8 8 10 8 8 8 5 5 9 9 9 9 8 8 8 8 8 8 5 5 9 9 9 9	3211002666673010111224307	4 4	ני סב: א	2 2 4 5 4 10 10 3 3 1 3 3 1 3 3
2CuE25 8CuE25e 8CuE25e 8CuE25e 8CuE25e 8CuE25e 3CuE25 3CuE25 3CuE25 1ScE15 1ScE15 1ScE15 1ScE15 2CuE25 2CuE25	3CuE25 2CuE25 1CuE25 1CuE25 0 0 2CuE25 6CuE21e 3CuE21 3CuE21 3CuE21 3CuE21 3CuE21 0 1AcE100 0 1CuE20 1CuE20 1CuE20 2CuE20 2CuE20 2CuE20 4CuE20 3CuE20 1OscE21e 2ScE21e		ىد ك	2CuE21 2CuE20 4CuE21 5CuE21 4CuE21 3CuE21 3CuE21 3CuE21 3CuE21 3CuE21 3CuE21 3CuE21 3CuE21 3CuE21 3CuE21 3CuE21
0 0 0 0 0 2Ac 80 2Ac 80 2CuE25 2CuE25 2CuE25 2CuE25 6Ac 80e 6Ac 80e	0 0 0 0 0 0 0 0 0 3AsE100e 1ScE25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		utte Mil ure	
0 0 Unknown 0 0 0 0 0 6Ac 80e 6Ac 80e 6Ac 80e 6Ac 80e 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	irection-hei 3rd Layer 0 0	CARY JANUARY	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ج ائد)	0
2881088855999988	3211002666673010111224307	4 4		222454333 371
ENE18 ENE20 ENE19 ENE16 ENE20 NE20 NE20	E20 E18 E18 E20 E16 E16 E16 E20 E20 E22 E16 E15 ENE16 ENE18 ENE16 ENE18 ENE16 ENE18 ENE16 ENE15 ENE18 ENE15 ENE18 E15 ENE21	E16 E20	LLEF	E14 E11 E14 ENE17 E16 E18 E18 E18 E18 F16
0157-0304 0355-0403 0927-0956 1025-1034	0814-0819 2245-2253 2258-2325	hainfall	TIPEL OF	1245-1250 1315-1321
	85	¹ x ¹ x 84		1
	78 (1 _n 1 _n	Continu Continu	
)• 04	hit T	a)	

										25 - FEBRUA					(Cont	
DATE	TIME	P	TT	TT_W	RH	N		OUDS AND OBS(mount-type-d:			NO	DDFF	TIMES OF RAINFALL	DAILY	r summ	ARY
							lst Layer	2nd Layer	3rd Layer	4th Layer			TRINCRED	$T_{\mathbf{x}}T_{\mathbf{x}}$	T _n T _n	RR
2/2	1559	825	82.9	75.6	72	8	2CuE25	6Ac 80e	0	0	8	NE22				
~/~	1658	820	82.6	75.0	71	8	3CuE22	7AsE70e	õ	õ	8	NE24				
	1755	825	82.0	75.0	72	8	3CuE22	7AsE70e	ō	õ	8	NE25				
	1859	830	81.2	74.5	73	6	2CuE22	6AcE70e	ō	ō	6	NE24				
	1958	825	80.0	73.2	72	2	2CuE22	0	õ	õ	2	NE24				
	2056	835	79.9	74.0	75	2	2CuE22	ŏ	ŏ	õ	2	ENE26				
		845	79.9	73.5	74	2	2CuE22	õ	ŏ	0	2	ENE20				
	2157							ŏ	0							
	2258	850	79.5	73.5	75	2	2CuE21		-	0	2	ENE24			64	0.0-
	2355	845	79•4	73•5	75	2	2CuE21	0	0	0	2	ENE23		83	78	0.05
2/3	0059	845	79•3	74.0	78	5	5CuE25	0	0	0	5	ENE22				
	0159	840	79.2	74.0	78	5	5CuE25	0	0	0	5	ENE24				
	0256	830	79.0	73.9	78	2	2CuE25	0	0	0	2	ENE24				
	0359	830	78.8	73.8	79	2	2CuE25	0	0	0	2	ENE24				
	0459	815	78.8	73.9	80	2	2CuE25	0	0	0	2	ENE21				
	0556	810	78.8	73.9	80	2	2CuE25	0	0	0	2	ENE18				
	0659	810	79.2	74.1	79	5	5CuE25	0	0	0	5	NE18				
	0759	825	79.4	74.6	80	8	2CuE25	6Ac 80e	0	0	8	ENE20				
	0858	850	79.9	74.8	79	3	3CuE25	0	0	Ó	3	ENE19	0818-0829			
	0959	860	80.4	75.0	78	8	6CuE25e	2Ac 80	ō	ō	8	ENE16	0942-0949			
	1058	870	82.3	76.6	77	8	6CuE25e	2Cs	õ	õ	8	NE18				
	1158	865	82.1	75.0	72	ĕ	2CuE25	6Cs	õ	õ	3	ENE17				
	1256	850	80.4	73.6	73	9	2CuE25	60 5	õ	0	9	ENE14				
					67		2CuE25	20 5	0	0		NE16				
	1358	825	84.1	75.4		4				0	4					
	1459	800	85.0	75.6	65	4	2CuE25	20s	0		4	NE16				
	1557	790	85.1	75.8	65	3	2CuE25	105	0	0	3	NE16				
	1658	785	83.0	75.3	70	8	4CuE25	6AcE70e	0	0	8	ENE16				
	1755	800	83.0	75.0	69	8	3CuE15	4ScE25e	2AcE70	0	8	ENE16				
	1858	810	81.0	74•5	74	3	3CuE22	0	0	0	3	ENE18				
	1958	825	80.2	74.2	76	2	2CuE22	0	0	0	2	ENE20				
	2956	835	80.0	74.0	75	3	2CuE22	1AsE100	0	0	3	ENE19				
	2156	845	79.6	75.0	81	3	2CuE22	1AcE100	0	0	3	ENE18				
	2258	840	79.4	74.0	78	3	3CuE22	0	0 2	0	3	E18				
	2355	850	79-4	74.0	78	3	3CuE22	0	0	0	3	E16		85	79	,
2/4	0059	855	79•4	74.0	78	3	3CuE25	0	0	0	3	E18				
, .	0159	855	79.3	73.9	78	2	2CuE25	0	Ó	0	2	E16				
	0256	845	79.2	73.9	78	5	5CuE25	0 . ·	õ	õ	5	E16				
	0355	840	79.0	73.7	78	10	5CuE25	100s	õ	õ	8	ENE14				
	0475															

DU

.

S R

.

	an a sharp a s	2258 2355 0059 0159 0256 0355 0459 0556 0657 0758	840 850 855 845 840 840 830 840 840	79.4 79.4 79.4 79.3 79.2 79.0 78.8 78.8 76.5	75.0 74.0 74.0 73.9 73.9 73.7 73.7 73.7 72.4	N. Marcine R.	3 3 3 2 5 10 10 10 10 9 9	SCur25	LASE100 LACE100 0 0 0 0 0 10Cs 10ASE80e Unknown 0	and the second second	O O O O Unknown Unknown	3 3 3 3 3 2 5 8 10 10	ENE2Q ENE1S ENE18 E18 E16 E16 E16 ENE14 ENE13 ENE13 ENE3		85		
	LATE	TIME	P	77	TIW	hin	ji Ji	314 (A B	uis ANI Cess punt-type-di	GAING PHENC rection-hei	HENA	بر ⊁ن		TIMES OF RAINFALL	LAILY	Contir COMMAN TnTn	nued) KY
	2/4	0859 0957 1058 1159 1258 1356 1459 1556 1759 1857 1958 2059 2156 2257 2358	860 880 885 875 850 815 805 775 770 775 770 775 790 800 810 815 835	76.0 79.4 78.5 81.9 84.1 83.0 83.4 81.1 80.6 80.3 80.0 80.1 79.9 79.8 79.7	74.0 75.0 75.5 76.9 77.1 76.0 75.4 75.0 76.1 76.1 75.2 75.1 74.8 75.1 75.8	91 82 87 80 73 69 75 82 80 79 81 83	10 50 988440 9442257	let Layer 8CuE25e 3CuE25 3CuE25 5CuE25e 6CuE25e 2CuE25e 2CuE25 2CuE25 4CuE25 4CuE25 4CuE25 4CuE25 2CuE25 2CuE25 4CuE25 2CuE25 4CuE25 2CuE25 7CuE25e	2nd Layer 2AsE80 2AsE100 7AsE80e 2AsE80 2AsE80 2AsE80 2AsE80 2AsE80 2AsE80 Unknown 7AcE80e 0 0 0	Unknown Unknown O O O Unknown O O O O O O O O O O O O O O O O O O O	Unknown O Unknown O O O Unknown O O O O O O O O O O O O O O O O O O	10 5 10 9 8 8 4 4 10 9 4 4 2 5 7	ENE15 E16 ENE14 ENE16 ENE18 ENE18 ENE15 ENE15 ENE15 ENE18 NE18 ENE18 ENE18 ENE18 ENE17 ENE16 NE16	0814-0901 1235-1241 1609-1614 1642-1645 1655-1709	*x*x 84	⁺n+n 76	0.03
109	2/5	0057 0158 0256 0358 0459 0555 0658 0757 0859 0957 1058 1159 1257 1358 1459 1558 1657 1758 1856 1957 2057 2158 2256 2357	835 830 820 810 805 780 780 780 780 790 815 830 815 790 790 790 790 790 790 810 810 820 825 825	79.8 80.0 79.8 79.5 79.5 79.9 80.3 82.1 82.1 82.1 83.0 84.0 84.2 84.0 84.2 84.1 82.3 80.4 79.9 80.0 79.9 80.0 79.9	75.2 75.0 74.8 75.0 75.2 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0	819795 81120822939662402119995	6803332333111111211152	2CuE25 2CuE22 2CuE22 3CuE22 3CuE22 3CuE22 3CuE22 3CuE22 3CuE22 3CuE22 3CuE22 1CuE22 1CuE22 1CuE22 1CuE22 1CuE22 1CuE25 1CuE25 1CuE25 1CuE25 1CuE25 1CuE25 2CuE25 2CuE25 2CuE25	6AcElOOe 8AcElOOe 1OAcElOOe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 Unknown 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Unknown 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	680332333111111211152	ENE16 ENE18 ENE20 ENE20 ENE20 E18 E16 E16 E16 E16 E17 E14 E14 E14 E19 ENE16 ENE16 ENE16 ENE16 ENE15 ENE15 ENE14 ENE16	0321-0326	84	79	Т

PLACE: DATE	FRED TIME	P	TT	TT _w	RH	N N		OUDS AND OBSC	URING PHENON	ENA	N _O	DDFF	TIMES OF RAINFALL	DAILY	(Conti SUMMA	-
		•					lst Layer	2nd Layer	3rd Layer	4th Layer				$\mathbf{x}^{\mathrm{T}}\mathbf{x}^{\mathrm{T}}$	$T_n T_n$	RR
2/6	0056	830	78.9	70.1	65	2	2CuE22	0	0	0	2	ENE15				
	0159	830	78.6	70.1	66	2	2CuE22	0	Ó	0	2	ENE14				
	0256	825	78.2	70.3	68	0	0	0	0	0	0	NE12				
	0358	820	78.8	71.6	70	7	2CuE22	7AcE100e	0	0	7	NE12				
	0459	820	77.0	72.0	79	10	3CuE22	10ScE55a	Unknown	Unknown	10	NE15				
	0555	815	77.8	72.4	77	8	3CuE22	8ScE50e	0	0	8	NE15				
	0659	820	77.9	73.0	79	10	2CuE22	4ScE50e	4AcE80	Unknown	10	NE14				
	0759	830	79.8	72.4	70	10	2CuE22	6ScE50e	2Ac 80	0	9	ENE12				
	0856	850	80.0	72.4	70	10	6ScE50e	4AcE80	Unknown	Unknown	10	NE15				
	0956	865	81.3	73.1	68	10	10ScE50e	Unknown	Unknown	Unknown	10	ENE16				
	1057	880	83.8	72.4	58	3	1CuE25	2Ac 80	0	0	3	NE12				
	1156	850	84.9	72.8	56	9	2CuE25	7AcE120e	0	0	9	NE16				
	1258	830	83.3	73.5	63	10	6CuE25e	4AcE120	0	0	9	ENE16				
	1358	800	84.9	73•7	59	3	1CuE25	2AcE120	0	0	3	ENE16	1309-1313			
	1456	770	85.0	73.0	57	1	1CuE25	0	0	0	1	NE16				
	1559	760	84.2	72.5	57	1	1CuE25	0	0	0	1	NE16				
	1658	760	83.2	72.2	59	1	1CuE25	0	0	0	1	E12				
	1759	785	83.2	71.0	55	1	1CuE25	0	0	0	1	ENE16				
	1859	785	81.2	70.2	58	1	lAcE80	OCi	0	0	1	ENE12				
	1958	795	80.0	71.0	64	1	1AcE100	0	0	0	1	ENE14				
	2059	795	79.8	71.8	68	0	0	0	0	0	0	ENE13				
	2158	795	79.0	71.7	73	0	0	0	0	0	0	ENE13				
	2257	800	79.0	71.7	73	2	1CuE25	1Ci	0	0	2	ENE14				
	2359	795	79.0	71.7	73	4	4CuE25	0	0	0	4	ENE14		85	77	Т
2/7	0057	795	79.1	71.8	70	5	5CuE25	0	0	0	5	NE14				
	0156	790	78.7	71.0	69	5	5CuE25	0	0	0	5	NE15				
	0258	780	78.4	71.3	71	5	5CuE25	0	0	0	5	NE14				
	0359	775	78.5	71.4	71	3	3CuE25	0	0	0	3	ENE12				
	0456	775	78.2	71.8	73	5	5CuE25	0	0	0	5	NE16				
	0558	780	78.3	71.6	72	3	3CuE25	0	0	0	3	NE15				
	0659	790	78.5	71.6	72	5	3CuE25	2AcE80	0	0	5	ENE20	0620-0628			
	0757	800	79.0	71.0	68	2	2CuE2O	0	0	0	2	ENE16				
	0856	810	81.5	72.0	63	2	1CuE20	1Ci	0	0	2	ENE16				
	0956	825	81.8	71.8	62	3	2CuE2O	1AcE80	0	0	3	ENE18				
	1056	830	82.8	72.8	62	3	2CuE20	1AcE80	0	0	3	ENE12				
	1156	820	82.8	72.8	62	- Á	4CuE20	0	0	0	Ĩ.	ENE16				
	1259	810	84.9	73.8	59	4	4CuE20	Ō	Ō	0	4	ENE16				
	1358	790	85.0	74.7	62	3	3CuE20	ō	ō	Ō	3	ENE16				
	1456	775	84.8	73.6	59	í.	4CuE2O	õ	ō	ō	4	ENE14				

•

011

COL STRUMPS

.

Sec. All to

ale Ca

	0856 0956 1056 1156 1259 1358 1456 1556 1657 1759	810 825 830 820 810 790 775 755 760 775	81.5 81.8 82.8 82.8 84.9 85.0 84.8 85.0 83.6 83.6	72.0 71.8 72.8 73.8 73.8 74.7 73.6 74.0 73.6 74.0 73.6	63 62 62 59 62 59 62 59 62 65	anti-anti-ta	1CuE20 2CuE20 2CuE20 4CuE20 4CuE20 3CuE20 3CuE20 3CuE20 2CuE20 2CuE20	. 1			2 2 3 3 4 4 3 4 3 3 3 3	ENE16 ENE18 ENE12 ENE16 ENE16 ENE16 ENE14 ENE14 ENE14 ENE14			10-11-11-11-11-11-11-11-11-11-11-11-11-1		
PLACE	I PRED							ND LAILY SURG			-				Conclu	(beh	
LATE	TIME	P	TT	IT _w	λH	2	(A	OUES AND OESC mount-type-di 2nd Layer	rection-hei	ght)	'nυ	LUFF	TIMEL OF RAINFALL		∵ommai T _n T _n		
2/7 2/8	1858 1957 2059 2158 2257 2359 0058 0156 0257 0356	780 785 790 795 795 795 800 790 780 770	79.4 79.6 79.4 79.2 79.2 79.2 78.8 78.6 78.8 78.6 78.8	74.0 73.0 74.0 72.8 72.8 72.8 72.8 71.9 72.0 72.1 71.6	78 73 78 74 74 72 73 73 73	2300323555	2CuE25 1CuE25 0 3Ci 2CuE25 3CuE25 5CuE25 5CuE25 5CuE25	0 2Ci 0 0 0 0 0 0 0 0 0			2 1 0 0 0 2 3 5 5 5 5	E12 ENE14 ENE15 ENE13 E12 E10 ENE14 ENE14 ENE14 E14 ENE12		85	78	Т	
Ħ	0458 0559 0659 0758 0856 0958 1055 1256 1356 1456 1559 1658 1756 1857 1959 2056 2159 2259 2356	770 775 800 815 820 760 725 760 725 750 750 750 750 760 770	78.4 78.3 78.0 78.9 80.2 82.5 83.2 83.0 84.0 83.7 83.2 83.0 84.0 83.7 83.2 83.0 81.3 80.2 80.0 79.3 79.0 79.0	71.9 71.2 71.6 69.9 71.8 72.5 73.0 74.2 74.9 74.2 73.5 74.0 74.0 74.0 74.0 72.3 71.5 73.4 73.5 73.5	, 73717447222664663256674556777 7777777777777777777777777777	3 5 8 10 10 10 10 10 10 10 10 10 10 0 0 0	3CuE25 3CuE25 2CuE25 2CuE25 2CuE25 2CuE22 2CuE22 3CuE22 1CuE22 1CuE22 1CuE22 1CuE22 1CuE22 1CuE22 1CuE22 1CuE22 1CuE22 1CuE22 1CuE22 0 0 0	0 3CsE 8CsE 10CsE 10CsE 10CsE 10Cs 10Cs 10Cs 10Cs 10Cs 4Cs 4CiE 3Ci 0 0 0 0 0 0			33323334222113210000	ENE13 ENE14 ENE15 ENE15 ENE15 ENE14 ENE16 E12 ENE14 E16 E14 E16 ENE15 ENE14 E16 ENE18 E16 ENE18 E16 E18		85	78	0	

DOI: M. MALS

PLACE:	FRED	RAWINSONDE	OBSERVATIONS,	JANUARY	25 - FEBRUARY	8, 1958	<u>:</u>
DAT	e time	LEVEL (mb.)	HEIGHT (m.)	TT (°C)	T _d T _d (°C)	RH	DDFF (m/s
1/2	5 0200	1015 1000 850 700 600 500 400 300 200 150 100	Surface 137 1549 3194 4459 5913 7633 9732 12465 14252 16614	27.0 25.6 19.0 10.8 2.2 -5.0 -16.9 -31.0 -54.2 -67.8 -74.2	22.6 22.0 11.1 MB MB MB MB MB	77 80 (13) (14) (15) (14) (20) 	50 - 60 - 60 - 60 - 60 - 60 - 60 - 60 -
	1130	1016 1000 850 700 600 500 400 300 200 150 100	Surface 146 1561 3207 4476 5935 7659 9767 12525 14329 16710	27.9 26.7 17.8 12.0 4.3 -3.5 -14.7 -29.9 -52.0 -65.6 -76.8	22.9 22.6 14.3 MB MB MB MB	74 78 80 (12) (13) (14) (16) (20) 	60 - 6 70 - 6 60 - 7 80 - 7 90 - 100 - 100 100 - 100 - 100 110 - 100 - 100 110 - 100 - 100
	2330	1015 1000 850 700 600 500 400 300 200 150 100	Surface 137 1550 3189 4461 5918 7644 9739 12473 14261 16636	26.9 25.9 16.5 12.0 4.1 -4.9 -15.6 -32.3 -53.2 -66.9 -75.9	22.1 21.3 13.1 MB MB MB MB MB	75 76 80 (12) (13) (15) (17) (20) 	60 - 60 - 80 - 90 - 90 - 120 - 120 - 120 - 120 - 120 -
1/26	, <u>1</u> 200	1016 1000 850 700 600 500 400 300 200 150 100	Surface 145 1546 3183 4456 5912 7638 9744 12470 14258 16622	25.4 24.6 14.2 11.0 -5.6 -15.0 -32.0 -53.9 -67.4 -77.5	19.1 18.5 8.7 MB MB MB MB 	67 69 70 (13) (15) (16) (20) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	2335	1013 1000 850 700 600 500 400 300 200 150 100	Surface 119 1528 3171 4445 5911 7646 9750 12493 14281 16636	27.3 26.1 16.8 10.8 5.1 -3.1 -14.6 -31.5 -53.5 -67.6 -81.1	22.3 21.6 10.9 MB MB MB MB MB	74 76 68 (13) (13) (14) (16) (20) 	50 - 50 - 76 - 50 - 120 - 70 - 110 - 140 - 130 - 120 - 120 - 130 - 120 - 1

nor shere

DOE NR. HUND

•

1958	TABLE	PLACE: FRE	D	RAWINSOND	E OBSERVATIONS	, JANUARY 2	5 - FEBRUARY	(8 , 1958	TABLE 20 (Continued)
RH	DDFF (m/s)	DATE	TIME	LEVEL (mb.)	HEIGHT (m.)	TT (°C)	T _d T _d (●C)	RH	DDFF (m/s)
77 80 (13) (14) (15) (14) 20) 	50 - 7 60 - 9 90 - 11 100 - 10 100 - 10 110 - 9 100 - 8 90 - 7 110 - 5 110 - 9 90 - 8	1/27	1210	1012 1000 850 700 600 500 400 300 200 150 100	Surface 111 1522 3161 4441 5918 7654 9763 12510 14306 16666	27.0 26.0 15.1 12.0 6.7 -1.5 -14.5 -30.5 -52.3 -67.1 -79.1	21.1 20.9 11.9 MB MB MB MB	70 73 81 (12) (13) (14) (16) (20) 	50 - 9 50 - 9 60 - 11 80 - 10 100 - 11 90 - 6 50 - 5 90 - 9 160 - 9 210 - 7 190 - 7
74 78 80 12) 13) 14) 16) 20) 	$\begin{array}{r} 60 - 9 \\ 70 - 10 \\ 150 - 6 \\ 60 - 7 \\ 80 - 8 \\ 90 - 12 \\ 110 - 10 \\ 100 - 9 \\ 100 - 11 \\ 110 - 9 \\ 120 - 9 \end{array}$		2340	1012 1000 850 700 600 500 400 300 200 150 100	Surface 111 1515 3155 4424 5890 7617 9720 12470 14262 16632	26.8 25.8 16.4 10.7 4.5 -2.6 -15.4 -31.1 -52.8 -66.1 -77.4	20.5 20.0 -0.7 MB MB MB MB MB	68 70 31 (13) (14) (14) (16) (20) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
75 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/28	1137	1013 1000 850 700 600 500 400 300 200 150 100	Surface 119 1526 3163 4444 5919 7649 9756 12508 14307 16683	26.7 25.9 14.4 13.4 7.2 -2.0 -15.0 -31.0 -52.3 -66.5 -76.6	18.9 18.6 9.5 MB MB MB MB MB	62 64 72 (12) (13) (14) (16) (20) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	40 - 9 40 - 8 40 - 9 60 - 4 50 - 4 110 - 8 160 - 11 90 - 9 120 - 12 110 - 7 80 - 5 50 - 8		2332	1011 1000 850 700 600 500 400 300 200 150 100	Surface 101 1506 3139 4414 5881 7663 9705 12445 14238 16607	$25 \cdot 7$ $24 \cdot 9$ $14 \cdot 4$ $6 \cdot 7$ $-3 \cdot 9$ $-16 \cdot 0$ $-31 \cdot 3$ $-53 \cdot 1$ $-66 \cdot 4$ $-73 \cdot 2$	19.4 19.4 12.3 MB MB MB MB	68 71 87 (13) (13) (14) (17) (20) 	70 = 8 60 = 9 90 = 12 110 = 4 60 = 11 60 = 8 100 = 11 80 = 6 310 = 6 310 = 6 350 = 6 140 = 9
) }	50 - 8 50 - 9 76 - 11 60 - 5 50 - 13 120 - 12 70 - 10 110 - 8 140 - 7 130 - 9 120 - 8	1/29	1135	1012 1000 850 700 600 500 400 300 200 150 100	Surface 111 1515 3149 4423 5895 7625 9728 12448 14228 16596	26.7 25.7 15.4 10.7 5.9 -4.2 -13.9 -32.5 -55.0 -67.6 -76.0	20.6 20.1 8.0 MB MB MB MB 	69 71 61 (13) (13) (14) (16) (20) 	90 - 10 90 - 10 90 - 8 70 - 3 30 - 9 20 - 11 60 - 9 50 - 5 40 - 3 20 - 9 260 - 5

PLACE:	FRED	RAWINSONDE	OBSERVATIONS,	JANUARY	25 - FEBRUARY	8, 1958	(Con
DATE	TIME	LEVEL (mb.)	HEIGHT (m.)	TT (°C)	^T d ^T d (°C)	RH	DDFF (m/s)
1/29	2359	1011 1000 850 700 600 500 400 300 200 150 100	Surface 102 1513 3152 4433 5900 7631 9742 12474 14268 16638	26.4 25.9 16.9 13.9 6.0 -3.5 -13.6 -31.3 -52.6 -66.2 -79.9	23.5 23.2 6.4 MB MB MB MB MB	84 85 50 (12) (13) (14) (16) (20) 	$\begin{array}{r} 60 - 8\\ 60 - 8\\ 70 - 4\\ 140 - 3\\ 20 - 7\\ 90 - 3\\ 60 - 2\\ 350 - 7\\ 240 - 7\\ 260 - 1\\ 350 - 1\end{array}$
1/30	1350	1011 1000 850 700 600 500 400 300 200 150 100	Surface 101 1514 3147 4422 5895 7627 9724 12456 14250 16623	25.3 24.8 17.9 12.7 -2.1 -14.7 -32.9 -58.0 -66.3 -77.0	21.7 21.2 4.2 -9.0 MB MB MB MB	80 80 21 (13) (14) (16) (20) 	100 - 5 $100 - 5$ $130 - 2$ $30 - 3$ $20 - 6$ $80 - 6$ $310 - 3$ $280 - 1$ $360 - 4$ $350 - 3$
	2342	1010 1000 850 700 600 500 400 300 200 150 100	Surface 94 1507 3141 4413 5877 7601 9700 12435 14227 16593	26.9 26.2 18.4 6.4 4.4 -3.9 -15.5 -32.5 -53.0 -69.3 -78.9	23.0 22.5 13.1 5.2 MB MB MB MB	79 80 71 92 (13) (14) (17) (20) 	70 - 7 70 - 7 110 - 3 60 - 2 60 - 3 40 - 6 10 - 5 320 - 5 260 - 1 230 - 1 280 - 3
1/31	1140	1011 1000 850 700 600 500 400 300 200 150 100	Surface 101 1495 3112 4378 5831 7536 9615 12323 14106 16468	24.3 23.3 14.1 11.0 3.4 -6.3 -17.7 -34.0 -54.9 -67.5 -79.3	18.5 18.7 8.8 MB MB MB MB MB	70 75 70 (13) (13) (15) (17) (21) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2/1	0100	1011 1000 850 700 600 500 400 300 200 150 100	Surface 102 1515 3158 4438 5910 7630 9717 12442 14229 16593	27.2 26.5 16.2 13.0 7.0 -3.4 -16.9 -32.5 -53.5 -67.3 -78.4	22.9 22.4 13.5 MB MB MB MB MB	77 78 84 (12) (13) (14) (17) (20) 	90 - 880 - 980 - 160 - 440 - 430 - 820 - 8310 - 4290 - 8280 - 1(270 - 12)

1

omit Tomo an andarolidation, meridan 🥻

1.44

W.

we at

, ,

DOF ARE REFE

.... TANTIADY OF 050

in

1958	TABLE :	PLACE: FRE	D	RAWINSONDE	COBSERVATIONS	, JANUARY 2	5 - FEBRUAR	r 8, 1958	TABLE 20 (Continued)
RH	DDFF (m/s)	DATE	TIME	LEVEL (mb.)	HEIGHT (m.)	TT (°C)	T _d T _d (∙c)	RH	DDFF (m/s)
84 85 50 (12) (13) (14) (16) (20) 	$\begin{array}{r} 60 - 8 \\ 60 - 8 \\ 70 - 4 \\ 140 - 3 \\ 20 - 7 \\ 90 - 3 \\ 60 - 2 \\ 350 - 7 \\ 240 - 7 \\ 260 - 13 \\ 350 - 11 \end{array}$	2/1	1200	1012 1000 850 700 600 500 400 300 200 150 100	Surface 111 1518 3155 4431 5894 7616 9719 12446 14230 16600	27.0 26.2 15.2 12.6 6.0 -4.2 -15.6 -31.2 -53.9 -66.8 -77.9	20.1 20.4 8.7 MB MB MB MB	66 70 65 (12) (13) (14) (17) (20) 	90 - 990 - 980 - 1080 - 550 - 1070 - 620 - 11310 - 5360 - 5230 - 1460 - 3
80 80 40 21 13) 14) 16) 20) 	100 - 5 $100 - 5$ $130 - 2$ $30 - 2$ $30 - 3$ $20 - 6$ $80 - 6$ $310 - 3$ $280 - 11$ $360 - 4$ $350 - 3$		2337	1012 1000 850 700 600 500 400 300 200 150 100	Surface 111 1520 3142 4409 5870 7596 9691 12411 14201 16574	25.9 25.0 16.3 7.0 4.7 -2.7 -15.3 -32.5 -53.7 -66.0 -79.6	23.0 22.6 16.2 MB MB MB MB	84 86 99 (13) (13) (14) (16) (20) 	$\begin{array}{r} 60 - 9 \\ 70 - 9 \\ 80 - 11 \\ 90 - 11 \\ 90 - 14 \\ 50 - 11 \\ 20 - 16 \\ 310 - 10 \\ 290 - 18 \\ 300 - 15 \\ 240 - 12 \end{array}$
79 30 71 13) 14) 17) 20) 	70 - 7 $70 - 7$ $110 - 3$ $60 - 2$ $60 - 3$ $40 - 6$ $10 - 5$ $320 - 5$ $260 - 13$ $230 - 10$ $280 - 3$	2/2	1200	1013 1000 850 700 600 500 400 300 200 150 100	Surface 118 1527 3167 4445 5902 7618 9713 12440 14243 16624	26.1 25.3 16.8 12.5 5.2 -4.8 -15.7 -32.7 -52.0 -65.4 -78.9	20.9 20.6 14.8 3.5 MB MB MB MB	73 75 88 54 (13) (15) (17) (20) 	50 = 10 50 = 11 80 = 14 100 = 11 80 = 12 40 = 15 20 = 13 10 = 15 290 = 26 320 = 15 360 = 6
0 5 0 3) 5) 7) 1 -	$\begin{array}{r} 80 - 7 \\ 80 - 7 \\ 90 - 6 \\ 50 - 6 \\ 110 - 3 \\ 40 - 7 \\ 360 - 7 \\ 330 - 6 \\ 260 - 7 \\ 240 - 13 \\ 230 - 6 \end{array}$		2340	1011 1000 850 700 600 500 400 300 200 150 100	Surface 102 1509 3149 4426 5886 7601 9678 12387 14176 16549	26.5 25.5 17.0 12.0 5.0 -4.8 -17.7 -34.2 -54.2 -65.8 -78.5	20.4 19.9 11.9 MB MB MB MB	69 71 72 (12) (13) (15) (17) (21) 	50 - 12 60 - 12 70 - 11 70 - 10 80 - 12 60 - 10 10 - 12 340 - 13 300 - 17 310 - 14 360 - 5
	90 - 880 - 980 - 1160 - 440 - 430 - 8310 - 4290 - 8280 - 10270 - 12	2/3	1200	1011 1000 850 700 600 500 400 300 200 150 100	Surface 102 1507 3145 4419 5880 7585 9652 12404 14208 16691	27.2 26.2 15.2 12.0 5.6 -5.7 -19.6 -32.0 -52.1 -65.9 -77.7	22.0 21.4 10.8 MB MB MB MB MB	73 75 75 (12) (13) (15) (17) (20) 	$\begin{array}{r} 60 - 8\\ 60 - 8\\ 70 - 12\\ 70 - 14\\ 60 - 12\\ 40 - 11\\ 360 - 11\\ 360 - 12\\ 360 - 15\\ 320 - 15\\ 320 - 15\\ 270 - 15 \end{array}$
				:		115			$b_{GU} \in \mathbb{Z}^{n \times M_{GU}}$

Acres 6 Carlo Carlos in the state of the second +

,

PLACE:	FRED	RAWINSONDE	OBSERVATIONS,	JANUARY	25 - FEBRUARY	8, 1958	
DATI	e time	LEVEL (mb.)	HEIGHT (m.)	TT (°C)	^T d ^T d (°C)	RH	(Cont DDFF (m/s)
2/3	2335	1011 1000 850 700 600 500 400 300 200 150 100	Surface 102 1507 3149 4424 5880 7585 9679 12427 14214 16572	26.3 25.6 16.9 13.2 3.9 -6.0 -18.9 -30.1 -53.9 -67.3 -77.5	21.6 21.3 -0.3 MB MB MB MB MB	75 77 31 (12) (13) (15) (17) (20) 	70 - 9 70 - 13 70 - 13 60 - 14 60 - 11 40 - 19 50 - 30 40 - 28 350 - 16 340 - 14
2/4	1144	1012 1000 850 700 600 500 400 300 200 150 100	Surface 111 1519 3155 4423 5875 7585 9690 12442 14242 16616	26.2 25.4 16.0 8.8 3.0 -5.2 -19.0 -29.9 -52.0 -65.6 -75.6	21.0 20.9 14.5 7.2 MB MB MB MB	73 76 91 89 (13) (15) (17) (20) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	2337	1009 1000 850 700 600 500 400 300 200 150 100	Surface 84 1496 3135 4407 5864 7574 9682 12428 14219 16577	26.3 25.9 15.9 12.4 3.0 -4.6 -18.0 -30.5 -53.5 -66.9 -79.9	22.2 22.0 13.9 MB MB MB MB	78 79 88 (12) (13) (15) (17) (20) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2/5	1140	1009 1000 850 700 600 500 400 300 200 150 100	Surface 84 1492 3139 4409 5869 7600 9725 12477 14280 16661	25.0 24.5 16.9 12.8 2.5 -3.2 -11.9 -29.4 -52.1 -65.2 -79.5	19.0 18.9 10.9 MB MB MB MB	69 71 68 (12) (13) (14) (16) (19) 	70 - 8 60 - 8 50 - 8 100 - 8 60 - 7 50 - 9 40 - 9 70 - 5 30 - 9 50 - 4 120 - 6
2/6	0200	1010 1000 850 700 600 500 400 300 200 150 100	Surface 93 1497 3141 4406 5866 7587 9692 12445 14238 16605	25.6 25.0 14.9 10.3 3.9 -5.0 -15.9 -31.1 -52.7 -66.5 -80.0	18.4 18.8 12.6 MB MB MB MB	64 68 83 (13) (13) (15) (17) (20) 	50 - 860 - 8110 - 850 - 650 - 670 - 260 - 6150 - 2150 - 4270 - 1350 - 5

116

DOF ARCHITS

1A

958	TABLE 3	PLACE: FRED		RAWINSONDE	OBSERVATIONS,	JANUARY 25	5 - FEBRUAR	7 8 , 1958	TABLE 20
H	(Continued) DDFF (m/s)	_ATE	TIME	LEVEL (mb.)	HEIGHT (m.)	TT (°C)	T _d T _d (°C)	RH	(Concluded) DDFF (m/s)
5 7 2) 8) 8) 8)	70 - 9 70 - 9 100 - 13 70 - 13 60 - 14 60 - 11 40 - 19 50 - 30 40 - 28 350 - 16 340 - 14	2/o	1138	1012 1000 850 700 600 500 400 300 200 150 100	Surface 111 1517 3154 4427 5890 7608 9710 12463 14259 16628	27.4 26.4 14.1 11.8 4.9 -5.0 -17.3 -30.0 -52.5 -67.1 -80.1	19.2 19.3 10.7 MB MB MB MB MB	61 65 80 (12) (13) (15) (17) (20) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2343	1009 1000 850 700 600 500 400 300 200 150 100	Surface 84 1487 3125 4394 5851 7570 9670 12400 14181 16530	25.9 25.2 17.0 10.4 5.2 -5.7 -15.2 -32.3 -54.6 -68.7 -79.7	19.8 19.4 3.0 MB MB MB MB 	69 70 39 (13) (13) (15) (16) (20) 	60 - 7 $60 - 8$ $80 - 9$ $60 - 8$ $60 - 8$ $80 - 4$ $180 - 1$ $270 - 5$ $250 - 8$ $310 - 5$ $330 - 4$
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2/7	1131	1010 1000 850 700 600 500 400 300 200 150 100	Surface 94 1501 3135 4407 5870 7595 9702 12444 14242 16612	26.5 25.7 15.2 11.3 5.7 -4.4 -14.4 -31.7 -52.9 -66.8 -79.3	20.1 19.7 7.5 MB MB MB MB MB	68 69 (13) (13) (14) (16) (20) 	60 - 8 60 - 8 70 - 11 60 - 11 30 - 4 40 - 4 100 - 2 280 - 8 270 - 9 330 - 7 340 - 4
	70 - 8 60 - 8 50 - 8 100 - 8 60 - 7 50 - 9 40 - 9 70 - 5 30 - 9 50 - 4 120 - 6		2345	1009 1000 850 700 600 500 400 300 200 150 100	Surface 84 1490 3130 4393 5849 7569 9671 12414 14204 16565	25.8 25.1 15.6 10.5 3.1 -5.0 -14.9 -31.0 -53.5 -67.8 -80.0	20.5 20.2 8.4 MB MB MB MB 	72 74 62 (13) (13) (15) (16) (20) 	70 - 7 70 - 7 70 - 11 40 - 12 30 - 6 360 - 2 310 - 3 290 - 13 310 - 12 300 - 10 300 - 6
	50 - 860 - 8110 - 850 - 650 - 670 - 260 - 6150 - 2150 - 4270 - 1350 - 5	2/8	1132	1010 1000 850 700 600 500 400 300 200 150 100	Surface 93 1496 3132 4404 5863 7586 9704 12463 14258 16621	26.0 25.2 15.0 11.7 4.0 -4.5 -15.5 -29.8 -53.5 -67.1 -88.2	18.8 18.7 11.0 MB MB MB MB 	64 67 77 (12) (13) (15) (15) (17) (20) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

117

DOE ARCHINES

· •

PLACE	BRUCE			THE	REE-HOUI	RLY OB	SERVA	rions,	JANUARY 25 -	FEBRU	ARY 8, 1958	TA
<u>Date</u> a	and Time	TT	TT W	^T x ^T x	T _n T _n	RRL	RRO	<u>N</u>	CIMH	FF3	DDFF	REMARKS
1/25	1200	84.5	77.5			0	0	ı	1Cu		NE 10-12	
.,	1500	85.0	78.0			0	0	3	3Cu	12	NE 8-10	
	1800	82.0	77.0			0	0	2	1Cu;1Ci	13	NE 8-10	
	2100	80.0	76.0			0	0	7	3Cu;5Ac;1Ci	12	NE 2-4	2100 rain in sight, E to S.
1/26	0000	79.0	74.0	86.0	79.0	0	0	0	(Cu)	14	NE 12-15	•••
	0300	79.5	74.5			0	0	0	(Cu)	13	NE 9-12	
	0600	79.0	73.5			0	0	0	(Cu)	15	NE 12-15	
	0900	80.5	74.5			0	0	6	6Cu;2Ci	16	NE 6-8	
	1200	83.5	74.0	83.5	78.5	0	0	4	4Cu;1Ci	13	NE 8-10	
	1500	82.0	76.0			0	0	7	6Cu;2Ac;1Ci	13	NE 9-12	Between 1500 and 1800 7/10 Ci.
	1800	82.0	75.5			0	0	4	3Cu;1Ci	10	NE 6-8	Between 1800 and 2100 5/10 Ac.
	2100	79.0	74.5			0	0	4	4Cu	12	E 10-12	
1/27	0000	79.0	73.0	85.5	79.0	0	0	2	2Cu	18	E 12-16	
	0300	78.5	72.5			0	0	2	2Cu	16	E 12-16	
	0600	78.5	73.0			0	0	1	1Cu	19	E 17-20	
	0900	80.5	73.0			0	0	0	(Cu)	18	E 17-20	0900 heavy swelling Cu NW.
	1200	84.0	76.0	84.0	78.0	0	0	4	1Cu;3Ac	17	NE 10-15	
	1500	84.0	76.0			0	0	3	2Cu;1Ci	13	NE 10-15	
	1735	81.5	73.5			0	0	6	1Cu;5Ci	13	NE 10-15	
	2035	79.0	73.5			0	0	-	•••••	13	NE 10-15	
2 /00	2335	79.0	72.5			0	0	4	3Cu;1Ci	14	NE 12-15	
1/28	0235	78.0	73.5			0	0	-	•••••	14	NE 10-12 NE 8-12	
	0535	78.0	73.5				0	-	••••••	13	NE 8-12 NE 8-12	
	0900 1200	80.0	71.5	07 0	70 0	0 0	ő	3	2Cu;1Ci 3Cu;1Ci	14 12	NE 10-15	
	1500	87.0	75.0	87. 0	78.0	ő	ŏ	4 2	2Cu	12	NE 8-12	
	1800	87.0	75.0			ŏ	ŏ	under		12	NE 8-12 NE 8-12	
	1900	82.0	73•5			U	U	1	01	34	NE 0-12	
	2100	79.0	72.0			0	0	ō		12	NE 8-12	
1/29	0000	78.0	72.5	87.5	78.0	0	0	-		13	NE 8-12	
	0300	78.0	73.5			0	0	-	•••••	10	NE 8-12	
	0600	78.0	73.5			0	0	-		12	NE 8-12	
	0900	80.5	75.0			0	Q	5	5Cu	11	NE 8-12	
	1200	86.0	79.0	86.0	77.0	0	0	1	1Cu	10	NE 10	
	1500	86.5	78.5			0	0	2	2Cu	10	NE 10-15	
	1800	82.5	76.0			0	0	3	3Cu	10	NE 10	
	2100	80.0	75.0			0	0	3	3Cu	8	NE 10-12	
1/30	0000	78.5	75.0	87.5	78.5	0	0	3	3Cu	14	NE 15	
	0300	78.0	75.0			0	0	-		12	NE 10	0300 cloudy, rain.
	0600	75.5	71.0			0	0	-	•••••	7	NE 5-10	0600 cloudy, rain.
	0900	82.0	76.5			0	0	4	2Cu;2Ac	3	NE 3-5	
	1200	86.0	79.0	86.0	75.5	0	0	7	5Cu;2Ci	5	NE 5	

TABLE 21

DOR MANNE

		1500 1800 2100 0000 0300 0600 0900 1200 1200 1500 1500	78.0 75.5 82.0	78.5 76.0 75.0 75.0 75.0 75.0 75.0 71.0 76.5 79.0 80.0 77.5 77.0	87.5 86.0	78.5		0 0 0 0 0 0 0 0 0 0 0 0	2 3 3 3 - - 4 7 5 4 4	2Cu. 3Cu.	10 10 8 14 12 7 3 5 6 5	an fan ar fan	0300 cloudy, rain. 0600 cloudy, rain.
		and Time	ጥጥ	ጥጥ						. JANUARY 25 -			7 <u>4114</u> .71 Continuet)
	Date	and Time	TT	TTW	$\frac{T_{\mathbf{x}}T_{\mathbf{x}}}{\mathbf{x}}$	$\frac{T_n T_n}{T_n}$	<u>hh</u> L		<u>n</u>	CIWH CIWH	FF3		
	1/31	0000 0300 0600 0900 1200	80.0 79.0 79.0 81.0 86.5	75.0 75.0 75.0 75.5 79.0	90.0 86.5	80.0 78.5		0 0 0 0	- - 2 7	2Cu. 7Cu;1Ac	10 10 10 10	NE 10 NE 10 NE 10 NE 15 NE 9**	0000 cloudy, Cu visible. 0300 cloudy. 0600 some clouds visible. 1406-1416 rain.
	2/1	1500 1800 2100 0000 0300 0600 0900 1200	78•5 79•0	79.0 76.0 76.0 74.5 75.0 74.5 75.0 75.0 75.0	87.0 84.0	79.0 76.0	0.05 0 0 0 0 0 0 0.07 0.01	0.03 0 0 0 0 0 0 0 0.06 0.02	5 3 3 3 - 9 1	5Cu;1Ac 3Cu 2Cu;7Sc 1Cu.	10 11 13 13 14 14 13 13	NE 9** NE 9** NE 11** NE 11** NE 11** NE 12** NE 12** NE 12**	0800-0900 intermittent rain. 0907 sun appeared. 0941-0945 and 0950-0953 rain.
	2/2	1500 1800 2100 0000 0300 0600 0900	85.0	77.5 75.0 73.5 75.0 74.5 75.0 75.0	86.0	76.5	0 0 0 T 0.16 0.01 0	0 0 0 T 0.13 0.02 0	1 1 2 10 7? 8	1Cu 1Cu 6Sc:4Ac	12 12 12 14 15 18 19	NE 11** NE 11** NE 12** NE 12** NE 12** NE 18** NE 18**	0230-0245 heavy rain with high winds. 0916-0940 rain. 0940-1015 intermittent shwr.
119	2/3	1200 1500 1800 2100 0000 0300 0600 0900 1200	81.0 82.0 80.5 79.0 78.5 78.5 76.5 78.5 80.0	77.0 75.5 75.0 73.0 73.0 74.0 73.0 73.0 73.0 73.0 73.0	81.0 82.5 80.0	76.0 78.5 -75.5	0.10 0.01 0 0 0 0 0.01 0.02 0.01	0.10 0.01 0 0 0 T 0.02 0.01 0.02	10 10 10 1 6 8 10? 3 8	9Cu;(Ci) 10Cu;1Ci 10Cu;1Ci 1Cu 6Cu 8Cu 3Cu 8Cu	18 18 20 20 19 19 16 14 14	NE 19* NE 15* NE 19* NE 17* NE 19* NE 17* NE 12* NE 11* NE 17*	<pre>1120-1125 rain. 1200 light shwr. 1240-1250 light rain and gusty. 2100 moonlight. 0300 moonlight. 0555-0600 rain. 0650-0700 rain. 0940-0950 rain. 1200 light shwr. 1205-1210 light shwr.</pre>
DOF N	2/4	1500 1800 2100 0300 0600 0900 1200	81.5 80.5 76.5 78.0 78.0 79.0 76.5 80.0	75.0 75.0 73.0 73.5 74.0 74.5 74.5 77.0	82.0 80.0	76.0	0 0 0 0 0.14 T	0 0 0 0 0 0.13 T	0 6 9 2 3 10 10 6	(Cu)	15 15 14 13 11 11 11	NE 14* NE 14* NE 9* NE 10* NE 8* NE 10* NE 12* NE 10	2045-2048 light shwr. 2100 moonlight. 0000 moonlight. 0300 moonlight. 0600 cloudy, light shwr. 0620-0630 rain. 0708-0715 rain. 0740-0845 intermittent shwrs. 0900 hazy sun. 1111-1117 rain.
DOE NECHINES	2/5	1500 1800 2100 0000 0300 0600 0900 1200	80.0 79.0 79.0 79.0 79.0 79.0 80.0 85.0	74•5 74•0	81.5 85.0	79.0	TOOOOOO OOOOOC	TOOOOCO C	7 6 1 8 9 5 4 3	6Sc;2Ac 5Sc;2Ac 20u;3Ac 30u.	13 13 16 13 14 15 14 14	NE 14 NE 15 NE 12 NE 10 NE 12 NE 14 NE 14 NE 12	1800 shwrs over lagoon SW to W. Much of the day shwrs were apparently passing N of Bruce as evidenced by clouds and short period when a few drops were felt.

and the second secon

PLACE	BRUCE			THE	REE-HOU	RLY OB	SERVAT	IONS,	JANUARY 25 -	FEBRU	ARY 8, 1958	TABLE 21 (Concluded)
Date a	and Time	TT	TT _w	$\frac{\mathbf{T}_{\mathbf{x}}\mathbf{T}_{\mathbf{x}}}{\mathbf{T}_{\mathbf{x}}}$	$\frac{T_nT_n}{T_n}$	$\underline{\text{RR}}_{\underline{L}}$	RRO	<u>N</u>	CIWH	FF3	DDFF	REMARKS
2/5	1500	85.0	75.0			0	0	2	2Ac	12	NE 12	
	1800	82.0	74.5			0	0	3	3Cu	15	NE 12	
	2100	78.5	73.0			0	0	3		12	NE 9	
2/6	0000	78.0	72.0	85.5	78.0	0	0	3		13	NE 10	
	0300	77.5	72.5			0	0	3		11	NE 10	
	0600	78.0	72.5			0	0	10		12	NE 10	
	0900	79.0	72.0			Т	Т	10	10Cu	12	NE 8	
	1200	84.5	75.0	84.5	76.5	0	0	9	9Cu	12	NE 10	
	1500	84.0	74.5			0	0	0	(Cu)	15	NE 10*	
	1800	83.0	78.0			0	0	0	(Cu)	12	NE 10	
	2100	79.0	73.5			0	0	1		12	NE 10*	
2/7	0000	77.5	72.5	84.5	77.5	0	0	10	2Cu;8Ci	11	NE 12*	0000 moonlight.
	0300	78.0	72.0			0	0	2	2Cu	14	NE 10*	0300 moonlight. 0430-0435 light rain.
	0600	78.0	72.5			0.01	0.01	4	4Cu	13	NE 14*	0600 moonlight. 0630-0632 light rain.
	0900	78.5	71.5			0	Т	l	1Cu	11	NE 8*	
	1200	83.0	74.0	83.0	76.0	0	0	5	5Cu	14	NE 10	1230 well developed Cb to NW.
	1500	85.0	75.0			0	0	5	5Cu	11	NE 10	
	1800	81.5	75.0			0	0	2	2Cu	12	NE 10	1800 shwr line E to SE. 1830-1835 light shwr.
	2100	78.5	73.0			Т	т	2	2Cu	12	NE 12	
2/8	0000	78.0	72.5	85.5	78.0	0	0	7	7Cu	11	NE 9	
	0300	77.5	72.5			0	0	8	8Cu	10	NE 10	
	0600	78.0	72.0			0	0	5	5Cu	11	NE 10	
	0900	80.0-		80.0	77.5	0	0	9	4Cu;5Ci	12	NE 12	

DOF BRUNNYS

.

PLACE: Indde

10 58 of 10 10

BUCKLY SELATION HOMITTIES, AN ANY ANY - FEBRUARY 8, 14584

1	÷	3	z .	,	٠,
~	•		4.		

and the second second

	HOUR:	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100 2	2200 :	2300 :	2400
	DATE																								
	1/25												71			74			80			84			79
	1/26			79			77			76			64			76			74			81			75
	1/27			75			77			72		~-	69			69									
	1/28							+ -	,	67			57			57			73			71			77
	1/29			82			82	- -		78			75			68			74			79			82
	1/30			84			82			78			74			71			75			87			79
IST	1/31			83			83			78	71	72	72	66	98	77	72	74	74	82	84	87	85	82	81
	2/1	85	84	83	84	83	83	80	81	83	83	80	66	65	66	72	73	74	76	77	77	77	81	84	87
	2/2	88	95	93	93	90	83	82	81	80	81	82	84			74			78			76		~-	77
	2/3			81			85			77			80			74		~-	78			85			81
	2/4			83			81			91			87	90	88	83	84	86	87	82	84	81	84	85	83
	2/5	82	82	83	86	84	81	80	79	76	70	66	67	6 2	64	63	66	69	70	76	77	77	77	76	75
	2/6	76	77	79	81	76	77	77	75	71	72	62	64	54	62	64	65	70	80	82	81	77	82	83	79
00	2/7	81	81	75	80	82	77	79	74	71	70	68	66	65	64	63	69	72	74	76	76	77	77	77	77
1.2.	2/8	77	78	79	77	76	75	74	74	72															
DOLYNROUMES					delaj as si		recei	ot of	hygr	other	mograj	ph and	i mali	funct	io nin	g for	a br	ief p	eri o d	, the	hour	ly rec	ord i	.5	

PLACE: BRUCE AND KEITH SPECIAL OBSERVATIONS, JANUARY 28, 1958

•

7

TA

LOCATION	WATER DEPTH	NO. OF MEASUREMENTS	TT _s * (°C)	TT _s (mean in °l
Lagoon, $\frac{1}{2}$ ft. from shore	2 in.	5	4 - 26.2; 26.1	79.1
Lagoon, 5 ft. from shore	l ft.	6	5 - 26.2; 26.3	79•2
Lagoon, 8 ft. from shore	2 ft.	5	3 - 26.2;	79•2
Lagoon, 5 yds. from shore	3 ft.	5	$\frac{2}{4} - 26.3$ $\frac{4}{4} - 26.3$; 26.2	79•3
Lagoon, 6 yds. from shore	4 ft.	5	5 - 26.3	79•3
Lagoon, 8 yds. from shore	5 ft.	5	<u>3</u> - 26.4; <u>2</u> - 26.3	79•4
Ocean, $\frac{1}{2}$ ft. from shore	2 in.	5	<u>3</u> - 24.0; 23.9; 24.1	75•2
Ocean, 3-4 yds. from shore	6 in.	5	<u>3</u> - 25.5; 25.6; 25.7	78.0
Ocean, 25 yds. from shore	l in.	5	26.4; <u>3</u> - 26.5; 26.6	79•7
Ocean, 50 yds. from shore	2 in.	5	<u>5</u> - 26.7	80.1
Ocean, 75-100 yds. from shore 20 yds. from edge of n		5	<u>5</u> - 26.7	80.1
RUCE 1400-1515				
Lagoon, $\frac{1}{2}$ ft. from shore	2 in.	5	<u>2</u> - 27•4; <u>3</u> - 27•5	81.4
Lagoon, 5 ft. from shore	l ft.	5	$\frac{5}{4} - 27.3$; 27.4	81.2
Lagoon, 7 ft. from shore	2 ft.	5	5 - 27.3	81.1
Lagoon, 10 ft. from shore	3 ft.	5	<u>4</u> - 27.2;	80.9
Lagoon, 3 yds. from shore	4 ft.	5	$27.1 \\ \underline{2} - 27.1; \\ \underline{3} - 27.2$	80•9
Lagoon, 7-8 yds. from shore	5 ft.	5	$\frac{2}{2} - 27.2$ $\frac{2}{2} - 27.0$; $\frac{3}{2} - 27.1$	80•7
Ocean, in tidal pool at shore	1-2 in.	5	<u>3</u> - 32.3; 32.4; 32.5	90•2
Ocean, in tidal pool at shore	e 3 in.	5	31.4; 2 - 31.5; 2 - 31.6	88.7
Ocean, 10 yds. from shore	6 in.	5	28.0:	82.8
Ocean, 25 yds. from shore	6 in.	5	$\frac{2}{2} - 28.1;$ $\frac{2}{2} - 28.3;$ $\frac{3}{2} - 27.7;$ $\frac{2}{2} - 27.8;$	81.9
Ocean, 50 yds. from shore	6 in.	5	<u>3</u> - 27.5; 27.6; 27.7	81.6

DOE VERINES

TABLE 7	ER BR	UCE AND KEITH SPE	CIAL OBSERVATI	ONS, JANUARY 28,	, 1958	TABLE
						(Concluc
TT _s n in °F.)	LUCATION		WATER DE P TH	NO. OF MEASUREMENTS	TT _s * (•C)	TT _s (mean in °F.)
79•1 79•2	si si	bout 100 yds. from hore; 10 yds. from dge of reef	l ft.	5	27.0; $\frac{2}{2} - 27.1;$ $\frac{2}{2} - 27.2$	80.8
79.2						
79•3	EITH 1520-	-1550				
79•3	LOCATION			HEIGHT	TT	TT
79•4	Lagoon si of beach	ide, on open ridge at h, about 20 yds. from	upper end water	5 ft.	83.0	74.0
75.2	Among coo 10 yd s .	conut trees, 50 yds. from open lagoon bea	NW of tent, ch	5 ft.	81.5	72.0
78.0						
75.2 78.0 78.10 79.7	Among Pis yds. WNw beach ar	sonia, ocean side of V of tent, halfway be nd path	path, 150 tween ocean	5 ft.	87.0	75.0
30 . 1		edge of ocean beach, from water	about	5 ft.	84.0	75.0
1 52 F						
81.4 0 mm a m	Thus:	rlined values show nu : <u>3</u> - 26.4 indicates	mber of observa 3 readings of	ations at same t 26.4°C.	emperature readi	ng•
	Thu s: <u>KEITH, JANU</u>	: <u>3</u> - 26.4 indicates JARY 27	3 readings of	26.4°C.		
1.2 For a second	Thu s: <u>KEITH, JANI</u> TIME	: <u>3</u> - 26.4 indicates JARY 27 LOCATION	3 readings of WATE	26.4°C. R DE P TH	NO. OF MEASUREMENTS	TT ** (•C)
	Thu s: <u>KEITH, JANI</u> TIME U730	: <u>3</u> - 26.4 indicates JARY 27 LOCATION Lagoon surface wat	3 readings of WATE er 1-2	26.4°C.	NO. OF	TT - **
0.9	Thu s: <u>KEITH, JANI</u> TIME	: <u>3</u> - 26.4 indicates JARY 27 LOCATION	3 readings of WATE er 1-2	26.4°C. R DE P TH	NO. OF MEASUREMENTS	TT ** (•C)
0.9 t	Thu s: <u>KEITH, JANI</u> HE U730 1420	: <u>3</u> - 26.4 indicates <u>JARY 27</u> LOCATION Lagoon surface wat Ocean side of reef surface water	3 readings of WATE er 1-2	26.4°C. R DEPTH 2 ft.	NO. OF MEASUREMENTS 3	TT s** (*C) 25.0
)•9)•7	Thu s: K <u>EITH, JANI</u> HE U730 L220 <u>KEITH, JANI</u>	 <u>3</u> - 26.4 indicates <u>JARY 27</u> LOCATION Lagoon surface wat Ocean side of reef surface water <u>JARY 28</u> 	3 readings of WATE er 1-2	26.4°C. R DEPTH 2 ft. ft.	NO. OF MEASUREMENTS 3 3	TT ** (°Č) 25.0 30.0
)•9)•7	Thu s: <u>KEITH, JANI</u> HE U730 1420	 2 - 26.4 indicates JARY 27 LOCATION Lagoon surface wat Ocean side of reef surface water JARY 28 Lagoon, successive water readings ou 	3 readings of WATE er 1-2 , 1 surface 1-1;	26.4°C. R DEPTH 2 ft.	NO. OF MEASUREMENTS 3	TT *** (*C) 25.0
0.9 0.7 0.2 3.7	Thu s: KEITH, JANI 1 IME 0730 1420 KEITH, JANI	 2 - 26.4 indicates JARY 27 LOCATION Lagoon surface wat Ocean side of reef surface water JARY 28 Lagoon, successive 	3 readings of WATE er 1-2 , 1 surface 1-1;	26.4°C. R DEPTH 2 ft. ft.	NO. OF MEASUREMENTS 3 3	TT *** (°C) 25.0 30.0
0.9 0.7 0.2 3.7 2.8 1.9	Thus: KEITH, JANI TIME U730 L420 <u>KEITH, JANI</u> 1415	 2 - 26.4 indicates JARY 27 LOCATION Lagoon surface wat Ocean side of reef surface water JARY 28 Lagoon, successive water readings ou 	3 readings of WATE er 1-2 , 1 surface 1-1; t to 50	26.4°C. R DEPTH 2 ft. ft.	NO. OF MEASUREMENTS 3 3	TT ** (°Č) 25.0 30.0
0.9 0.7 0.2 8.7 2.8	Thus: KEITH, JANI TIME U730 L420 <u>KEITH, JANI</u> 1415	 2 - 26.4 indicates JARY 27 LOCATION Lagoon surface wat Ocean side of reef surface water JARY 28 Lagoon, successive water readings ou yards from shore 	3 readings of WATE er 1-2 , 1 surface 1-1; t to 50	26.4°C. R DEPTH 2 ft. ft.	NO. OF MEASUREMENTS 3 3	TT ** (°Č) 25.0 30.0
0.9 0.7 0.2 3.7 2.8 .9	Thus: KEITH, JANI TIME U730 L420 <u>KEITH, JANI</u> 1415	 2 - 26.4 indicates JARY 27 LOCATION Lagoon surface wat Ocean side of reef surface water JARY 28 Lagoon, successive water readings ou yards from shore 	3 readings of WATE er 1-2 , 1 surface 1-1; t to 50	26.4°C. R DEPTH 2 ft. ft. ½ ft.	NO. OF MEASUREMENTS 3 3	TT *** (°C) 25.0 30.0
0.9 0.7 0.2 3.7 2.8	Thus: KEITH, JANI TIME U730 L420 <u>KEITH, JANI</u> 1415	 2 - 26.4 indicates JARY 27 LOCATION Lagoon surface wat Ocean side of reef surface water JARY 28 Lagoon, successive water readings ou yards from shore 	3 readings of WATE er 1-2 , 1 surface 1-1; t to 50	26.4°C. R DEPTH 2 ft. ft.	NO. OF MEASUREMENTS 3 3	TT *** (*C) 25.0 30.0 28.5

ate a	and Time	TT	TT _w	$\mathbf{T}_{\mathbf{x}}^{\mathrm{T}}\mathbf{x}$	$\underline{T_n T_n}$	RR	N	CIWH	FF3	DDFF	REMARKS
/25	1200						2	2Cu		E 8-1 0	
,,	1500	85.0	77.5			0	3	3Cu	16	E 10-12	
	1800	82.0	76.5			Ó	- 4	4Cu;1Ci	16	E 8-10	
	2100	80.0	76.0			Ō	6	3Cu;3Ac	16	E 10-15	2100 moonlight.
/26	0000	79.5	75.0	86.0	79.5	0	_	•••••	18	E 10-15	
	0300	79.0	74.0			0	-		14	E 10-15	
	0600	79.0	73.5			0	3	3Cu	18	E 10-15	
	0900	80.0	73.0			0	8	4Cu;7Ci	16	E 10-15	
	1200	83.5	75.0	83.5	78.5	0	4	4Cu;1Ci	17	E 10-15	
	1500	83.0	74.5			0	8	4Cu;3Ac;4Ci	15	E 10-15	
	1800	80.5	74.0			0	4	3Cu;2Ci	14	E 10-15	
	2100	80.0	73.5			0	4	4Cu	14	E 10-12	2100 moonlight.
/27	0000	79.0	73.5	84.0	79.0	0	_		18	E 10-15	
	0300	77.5	73.5			Т	-		16	E 10-15	0255-0305 light shwr.
	0600	79.0	73.0			Т	5	5Cu	19	E 10-15	
	0900	80.0	73.5			0	3	2Cu;1Ci	20	E 10-15	0900 towering Cu NE.
	1200	82.0	73.5	82.0	76.5	0	ĩ	Cu,Sc,Ci	25	NE 17*	
	1500	84.0	74.5			0	1	Cu,Ci	18	NE 17*	
	1800	81.0	73.0			0	8	(Cu);8Cs	17	NE 17*	
	2100	79.0	72.0			0	2		17	NE 12	
/28	0000	79.0	72.0	84.0	79.0	0	2	2Cu	18	NE 15	
•	0300	78.0	73.0			0	2	2Cu	17	NE 15	
	0600	78.0	72.0			0	2		17	NE 10-12	
	0900	80.0	72.0			Q	4	(Cu);4Cs	16	NE 16*	
	1200	84.0	75.0	84+0	78.0	0	l	1Cu,Ci	15	NE 10*	
	1500	84.0	74•5			0		er(Cu,Ci)	17	NE 15*	
	1800	81.5	73.0			0	0		14	NE 12*	1800 two thin streaks Ci to N.
	2100	79•5	71.5			0	unde 2	er	13	NE 8*	2100 sky at least .8 clear.
/29	0000	79.0	73.5	85.5	79.0	0	2-1	- Gu,Ci?	14	NE 10	
	0300	78.5	73.5			0	-		15	NE 10	0300 some Cu.
	0600	78.0	74.0			0			13	NE 8-10	0600 some Cu.
	0900	80.0	74.5			0	3	3Cu	13	NE 12*	
	1200	85.5	76.0	85.5	78.0	0	5	4Cu;2Ci	11	E 8-1 0	
	1500	87.0				0	2	2Cu	12	E 8-10	
	1800	83.0	76.0			0	4	4Cu;1Ci	12	NE 6-8	
	2100	80.0	75.0			0	ġ	3Cu	14	NE 10-12	2 2100 moonlight.
/30	0000	80.0	75.0	87.0	80.0	0	6	6Cu	16	NE 8-10	0000 moonlight.
	0300	77.5	74.5			0	-		11	NE 8-10	-
	0600	78.0				0	-	••••	14	NE 8-10	
	0900	80.0	73.5			0	7	2Cu;7Cs	7	NE 8-10	

in. Si

ᅽ

DOE ARCHIVES

	1/30	1200 1500 2100 0000 0300 0600 0900 1200 1500 1800	85.5 87.0 83.0 80.0 80.0 77.5 78.0 80.0 87.5 88.5 88.5 84.0	76.0 76.5 76.0 75.0 75.0 75.0 74.5 75.0 73.5 79.0 78.0 78.0 77.0	85.5 87.0 87.5 	78.0 		52436 7544	4Cu;2Ci 2Cu. 4Cu;1Ci 3Cu. 6Cu. 2Cu;7Cs. 2Cu;4Ci. 1Cu;2Ac;2Ci 4Cu.	11 12 12 14 16 11 14 7 7 7 9	NE 8-10 NE 8-10 NE 8-10 NE 8-10 NE 6-8 NE 6-8	2 2100 moonlight. 0000 moonlight.
	PLACE	: KEITH						SERV	ATIONS, JANUAR			8, 1958 TA <u>tta 25</u> (- 98.1 Trinet)
	Date a	and Time	TT	TTw	$\mathbf{\underline{T_{\mathbf{x}}^{T}\mathbf{x}}}$	T_nT_n	RR	N —	CIWH	FF3	DDFF	йЕМА́кКС
	1/30 1/31	2100 0000 0300 0600 0900	81.0 80.5 79.0 79.0 81.0	76•5 76•5 76•0 75•5 76•5	89.0	80.5	000000	5 - - 3 2	3Cu;3Ci 3Cu;1Ci 3Cu.	11 13 13 11 12	E 10-15 NE 8-10 NE 8-10 E 8-10	2100 moonlight. 0000 cloudy. 0300 cloudy.
	2/1	1200 1500 1800 2100 0300 0300 0600 0900 1200 1500	86.5 87.5 82.0 79.5 79.0 78.0 77.5 78.0 84.0 85.0	79.0 80.5 77.5 75.5 74.5 75.5 75.5 75.0 76.5 75.5 75.5	86.5 87.5 84.0	78•5 79•0 75•5	0 T 0 0 0.06 T 0.04 0	5833303830	5Cu	14 12 13 15 17 15 15 18 16 14	NE 11* NE 11* NE 10* NE 12* NE 14 E 10* NE 11* N 11* NE 12*	1200 Cu moving from NE. 1202-1204 shwrs. 1355-1356 shwrs. 1411-1414 shwrs. 1500 Cu moving from NE. Rain to NW. 1506-1509 shwrs. 1800 cloud moving from NE. 2100 cloud moving from NE. 0205-0210 shwrs. 0300 rain to N. 0600 cloud moving from NE. 0830-0840 shwrs. 0600 rain to W. 0938-0944 shwr. 1011-1014 shwr. 1121-1126 rain.
	2/2	1800 2100 0000 0300 0600	81.0 79.0 77.0 75.0 79.0	76.0 76.0 76.0 72.5 75.0	86.5	77.0	0 0 T 0.04 0.08	0 2 10 10 10	(Cu) 2Cu 6Cu;2Ci;4Ac 10Cu 10Cu	17 15 17 18 22	NE 13* NE 13 NE 14 E 16 E 18*	2300-0800 intermittent shwrs. 0600 raining.
125	2/3	0900 1200 1500 1800 2100 0300 0300 0600 0900 1200 1500 1800	79.5 78.0 82.0 81.0 79.5 79.0 79.0 78.5 79.5 82.0 82.5 81.0	75.0 75.0 75.5 75.5 74.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0 75.5 75.0 75.0	80.0 82.5 82.0	75.0 76.0 77.0	T 0.02 0.01 0 0 0 0 0 0 0 7 0.02 0 0	690932345528	3Cu;2C1;3Ac 4Cu;5C1;4Ac 4Cu;10Cs 3Cu;5C1;6Ac 3Cu 2Cu 3Cu:3Ac 3Cu;3Ac 3Cu;3Ac 3Cu;2Ac 3Cu;2Ac 3Cu;2Ac	23 22 20 23 25 24 19 22 18 19 16 16	E 21* NE 24* NE 21* NE 22* NE 19* NE 20* NE 20* NE 20* NE 19* NE 16* NE 14*	<pre>1155-1206 rain. 1200 raining. 1235-1245 rain. 1315-1320 rain. 2100 moonlight. 0300 moonlight. 0300 moonlight. 0630-0635 rain. 0655-0700 rain. 0725-0735 rain. 0900 towering Cu to N. 1025-1038 rain.</pre>
	2/4	2100 0000 0300 0600 0900 1200	79•5 79•0 79•0 79•5 76•5 79•0	74•0 74•0 74•5 74•0 74•5 76•0	83.5 80.5	79.0 79.0	0 0 T 0.04 T	4 3 10 10	1Cu;4Ci 3Cu 3Cu;1OAc 4Cu;2Ac;6Cs 2Cu;8As	19 17 13 16 13 16	NE 10-15 NE 10-15 NE 8-10 NE 15* NE 14* NE 12*	5 2100 moonlight. 5 0000 moonlight. 0300 cloudy. 0555-0615 rain. 0600 light rain. 0905-0910 shwr. 1150-1155 shwr. 1417-1425 shwr.
	2/5	1500 1800 2100 0000 0300 0600 0900	81.5 80.5 79.5 79.5 79.5 79.0 80.0	77.0 77.5 75.5 75.5 74.5 75.0 74.5	81.5	79.0	Т О Т О О О	6 10 4 8 9 8 6	2Cu;4A8 Cu,Sc 4Cu Cu,Sc Cu,Sc 8Cu 6Cu	15 14 18 17 18 18 18	NE 14* NE 17* NE 15* NE 17* NE 15* NE 15* NE 15*	1730-1800 rain SE moving toSW; Cu 5 mile distant. 1821-1828 shwr. 2100 bright moon. 0000 somewhat gusty. 0300 somewhat gusty. 0600 gusty. 0900 gusty.

DOE ARCHIVES

رق

PLACE:	KEITH			THE	ee-hou	rly ob	SERV	ATIONS, JANUA	RY 25 -	- FEBRUARY	8, 1958	TABLE 24 (Concluded)
<u>Date a</u>	nd Time	TT	TT	$\frac{T_{x}T_{x}}{T_{x}}$	T _n T _n	RR	N	CIMH	FF3	DDFF	REMARKS	
2/5	1200	83.5	74.0	83.5	78.5	0	1	1Cu	17	NE 15*		
	1500	85.0	75.0			0	2	2Cu	19	NE 15*		
	1800	82.0	74.0			0	3	3Cu	17	NE 13*		
	2100	79.0	72.5			0	3	3Cu	17	NE 15*		
2/6	0000	78.0	72.0	85.0	78.0	0	2	2Cu	15	NE 14*		
	0300	78.0	70.0			0	0	********	16	NE 10*	0300 bright moonlight. 0450 rain. 051	+0-0612
	0600	75.0	72.5			0.04	10	10Sc	13	NE 9*	intermittent rain. 0625 rain began.	
	0900	79.0	72.5			0.01	10	Cu,Sc	13	NE 15*		
	1200	82.5	74.0	82.5	75.0	Ò	5	3Cu;3Ac	14	NE 10*		
	1500	81.5	72.0			0	0	0	16	NE 15*		
	1800	81.0	72.5			0	0	0	14	NE 12*		
	2100	79.0	72.0			0	0	0	14	NE 14*		
2/7	0000	78.5	72.5	82.5	78.5	0	5	5Cu;4Ci	16	NE 19*		
	0300	78.0	72.0			0	5	5Cu	16	NE 17*	0510 brief shwr.	
	0600	78.0	72.5			т	8	8Cu	16	NE 14*	0510-0530 gusty.	
	0900	78.0	72.0			0	0	(Cu)	18	NE 14*	_	
	1200	83.0	75.0	83.0	77.5	0	3	3Cu	15	NE 14*		
	1500	84.0	75.0			0	3	3Cu	17	NE 14*		
	1800	81.0	74.0			0	3	3Cu	13	NE 14*	•	
	2100	78.5	74.0			Q	ō	0	14	NE 10*		
2/8	0000	78.5	73.0	86.0	78.5	ò	5	5Cu	15	NE 12*		
-, -	0300	78.0	72.0			Ō	5	5Cu	14	NE 10*		
	0600	78.0	72.0			õ	9	7Cu;4Ci	17	NE 12*		
	0900	82.0	74.0			0	5	1Cu;5Ci	13	NE 14*		

: 44) 44 }

321

DOE ARCHIVES

PLACE: AETA AUGUST ALTA BELLITE BELLITE, AN AUG 25 - PLANAAR 6, 1956* TALLA 21

HOUR:	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400
DATE														•										
1/25															72			78			83			81
1/26			80			77			72			6 8			67			74			74	~~		77
1/27			83			75			74			67			64			68			71			71
1/28	-		79			75			68			66			64			67			68			77
1/29			79			83			78			65			62	~-		73			79			79
1/30			87			87			74		. 	69			63			73			82			84
1/31			87			85			82			72	71	70	74	70	74	82	85	84	83	85	86	81
2/1	85	92	90	89	89	89	85	8 6	94	90	8 6	68	62	64	65	70	76	80	84	86	87	90	91	96
2/2	90	90	88	92	90	83	83	82	82	84	92	87	88	80	74	74	81	78	85	86	78	79	76	75
2/3	75	75	75	76	76	77	79	78	78	76	82	74	77	77	71	75	75	76	79	78	78	80	80	79
2/4	80	80	82	80	79	78	98	92	91	92	90	87	8 6	82	81	8 6	86	87	91	88	89	89	89	89
2/5	90	91	80	81	82	83	82	81	77	74	70	64	64	64	63	64	66	69	74	73	73	72	76	75
2/6	77	70	67	74	86	88	86	80	74	73	72	67	68	68	63			67			71			75
2/7			75			77			75			69			66	.2		72			81			77
2/8			75			75			69															

* Because of malfunctioning of the hygrothermograph, the hourly record is incomplete as shown.

127

DOF TROMPTS

	PLACE:	MACK		DAI	LY OBSER	VATIONS,	JANUA	RY 25	- FEBRUARY 8, 19	58
	DATE	TIME	TT	TT_{w}	$^{T}\mathbf{x}^{T}\mathbf{x}$	T _n T _n	RR	N	Clmh	DDFF
	1/25	1200	81.0				0	3	1Cu;2Ci	E 18-22
	1/26	1200	80.0		81.0	78.5	0	l	1Cu;(Ci)	NE 14-16
	1/27	1200	79•5		80.5	76.0	o	1	1Cu;(Ac)	NE 17-20
	1/28	1200	80.5		80.5	78.0	т	7	6Cu;2Ci	NE 16
	1/29	1150	80.0		81.0	78.0	0	5	5Cu;1Ci	NE 13-16
,	1/30	1200	79•5		80.5	74.0	0	4	(Cu);4CsCc	E 5-7
	1/31	1210	83.5	76.5	83.5	79.0	Т	-		
	2/1	1200	81.0	73•5	81.5	78.0	0.09	1	1Cu	NE 18-20
	2/2	1200	81.0	74•5	81.0	75•5	0.75	10	10Cu,Sc	NE 20-25
	2/ 3	1200	80.5	74•5	80.5	74.5	0.01	4	3Cu;2Ac	NE 18
	2/4	1200	78.5	75.0	80.0	73•5	0.09	10	10Cu;(Ci)	NE 12
	2/5	1200	80.5	76.0	80.5	80.0?	0.01	2	2Cu	NE 18
	2/ 6	1200	80.5	73.0	81.0	77.0	0	3	1Cu;3Ac	NE 14
	2/ 7	1200	80.5	72.5	80.5	77.0	0	1	1Cu;1Ci	NE 13
	2/8	0930	80.0		80.0	78.0	0	5	4Cu;1Ac;4Ci.	NE 12-15

REMARKS

1/25 Rainfall value covers period since 1400, 1/2/58.

1/26 Sea: Almost 2. Whitecaps barely forming.

1/27 Sea slight with whitecaps and with swells 4 feet.

1/28 Whitecaps barely forming.

1/29 Sea gentle, no whitecaps.

1/30 Banded Cc about 50* above SE horizon.

2/2 Wind seems to be increasing.

2/5 Sunny.

128

DOE JREMINES

													12-15	ب ا ۲	ar ar	21 21	81	20-25	18-20	1	5-7	£ 13-16	5 16	E 17-20	E 14-16	18-22	DFF	
					añ the		an sh		₹ ₩ 4.5				H MON	N N	2	ہ ان ان ان	w ورونه	4 100	دی میں	 	۲ ــــــــــــــــــــــــــــــــــــ	ب	N minga	ນ	N ((Code)	VES	
	PLACE	F.A .1	t.				bl-h	khli in	bir an A	. Line A	<u></u>	، 1 ، ملد.	1 :	:	,	: 11	A. 3	1 -	a, 1	1958	9.29 (Annual States of Sta		er de			TAPL	<u>8 37</u>	
	HOUR:	O2 TT	200 <u>RH</u>	04 <u>TT</u>	,00 <u>RH</u>	06 <u>TT</u>	000 <u>RH</u>	0800 <u>TT</u>	RH	1000 <u>TT</u>) <u>RH</u>	12 <u>11</u>	00 <u>RH</u>	1 <u>11</u>	400 RH		160 11	0 <u>КН</u>	18 <u>11</u>	00 <u>RH</u>	2	2000	<u>р</u> <u>RH</u>	22 <u>11</u>		21 <u>TT</u>	.00 <u>КН</u>	
	DATE																											
	2/1											81	68	81	. 75	5	81	76	81	75	80	0 '	76	80	80	78	82	
	2/2	79*	83	78	83	80	75	80	75	80**	76	81	72	80) 78	3	80	78	80	75	8	0	76	79	76	79	77	
	2/3	79	75	79	76	79	79	7 7 *⊁*	78	-79	78	79	80	80	75	5	80	75	80	78	8	0	78	79	80	79	78	
	2/4	79	77	79	79	79	81	74	88	76	82	78	83	79	83	3	76	85	80	82	8	0	79	80	81	80	83	
	2/5	80	80	79	81	79	76	79	78	80	77	80	72	80) 75	5	80	75	80	78	7	9	75	79	75	79	72	
н	2/6	78	70	78	78	77	78	79	76	79	71	79	75	79	70	С	79	74	80	65	7	9	74	79	76	78	77	
129	2/7	78	80	78	80	78	79	79	70	80	75	80	72	79	78	3	79	82	79	79	7	9	81	79	80	79	79	
	2/8	79	78	79	77	78	76	79	76	80	76																	

* Immediately after 0200, 2/2, temperature dropped sharply to 76°.

** Just before 1100, 2/2, temperature dropped sharply to 75°.

*** Just after 0700, 2/3, temperature was 76°.

52

DOE MULTINES

									m 4
PLACE:	ELMER		DAILY	OBSERVATION	IS, JANU	RY 26 -	FEBRU	ARY 7, 1958	TA
DATE	TIME	TT	TT w	$^{T}\mathbf{x}^{T}\mathbf{x}$	TnTn	RR	N	CLMH	DDFF
1/26	0900	81.0	74.0	85.0	69.0?	0	1	lCu;(Ci)	NE 10-12
1/27	1200					0	-	2Cu;4Ac	NE 8-10
1/28	1200			83.5	79.0	0	4	3Cu;1Ci	NE 8-10
1/29	1330	86.0		86.0	78.0	0	0	(Cu);(Ci)	E 6-8
1/30	1200	86.5		87.5	76.0	0	4	2Cu;2Ac;1Ci	NE 6
1/31	1200	85.0		90.5	78.0	0	5	5Cu	NE 8-10
2/1	1200	85.0	75.0	88.0	76.0	0.09	0	(Cu)	E 12-15
2/2	1200	81.0	76.0	86.5	74.0	0.26	10	10Cu	E 15-18
2/3	1200	82.0	75.0	82.5	73.0	0.01	5	5Cu;1Ac	NE 8-12
2/4	1200	82.0	76.0	83.0	74•5	0.03	5	2Cu;3Ac;3Cc,Ci.	NE 8-10
2/5	1200	86.0	76.5	84.5	78.0	0.04	2	2Cu	E 12
2/6	1215	82.0	73.0	86.5	77.0	Т	8	3Cu;5Sc	NE 10
2/7	1320	84•5	74•5	85.0	75.0	0	3	3Cu	NE 12
					REMARK	S			

1/29 1330 Clear.

1215

2/1 1200 Some cumulus on horizon. Towering cumulus on western horizon. Shwrs. from 0830-0840; 0915-0925. Brief intense shwr. about 0045.

2/2 1200 Rain at the following times: 2/1 2130-2145; 2330-2340. 2/2 0115-0200; 0245-0305; 0925-0945; 1130-1135; 1235-1245.

2/6

1853 - 245 Y

Cloudy and bright. W-N horizon cloudless.

130

DOF ARCHINES

TABLE

A STREET STREE

5

ALTHORY MANY

No. of the other states of

DDFF

....

....

....

....

....

....

....

....

,Ci.

....

....

....

NE 10-12

NE 8-10

NE 8-10

E 6-8

NE 6

NE 8-10

E 12-15

E 15-18

NE 8-12

NE 8-10 E 12

NE 10

NE 12

on. Shwrs. from

2/2 0115-0200;

PINCE: JANET AND YVONNE

DAILY RAINFALL, JANUARY 25 - FEBRUARY 8, 1958

LATE	TIME	RR JANET	TIME	RR YVONNE		REMARKS
1/25	0730	0#	1600	0*	*	JANET total since 0730, 1/24; YVONNE total since
1/26	1000	0		0		1652, 1/24/58.
1/27	0930	0	1600	0		
1/28	0730	0	1650	0		
1/29	0730	C	1640	0		
1/30	0730	0.36	1630	0		
1/31	0730	0.01	1650	Т		
2/1	0730	0.05	1630	0.05		
2/2		**	***	0.20	*+*	Amount included in next total.
2/3	0730	0.17	***	0.15		
2/4	0730	0	***	0.17		
2/5	0730	0.13	***	0.05		
2/6	0700	0	***	T		
2/7	0730	0	***	0		
2/8	0730	0	***	0		

*** About 1630

DOE ARCHIVES

DATE	7010	TIME	diale in the second	TIME	TT	ሳ ካጥ	DEMADKG
1/25	ZONE	TIME	TT _s	TIME	11	тт _w	REMARKS
1/2)	1	1031 1035	80.5*				Departed EIMER. Edge of deep water.
	2	1040	80.5*				Near stern of grounded barge.
	2	1056	80.5*				Off buoy "A".
	3	1115	80.5*				
	4	1135	80.5*				
	5	1150	81.0*				On outward trip, boat bore westerly, then
							easterly toward MACK; on return trip, it
		7755					easterly and approached EIMER from NE.
		1155					Arrived MACK.
	~	1237	01 01				Departed MACK.
	5 4	1240 1300	81.0* 80.5*				
	4	1320	81.0*				
	3 2	1330	81.0*				Buoy "B".
	2	1350	80.5*				519 5 1
	ĩ	1402	80.5*				Edge of deep water.
		1405					Arrived EIMER.
/26		1015					Departed EIMER.
, ~0	1	1017	80.5*				Edge of deep water.
	2	1038	80.5*				Off buoy "A".
	3	1057	80.5*				Near black unmarked buoy.
	4	1117	80.5*				
	5	1137	80.5*				300 yards from MACK.
		1142					Arrived MACK.
		1225					Departed MACK.
	5	1245	80.5*				•
	4	1305	80.5*				
	3	1320	80.5*				رو ۳۵۹
	2 1	1340 1347	80•5* 80•5*				300 yards from cement barge, near buoy "6"
	Ŧ	1350	00.94				Edge of shallow water. Arrived EIMER.
		2))0					
/27	_	1024	d = 0.0				Departed EIMER.
	1	1026	81.0*	2015	P (0		Edge of deep water.
	2 3	1046 1106	81.0* 81.0*		76.0		Buoy "A" 300 yards leeward and rear.
	4	1126	81.0*		78.0 77.0		Buoy "11" 300 yards windward and rear. OSCAR tower one mile windward.
	5	1146	81.0*	1145	79.0		MACK dead ahead 300 yards.
		1152					Arrived MACK.
	5	1243 1245	81.0*	121.1	77.0		Departed MACK. 200 yards off MACK.
	4	1305	81.0*		79.0		OSCAR tower one mile.
	3	1325	81.0*		79.5		COOL OF THE MILES
	3 2	1345	81.0*		80.5		
	2	1405	81.0*	1404	80.5		
	1	1420	81.0*	1419	77.0		Edge of deep water.
		1425					Arrived EIMER.
/28		1020					Departed EIMER.
181	1	1024	81.0*		81.0		Edge of deep water.
	2	1045	81.0*		80.5		
	3	1104	81.0*		80.0		Off buoy "ll".
	4 5	1125 1142	81.0*		81.0		One mile W OSCAR tower.
	,	1142	81.0*	T T 4 T	80. 0		200 yards off MACK. Arrived MACK.
							ALL LYOU FIRMAN

P38

到的

132

out 18 Hicks

TABLE	ELMER-	маск	LA	GOON TRA	VERSES,	JANUA	RY 25 - FEBRUARY 7, 1958 <u>TABLE 2</u> (Continued
	01E	TIME	$\mathrm{TT}{\mathbf{s}}$	TIME	TT	TT _w	REMARKS
	4321	1312 1333 1353 1415 1420	81.0* 80.5* 80.5* 81.0*		81.5 80.5 80.0 81.5		One mile W OSCAR tower. Buoy "11". Buoy "A". Edge of deep water. Arrived ELMER.
ly, then nort trip, it bas om NE.	1 2 3 4 5	1017 1020 1042 1104 1124 1136 1140	81.7 81.3 81.1 80.8 81.1	1019 1041 1103 1123 1135	84.0 80.5 81.0 81.0 80.5		Departed EIMER. Edge of deep water. Four minutes past red buoy. 200 yards off MACK. Arrived MACK.
	5 4 3 2 2	1235 1237 1258 1317 1338 1400	81.3 81.3 81.1 81.1 81.1	1236 1257 1316 1337 1359	82.0 82.0 81.0 81.0 82.0		Departed MACK. 200 yards off MACK. Buoy "8".
	1	1411 1415	81.3	1410	82.0		Edge of shallow water. Arrived EIMER.
://≀C	1 2 3 4	1017 1020 1040 1100 1120	81.5 81.5 80.6 80.6	1019 1039 1059 1119	81.5 80.5 81.5 81.5	77.0 77.0 78.0 77.0	Departed EIMER. Edge of deep water. 200 yards east of buoy.
		1137					Arrived MACK.
buoy "6".	5 4 3 2	1236 1238 1300 1320 1340	82.4 81.5 81.5 81.5	1237 1259 1319 1339	81.5 80.5 80.5 80.5	78.0 78.0 77.0 78.0	Departed MACK. 200 yards off MACK. It was noted upon leaving MACK at 1236 that a mass of low cumulus had appeared and was moving in from SE. This Cu was not visible a 1200 from MACK. This Cu passed overhead and
r.	1	1357 1401	81.5	1356	81.5	76.0	disappeared to NW by 1330. Edge of shallow water. Arrived EIMER.
buoy "6". r. ear. 1/31	1 2 3 4 5	1002 1002 1021 1040 1059 1118 1120	81.0* 81.0* 81.0* 81.0* 81.0*	1024 1044 1102	82.5 82.0 82.5	76.0 76.0 76.0 76.0 76.5 76.5	Departed EIMER. Edge of deep water. Buoy "A". Buoy "ll". 1000 yards SE of OSCAR. MACK. MACK. Arrived MACK.
	5 4 3 2 1	1215 1218 1238 1257 1317 1340 1345	81.0* 81.0* 81.0* 81.0* 81.0*			77.0	Departed MACK. 200 yards off MACK. 2500 yards SE OSCAR. 700 yards S of buoy "ll". 400 yards S of buoy "A". Edge of deep water. Arrived EIMER.
-/1	1	1017 1020	81.0*	1024	81.5	74•5	Departed EIMER. Edge of deep water. Light rain from 1020 to 1050. Sun out at 1055. During rain period
	2 3	1040 1058	81. 0* 80.0*		80. 0 79.0	75.5	9Cu; state of sea 2. 150 yards N buoy "A". Buoy "11".

DOE TREHITS

PLACE:	ELMER-	- MACK	LA	SOON TR.	AVERSES,	, JANUA	RY 25 - FEBRUARY 7, 1958 TAB (Conti
DATE	ZONE	TIME	TT _s	TIME	TT	$\mathrm{TT}_{\mathbf{W}}$	<u> </u>
2/1	4 5 .	1119 1134 1140	80.0* 80.0*		80.0 80.0	75•0 75•5	2000 yards S of OSCAR. 200 yards off MACK. Arrived MACK.
	5 4 3 2 2 1	1248 1250 1310 1333 1355 1413 1420 1425		1312 1335	81.0 81.0 80.5 80.5	74.0 74.0 74.0 74.0 73.5 73.0	Departed MACK. 200 yards off MACK. 2500 yards S of OSCAR. Buoy "ll". Buoy "A". Cement barge. Edge of shallow water. Arrived EIMER.
2/2	1 2 3 4 5	1014 1015 1030 1050 1110 1130 1140	80.0* 80.0* 80.0* 80.0* 80.0*	1029 1049	79.0 80.0 79.5	75.5 76.0 76.0 75.0 75.0	Departed EIMER. Edge of deep water. Black buoy "?". Arrived MACK.
	5 4 3 2 1	1225 1225 1245 1305 1325 1345 1357 1400	80.5* 80.5* 80.0* 80.0* 80.0* 80.5*	1244 1304 1324 1344	82.0 81.0 81.0 80.0	76.0 76.0 75.5 75.5 76.5 76.0	Departed MACK. At MACK. Edge of shallow water. Arrived EIMER.
2/3	1 2 3 4 5	1016 1019 1040 1100 1119 1141 1145	80.0* 80.0* 80.0* 80.0* 80.0*	1039 1059 1118	79•5 78•5 78•0	73•5 75•5 75•5 73•5 74•0	Departed EIMER. Edge of deep water. Eleven minutes beyond buoy "8". 200 yards from MACK. Arrived MACK.
	5 4 3 2 2 1	1240 1243 1305 1325 1347 1405 1418 1421	80.0* 80.0* 80.0* 80.0* 80.5* 80.0*	1304 1324 1346 1404	80.0 80.5 80.5 80.5 81.0 81.0	75.5 75.0 75.5 75.0 75.0 75.0	Departed MACK. 200 yards from MACK. Edge of deep water. Arrived EIMER.
/4	1 2 3 4 5	1023 1025 1045 1103 1125 1138 1145	80.0* 80.0* 80.0* 80.0* 80.0*	1047 1105 1128	79.0 79.0 79.0 79.0 80.0	75•5 75•5 75•5	Departed EIMER. Edge of blue water. 200 yards N of buoy "A". 300 yards N of buoy "11". 1500 yards S of OSCAR. 200 yards off MACK. Rain shwr. at MACK - 1140 to 1150. Arrived MACK.
	5	1245 1248	81.0*	1250	80.0	76.0	Departed MACK. 100 yards off MACK. Rain shwr. from 1240
	4 3 2 1	1309 1326 1345 1405 1408	81.0* 81.0* 80.0* 80.0*	1328 1346	80.5 80.5 79.5 79.0	76.0 76.0	1250. 2500 yards SW of OSCAR. 500 yards NE of buoy "ll". 300 yards NE of buoy "A". Edge of blue water. Arrived EIMER.

.

DOE ARCHIVES

Continue PLACE:	ELMER-	MACK	LAU	TOON TRA	و حطاتنا ۷	JANUA	RY 25 - FEBRUARY 7, 1958 TABLE (Concluded)
ETE .	ZONE	TIME	ΤΓ ₅	TIME	TT	TT _w	REMARKS
		1010					Departed ELMER.
	1	1014	80 . 0*	1014	82.0	75.0	Edge blue water.
	2	1031	80 . 0*	1033	81.0	75.0	Buoy "A".
	3	1048	80.0*	1049	81.0	75.0	Buoy "11".
	í.	1105	80.0*	1106	80.5	75.0	2000 yards S. of OSCAR.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	1120	80 . 0*	1121	81.0	74.0	150 yards S. of MACK.
2/1	-	1130					Arrived MACK.
		1228					Departed MACK.
*	5	1230	80.0*		80.5	74.5	150 yards S. of MACK.
	4	1248	80.0*	1250	80.0	74•5	3 Miles S. of OSCAR.
	3	1305	80.0*	1307	80.0	74.0	Buoy "ll".
	2	1323	80. 0*	1325	80.0	74•5	Buoy "A".
	ĩ	1342	80 . 0*	1342	82.0	74.0	Edge of blue water.
	-	1344		-			Arrived EIMER.
2/1		1014					Departed EIMER.
	1 ,	1016	80.0*	1016	80.0	72.5	Edge of deep water.
	3	1036	80.0*		80.5	73.0	Off buoy "li".
	í.	1056	80.0*	1056	80.0	71.5	•
	4	1115	80.0*			72.5	7 minutes SW of OSCAR.
	5	1140	80.0*			72.5	200 yards off MACK.
	/	1145				1207	Arrived MACK.
		1241					Departed MACK.
	5	1244	81. 0*	1244	83.0	74•5	200 yards off MACK. Rain 1259-1301.
	í.	1303	80.5*		82.5	74.5	1 mile WSW of OSCAR.
	3	1323	80.5*		82.5	73.5	
3	3	1344	80.0*			72.0	Off buoy "11".
	í	1410	80.0*			73.5	Edge of deep water.
	1	1412			• • • •	1,545	Arrived ELMER.
2/7		1016					Departed EIMER.
9 de 1	1	1019	80.0*	1019	81.0	73.0	Edge deep water.
£ .	2	1038	80.0*		81.0	73.5	Off buoy "8".
	3	1059	80.0*	-	80.5	73.0	
	Ĩ4	1120	80.0*		80.5	73.0	1 mile W of OSCAR.
	5	1136	80.0*		80.5	-	200 yards off MACK.
	-	1139		11,00			Arrived MACK.
		1225					Departed MACK.
S. 1	5	1227	81.0*	1227	81.5	74.0	200 yards off MACK.
	4	1247	80.5*		82.0	74.0	l mile off OSCAR.
- <u></u>	3	1307	80•5*		82.5	74.0	I MALO VII VUONIO
	2	1328	80.5*		82.0	74.5	100 yards N of buoy "10".
	ĩ	1345	80.0*	1345	83.0		Edge of deep water.
NS 📻	<u> </u>	エンチノ	00+0*	エンチノ	0.00	1442	Bake of deep margi.

教教法法 wr. at MACK from

wr. from 1240 to

DOF VECHINES

1 H

PLACE: BETWEEN BRUCE, KEITH, EIMER

LAGOON TRAVERSES, FEBRUARY, 1958

Traverse No.	1. BRUCE	-KEITH				
DATE	TIME	TT_s	TIME	TT	TT _W	REMARKS
lst	1010 1012 1030 1040 1100 1120 1139 1155 1202	80.0* 80.5* 80.5* 80.5* 80.5* 80.5* 80.5* 80.5* 80.5*	1014 1035 1042 1103 1123 1141 1157 1204	80.5 80.0 79.0 81.0	75•5 76•0 75•5	Departed BRUCE. Edge of deep water at BRUCE. 10 yards off buoy "B". Immediately after light rain shwr. Edge of deep water at KEITH.

Traverse No. 2, BRUCE-KEITH-ELMER

DATE	TIME	TTs	TIME	TT	TT.	REMARKS
7th	0934 0937 0957 1017 1037 1057 1114 1116 1117 1137 1157 1217 1237 1258	79.0* 79.5* 80.0* 80.0* 80.0* 80.0* 80.0* 80.0* 80.0* 80.0* 80.0* 80.0* 80.0* 80.0* 80.0* 80.5*	11ME 0934 0937 0957 1017 1037 1057 1114 1116 1137 1157 1217 1237 1258	80.5 80.5 81.5 80.5 80.5 80.0 81.0 81.0	73.0 73.0 74.5 73.0 73.5 72.5 74.0 73.0 73.5 73.5 74.0 74.0 74.0 74.0	15 yards off BRUCE. Departing for KEITH. Edge of deep water. Between buoys. At KEITH departing for EIMER. Edge deep water off EIMER.
	1300					Arrived ELMER.

TABLE 3

FLACE: LAGOON-OCEAN

TABLE 3

TABLE 32

LAGOON-OCEAN TRAVERSE, FEBRUARY, 1958

×	LATE	TIME	TTs	TIME	TT	TT _w	R E M A R K S
æ.	oth	0850					Departed FRED.
in shwr.		0854	80.0*		80.5	74•5	Edge of deep water.
н.		0908	80.0*		80.0	73•5	Between channel marker buoys in the South Channel.
		0915	80.0*		80.0	74.0	Outside, end of five minute run on Course 190° magnetic.
•		0926	80.0*		80.0	74•0	Outside, end of ten minute run around west side of the reef.
ing for KEITH.		0938	80.0*		80.0	74•5	Outside, off KEITH.
		0950	80.0*		80.5	74•5	Outside, NW of KEITH.
		1004	80.0*		80.0	74•5	Outside, off KEITH.
R.		1016	80.0*		79•5	74.0	Outside, between KEITH and South Channel.
		1039	80.0*		81.0	74•5	Between channel marker buoys in the South Channel.
		1058	80.0*		80.0	72.0	Off FRED (northern end) approximately one mile in lagoon.
		1108	80.0*		81.0	73.0	Edge of deep water off EIMER by the personnel pier.
		1115					Arrived ELMER. Water temperatures outside the lagoon were a little over 80.0 and inside were a little under 80.0°F.

137

DOF SECTIVES

Part D. Observational Data for Extensive Phase

(September, 1957 -- August, 1958)

NOTES: TABLES 33-38

For comments regarding raingage locations and relative accuracy of Gages 1 and 2 on FRED. <u>see</u> General Notes, p. 28. For comments regarding bias of raingage readings on MACK, <u>see</u> Note for Table 10, p. 44.

In general, all rainfall observations in these Tables are correct to 0.01 inch. <u>Times</u> correct within 10 minutes, except that the 0000 time for rainfall observations at FRED is correct within 3 minutes.

THE AN UND

THE 44

·

DAILY RAINFALL ENTWETOK

المني ومتقاوين أيوت الارتجاز ويراثر والمالات

		AUGUST	SEPTEMBER	OCTOBER	1957 NOVEMBER	1 December	.958 JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST
	1	0.06	0.02	0.02	0.15	0.01	0.22	0.04	Т	т	1.57	0.01	0.01	Т
	2	0.01	0.04	T	0.21	0.05	0.36	0.05	1.03	0.28	0.14	0.02	0.01	Ť
	3	0.05	0.08	Ť	0.12	T	0.03	T	0.01	0.05	T	T	0.30	Ť
	ú	0	0.54	0.28	0.01	0.01	0.03	Ť	T	Т	0.07	0.05	0.45	ō
	5	0.14	0.12	0.16	2.37	0.96	0	Ť	0.08	0.07	T	0.13	0.30	Ť
	6	T	0	0	0.15	0	0.05	·Τ	T	T	ō	0.02	0.01	0.06
	7	0.05	T	0.08	0.02	0.02	Т	Ť	Ť	Ť	Ó	0.06	Т	Т
	8	0.19	1.30	0	0.26	0.03	0.05	0	0.08	0.01	Т	0	0.02	0.45
	9	0	T	т	0.02	1.04	0.06	0.02	0.11	Т	Т	Т	0.09	0.19
	10	0	0.30	0.89	0.08	0	0,19	0	0.05	0.57	Т	Т	0.11	0.68
	11	0.01	Т	Т	0.18	Т	0	0.02	Т	0.12	0.10	Т	0.23	1.32
	12	0	0.15	3.04	1.78	Т	0	0.01	0.03	Т	0	1.21	Т	0.29
	13	0.14	Т	0.02	5.28	Ť	0.01	0	Т	0	0.06	0.05	1.16	0.02
	14	0.35	0.08	0.30	т	Т	0.12	0	0.06	0.06	0	Т	0.44	Т
	15	1.50	0.11	0.54	0.06	0.01	Т	0.31	0	0.39	0	0.24	1.09	1.06
	16	0.02	0.01	0.02	0	0.06	Т	0	0	0.02	0	0.01	2.52	0.67
	17	0.15	0	0.03	0	т	0.02	т	0	Т	0.27	0	Т	0.27
	18	0	0.03	0.14	0.90	т	т	0	т	0.05	Т	Т	2.61	0.08
	19	0	T	0.15	Т	0.05	0	т	0.05	0.08	0.18	Т	0.13	0.14
	20	0	0.25	0	0.01	0.25	Т	0	Т	0.01	т	Т	Т	0.61
	21	0.15	т	0.02	0	0	0.63	т	0.13	0.01	Т	Т	0.81	0.41
	22	0.01	Т	0	0.02	0	0.10	0	. 0	0.07	0	т	4.43	Т
	23	0.41	0	0.79	0.08	0	0	0	0	0.23	Т	Т	0.31	0.94
	24	0.05	0.15	0.11	0.14	0	0	Т	0	Т	0.01	0.26	T	0.09
	25	0	Т	0.13	0.12	0	Т	0.01	Т	Т	0	0.09	0.01	0.02
	26	0.02	0.01	0.79	0.08	0.01	0	0	0	0	0	0.05	0.21	0.12
	27	0.50	0.01	0.31	0.06	0	0	0	Т	Т	T	T	0	0.01
	28	0	0.32	0	0.01	0.04	Т	0	0	0	T	0.23	T	0.13
	29	0.01	0.10	0.34	0.01	T	0		0.01	0	0.02	0.06	0	0.12
	30	0.32	0.10	0.06	0.20	0.05	0		T	0.03	0.22	0.05	0.10	0.02
	31	0.06		Т		0.04	Т		0.08		0.75		Т	0.12
TOTAL		4.28	3.72	8.22	12.32	2.63	1.87	0.46	1.72	2.05	3•39	2.54	15.35	7.82

1 and 2 on FRED, MACK, <u>see</u> Note inch. <u>Times</u> ar at FRED is

139

A CALL AND A

PLACE: FRED

TON WAY WAY

MONTHLY

PLACE: F	TRED			RAINFALL OBSERVA 1957 - JANUARY, 1			<u>'</u>	TABLE 34
DATE OF READING	TIME OF GAGE #1 READING	GAGE #1	GACE #2**		TIME OF GAGE #1 READING	GAGE #1	GAGE #2**	÷
8/18/57	1215	0	0	11/12/57	0900	1.80	1.78	
8/19	1200	0 0	0	11/13 11/14	0855 0925	0.16 1.96	5.28 T	
8/20 8/21	1200 1200	0.15	0.15	11/15	0925	0.05	0.06	
8/22	1200	0.15	0.01	11/16	0905	Т	0	
8/23	1200	0.05	0.41	11/17		*	0	
8/24 8/25	1200 1200	0.50 0	0.05 0	11/18 11/19	0906	* 3•68	0.90 T	
8/26	1200	0.01	0.02	11/20	0900	0.02	0.01	
8/27	<u>12</u> 00	0.52	0.50	11/21	0900	0	0	
8/28	1200	0.55	0	11/22	0900	0	0.02 0.08	Ť.
8/29 8/30	1200 1200	0.01 0.35	0.01 0.32	11/23 11/24	1600 1600	0.03 0.25	0.08	
8/31		0.35	0.06	11/25	0900	1.04	0.12	2
9/1	0904	0***	0.02	11/26	0900	0.06	0.08	
9/2	0900	0	T	11/27	0900	0,30	0.06	
9/3 9/4	0900 0900	0 0•69	т 0•54	11/28 11/29	0900 0855	т 0.02	0.01 0.01	
9/5	0900	0.60	0.12	11/30	1800	0.25	0,20	
9/6	0855	0.80	0	12/1	0930	0.01	0.01	
9/7	0900	0	T	12/2	0855	0,06	0.05 T	
9/8 9/9	0900 0900	1.00 0.50	1.30 T	12/3 12/4	0905 0858	T T	0.01	
9/10	0900	0.23	0.30	12/5	0930	0.73	0.96	
9/11	0850	Т	Т	12/6		*	0	
9/12	0900	0.17	0.15	12/7	1100	0.02	0.02	
9/13 9/14	0900 0900	T T	T 0.08	12/8 12/9	0900	* 0.81	0.03 1.04	
9/15	0900	0.20	0.11	12/10	0900	0.23	0	<u>,</u>
9/16	0910	0.11	0.01	12/11		*	T	
9/17 9/18	1000 0915	T O	0 0.03	12/12 12/13	0900 0900	T O	T T	
9/18 9/19	0910	0.81	T	12/14	0900	T	Ť	2
9/20	0900	0.30	0.25	12/15		*	0.01	1
9/21	0900	0.01	T	12/16	0900	T	0,06	
9/22 9/23	0920 0905	0.01 T	T O	12/17 12/18	0900 0900	0.06 T	T T	
9/24	0915	0.15	0.15	12/19	0900	0.05	0,05	
9/25	0900	0.01	T	12/20	0900	Т	0.25	
9/26	1300	0,01	0.01	12/21 12/22 Pro	0855	0	0 #1	
9/27 9/28	0900 0900	0 0.03	0.01 0.32	12/22 Bre	ak in rec	ord, Gage	#1	
9/29	0905	0.41	0.10	1/1/58	0900	0.26	0.22	
9/30	1040	0.12	0.10	1/2	0900	0.15	0.36	
10/1 10/2	0905 0900	0.06 0	0.02 T	1/3 1/4	0900 0900	0.21 0.06	0.03 0.03	
10/2	0900	T	Ť	1/5	0900	0.00	0	1
10/4	0900	0.12	0.28	1/6	0900	0	0.05	
		ord, Gage #		1/7	0900	0.05	Ť O OF	
11/1 11/2	1300 0900	0.03 0.20	0.15 0.21	1/8 1/9	0900 0900	Т 0.03	0+05 0+06	
11/3	1030	0.15	0.12	1/10	0900	0.05	0.19	
11/4	0855	0.10	0.01	1/11	0900	0.19	0	
11/5	0855	0.37	2.37	1/12	0900	0	0 0.01	
11/6 11/7	0900	* 1.97	0.15 0.02	1/13 1/14	0900 0900	0 0.04	0.12	
11/8	0855	0.25	0.26	1/15	0900	0.04	T	
11/9		¥	0.02	1/16	0900	Т	Т	4
11/10 11/11	0925 0930	0.05 0.10	0.08 0.18	1/17 1/18	0900 0900	0.02 T	0.02 T	
***	0750	0.10	0.10	410	0700	1	•	

	TABLE 3						TABLE 34
		PLACE: F	RED		COMPARATIVE RAINFALL OBSEF AUGUST, 1957 - JANUARY,	, 1958	(Concluded)
GAGE #2**		ALE OF	TIME OF GAGE #1 READING	GAGE #1	GAGE #2**		
1.78 5.28 T 0.06 0 0 0.90 T 0.01 0.02 0.08 0.01 0.02 0.03 0.01 0.02 0.02		** 24	READING 0900 0900 0900 0900 0900 0900 0900 0900 0900 0900 0900 0900 0900 0900 0900 0900 0900 0900 0900	0 T 0.01 0.64 0.06 0 T 0 0.01 0 0 0 0 ded in nex fall endin	0 T 0.63 0.10 0 T 0 T 0 0 T	the date shown.	
0.22 0.36 0.03 0.03 0.05 T 0.05 0.06 0.19 0 0.01 0.01 0.12 T							
T T 0.02 T					141	OINE YE	CAR CAR

	BRUCE				KEITH			MACK	
DATE	TIME	RRL*	RR0*	DATE	TIME	RR*	DATE	TIME	RR*
9/16/57	0845		3.15(1)	9/15/57	1000	2.30 ⁽¹⁾	9/14/57	1000	1.71 ⁽⁴⁾
10/1/57	0900		2.14	9/30/57	1130	2.14	10/1/57	1045	1.54
10/15/57	1100		3•37	2/28/58	1030	0.16(3)	10/15/57	0920	3.41
10/31/57	1100	3.30 ⁽²⁾	3.27	3/15/58	0930	0.87	10/31/57	0930	3.35
11/16/57	1200	3.92	4.11	4/15/58	0930	2.00	11/16/57	1000	3.48
11/27/57	1140	0.31	0.28	4/30/58		0.42	12/3/57	1400	1.80
12/16/57	0840	0.11	0.11	5/31/58		0.34	12/16/57	1000	0.10
1/2/58	1530	0.10	0.09	7/15/58		3.10	1/2/58	1402	0.08
1/15/58	1010	1.24	1.32	7/30/58		9.39	1/15/58	0850	1.30
2/18/58	0850	0 . 24 ⁽³⁾	0.26(3)	8/15/58	****	4.85	2/18/58	0900	0.35(5)
3/7/58	1305	0.24	0.25	8/30/58		4.00	3/6/58	1230	0.15
3/21/58	0935	0.50	0.50				3/17/58	1130	1.20
3/31/58	1040	0.10	0.12				3/31/58	1335	0.06
4/21/58	1000	2.60	2.65				4/16/58		1.60
6/2/58	1000	4.02	4.10						
6/30/58	0950	2.43	2.35						
8/1/58	1000	9.92	10,80						

Total rainfall since 0900, 9/1. Total rainfall since 1100, 10/15. Total rainfall since 0900, 2/8. Total rainfall since 1145, 8/31. Total rainfall since 0930, 2/8.

(1) (2) (3)

· · · · · · · · ·

¥2

FOOTNOTES	

- Total rainfall since 0900, 9/1. Total rainfall since 1100, 10/15. Total rainfall since 0900, 2/8. Total rainfall since 1145, 8/31. Total rainfall since 0930, 2/8. Rainfall total since last observation. (1)
- $(\overline{2})$
- (3)
- (4)
- (5)

*

the second state of the second state of the second state and the second state and

1300

5.95

5.98

PLACE: ELMEN

8/30/58

TANIA 36

and the second second

DAILY RAINFALL**

				195	7	1958						
	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST
1	*	0.13	0.24	*	0.30	0.09	0	*	1.85	*	0	0.10
2	*	0	0.10	*	0.20	0.26	*	*	0.04	0.75	0.06	*
3	0.84	0.21	*	0	0,18	0.01	0.05	0.13	0	0.02	0	*
4	0.04	0	0.10	0.05	0.10	0.03	0	0	.*	0.01	*	0.18
5	0.10	0.16	1.40	0.21	*	0.04	0	0.03	0	0.18	0.99	0
6	0.27	0.10	0.45	0.01	0.06	T	0.02	*	0.01	0	*	0.01
7	0.11	0.15	0.40	0.01	0.09	0	0	0.05	0	0	0.05	*
8	0.48	0	0.04	0.06	0.15	*	0	0.01	0	*	0	1.58
9	0.51	0	0.01	0.04	0.25	*	¥	0	0	0	0.23	0.42
10	0.52	0.06	*	*	0.26	*	0.15	0.37	0.01	0	0.27	*
11	0.04	0.13	0.12	0.07	0.24	0.01	0.01	0.63	*	0	0.15	1.07
12	0.02	0.02	2.75	0.07	*	0.01	.0°01	0.07	0.04	0.73	0.02	0.60
13	0	*	0.08	0.07	0.23	0	0.04	*	0	0.01	*	0
14	0	2.25	0.14	0	0.32	0	0	0.01	0.05	0.01	1.28	*
15	0.11	1.05	0.10	*	0.32	0	0	0.36	0	¥	0.59	0.21
16	0.07	0.01	*	0.06	0.20	*	¥	0.05	0	0.60	3.63	0.38
17	0	0.29	0	0.04	0.18	0.20	0	0	0	¥	0.10	*
18	0.01	0.01	0	0.06	0.10	0	0.01	0	*	0	0.83	0.45
19	0.01	0.04	***	0.16	*	0	0.01	0.09	0.15	0	0	0.07
20	0.07	*	***	0.09	0.05	0	0	*	0	0.01	*	0.19
21	0.01	0.03	***	0.06	0.40	0	0	0,12	0	0	0.10	*
22	0.03	0	***	*	0.40	0	0	0.04	0	¥	2.61	0.97
23	0.15	1.57	***	0.01	0 .3 5	*	¥	0.21	¥	0.01	0.13	0.62
24	0.12	0.09	***	0	0.30	0	0	0.03	0	0.20	0.34	*
25	0	0.02	***	*	0	0	0	0.02	*	0.04	*	0.25
26	0.16	0.98	***	0	0	0.01	0	0	*	*	0.02	0.03
27	0.17	*	***	0	· 1 0	0	0.01	*	¥	0.04	¥	0.05
28	0.64	1.00	***	0.05	0	0	0	0	0	0	0	0
29	0.17	1.07	0.64	*	0		0.01	0	0.02	¥	*	0
30	0.43	0.80	0.02	0.10	0		*	0	*	0.52	0.01	0.34
31		0.01		0.06	0		0		¥		0.26	0.19

Amount included in next total. ¥

For times of observations, see NOTES. ₩¥

Installation damaged by typhoon. Placed back in operation 11/28/57. ***

£

مندین نوسهٔ محمو معمو

-

PLACE:	JANET		DAILY RAI	INFALL,	AUGUST	30, 1957 -	APRIL 2	9 , 1958	3		TABLE 3
DATE	TIME	RR	DATE	TIME	RR	DATE	TIME	RR	DATE	TIME	RR
8/30/57 8/31 9/1 9/2 9/3 9/4 9/5 9/6 9/7 9/13 9/12 9/13 9/14 9/12 9/13 9/14 9/15 9/16 9/17 9/18 9/17 9/18 9/17 9/18 9/17 9/18 9/17 9/20 9/21 9/22 9/23 9/24 9/25 9/26 9/27 9/28 Break in Rainfall 10/4 10/5 10/6 10/7 10/18 10/19 10/21 10/21 10/22 10/23 10/24 10/25 10/26 10/27 10/28 10/29 10/30 11/1 11/2		0.01 * * 0.63 0.05 0.01 0.00 0.01 * 0.39 0.01 0.05 0 0 0.01 0.05 0 0 0.01 0 0.03 0.31 * 0.03 0.31 0.03 0.31 0.025 0.02 0.02 0.02 0.02 0.02 0.01 0 0.03 0.31 * 0.03 0.31 * 0.025 0.02 0.02 0.01 0 0.03 0.31 * 0.025 0.02 0.02 0.02 0.02 0.01 0 0.03 0.31 * 0.03 0.025 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0 0.03 0.13^{**} 0.03 0.12 0.03 0.15 0 0.044 0.07 0.12 0.01 0.09 0.12 0.01 0.09 0.12 0.01 0.03 0.05 0.025 0.02 0.02 0.03 0.15 0 0.03 0.05 0.	11/5/57 11/6 11/7 11/7 11/7 11/12 11/12 11/12 11/12 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 11/23 12	0800 0730 0730 0730 0730 0730 0730 0730	$\begin{array}{c} 0.41\\ 3.03\\ 0.31\\ 0.34\\ 0.03\\ 0.02\\ 0.02\\ 1.45\\ 0.88\\ 0.04\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	1/8/58 1/9 1/11 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/23 1/2	0730 0730 0730 0730 0730 0730 0730 0730	0 0.08 0.05 0 0 0.06 0.01 0.08 0.09 0.06 0.08 0.09 0.06 0.09 0.06 0.09 0.06 0.09 0.06 0.09 0.06 0.09 0.06 0.007 0.04 0.0 0.05 * 0.13 0.0 0.07 0.07 0.03 0.07 0.03 0.07 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.04 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.08 0.07 0.09 0.08 0.07 0.09 0.07 0.09 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.02 0.08 0.07 0.02 0.07 0.02 0.	** Amoun hour *** Gauge when Doub	, total. it in la	* 0.23 0 0.06 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0

<u>T/</u>	ABLE 37	51 V.F.	: YVONNE		DAILY RAINFALL,	FEBRUARY 8	- APRIL 2	21. 1958		TABLE 38
TIME	ABLE 37	FLEERU.		RR	MARCH	TIME	RR	APRIL	TIME	RR
0730	0.09				l	1650	0	ı	1700	0
0730	* 0.23				2	1600	Т	2	1700	0
1000 0730	0				3	1600	0.02	3	1700	0.02
0730 0730	0.06				4	1650	0.06	4	1700	0.03
0730 0730	0.03				5	1600	0	5	1700	0.12
0730 1100 0730	0 0 0				6	1650	0.02	6	1700	0.22
0730	0.03 *				7	1600	0	7	1700	0.07
0730 0730	0 0	8	**	0	8	1630	0.07	8	1700	0
0730	0 *	9		¥	9		*	9	1700	0.10
0730 0730	0 0.07	10	1640	0	10	1620	0.04	10	1700	0.50
0730 0730	0.01 1.12	ш	1500	0.07	11	1650	0.05	11	1700	1.45
0730 0730	0.08 0	12	1655	0.08	12	1630	0.03	12	1700	0
0730	* 0•24	13	1655	0	13		*	13	1700	0
0730 0730	0.12	14	1655	Т	14	1630	0.07	14	1700	0.34
0730 0730	0 0.12	15	1650	0	15	1630	0	15	1700	0.30
0730 0730	0•37 0	16		¥	16	1650	0.01	16	1700	0.03
0730 0730	0 0.17	17	1640	0	17	1750	0.07	17	1700	0
0730 0730	0.11 0.02	18 .	1650	0	18	1700	0	18	1700	0.02
0730 0730	0 0.12	19	1640	0	19	1715	0.20	19	1700	0.18
0730	* 0.11	20	1650	0	20	1640	0	20	1700	0.10
0730 0730	0 0 .18	21	1640	0	21	1700	0	21	1700	0
0730 0730	0.01 0.01	22	1650	T	22	1710	0		,	
0730 0730	0.06 0	23		*	23	1700	0			
0730 0730	0 0	24	1630	T	24	1715	0			
nt inclu		25	1600	0.07	25	1710	0			
t total.		26	1650	0.03	26	1700	0			
nt in la: rs.	st 24	27	1600	0	27	1700	0			
e was co		28	1610	Т	28	1720	Т			
n checke otful va		**]	lime of observat	ion about	29	1700	0			
	50 1. 1.		1630.		30	1640	0.01			
	-				31	1700	0			
		* /	mount included	in next r	eading.					
	· ·					145				
									DOF ARE	
									*	

 $\gamma \dot{\Sigma}$

APPENDICES II AND III

.

bet for archite

APPENDIX II.

INDICES FOR PHOTOGRAPHS

CONTENTS

Notes	for	Tables E	through F
Table	A.	FRED:	INDEX NUMBERS OF RADARSCOPE PHOTOS, AUGUST 18-SEPTEMBER 1, 1957
Table	B∙	FRED:	INDEX NUMBERS OF RADARSCOPE PHOTOS, JANUARY 25-FEBRUARY 6, 1958
Table	С.	BRUCE:	INDEX NUMBERS FOR CLOUD PHOTOGRAPHS, SERIES A, AUGUST 21 - 31, 1957
Table	D∙	KEITH:	INDEX NUMBERS FOR CLOUD PHOTOGRAPHS, SERIES A, AUGUST 18 - 31, 1957
Table	E.	BRUCE:	INDEX NUMBERS FOR CLOUD PHOTOGRAPHS, SERIES B, JANUARY 29 - FEBRUARY 8, 1958
Table	F.	KEITH:	INDEX NUMBERS FOR CLOUD PHOTOGRAPHS, SERIES B, JANUARY 25 - FEBRUARY 8, 1958

grand and a state of the second se

J

NOTES: TABLES & THROUGH F

<u>GENERAL</u>: Photographs listed in this Appendix can be borrowed for scientific use for a period that will be expected not to exceed 30 days. Requests for photographs on loan should be addressed to the U. S. Weather Bureau, Washington 25, D. C., <u>Attention</u>: Public Information Coordinator. In ordering photographs refer specifically to MICROCLIMATIC OBSERVATIONS AT ENTWETOK, distinguish specifically between Radarscope and Cloud photos, and list the photos required both by dates and by index numbers.

<u>TABLES A AND B</u>. On these photos, true north is directly at the top. The range is 75 miles. Times are correct within 5 minutes.

TABLES C THROUGH F. The camera was hand-held, with orientation usually determined by markers that had been established using a Brunton compass. Directions given are true and are estimated to be correct within 10° (plus or minus). It will be noted that the standard directions were so selected that one of the pairs of photographs from BRUCE was taken facing KEITH and the other was taken 90° clockwise from this direction. Similarly, one of the photographs from KEITH was normally taken facing BRUCE, and the other was taken 90° clockwise from this direction. Directions other than these standard ones were used primarily to avoid having to take a photograph directly into the sun. <u>Quality</u> of the photographs varies. All photos indexed are sufficiently clear to show the general form of the clouds (if any) and the general amount of cloud within the view of the camera (not including high, thin cirrus). However, the photos whose quality is only fair are not sufficiently sharp to discriminate between cloud types that sometimes closely resemble one another, as between cumulus and marginal forms of strato-cumulus (cumulus with some stratification). <u>Times</u> given refer to 180th meridian and are correct within 5 minutes.

PLACE: FRED

INDEX NUMBERS OF RADARSCOPE PHOTOS, AUGUST 18 - SEPTEMBER 1, 1957* (Eniwetok dates and times - 180th meridian)

TABLE A

	TIME						D A								
		<u>18th 19th</u>	20th	<u>21st</u>	22nd	23rd	24th	<u>25th</u>	26th	27th	<u>28th</u>	29th	<u> 30th</u>	<u> 31st</u>	<u>_lst</u> _
	0000			16		32				71	76	9 8	122		
a	0015			17		33	42				77	99	123		
uld	0245			18		34	43				78	100	124		
ation	0300			19		35	44				79	101	125		
1	0315			20		36	45				80	102	126		
:05	0545			21		37	46					103	127	135	
,08	0600			22		38	47			ے 14 نے خان ہے ا		104	128	136	
	0615			23		39	48				81	105	129	137	
75 milea	0845		6	24		40	49				82	106	130	138	
	0900		7	25		41	50				83	107	131	139	153
	0915		8	26			51				84	108	132	140	154
o y r	1145		9	27	، منه بروا که منه که		52				85	109	133	141	
i are	1200			28			53				86	110		142	
	1215		10	29			54		60	72	87	111		143	
cing	1445	1					55		61	73	88	112		144	
	1500	2					56		5 2	74	89	113	134	145	
kwise	1515	3					57		63	75	90	114		146	-*
void	1745						58		64		91	115		147	
A11	1800	4					59		65		92	116		148	
d the	1815	5	11						66		93	117			
	2045		12						67		94	118		149	
	2100		13		30				68		95	119		150	
	2115		14		31				69		96	120		151	
to	2345		15						70		97	121		152	
	~		-/						1.4			_~~			

* Blanks indicate no photograph was obtained.

151

our sherrer.

PLACE:	FREI		NDEX N)PE PHO s and					RY 8,	1958*		TABLE B
TIME						Ţ	AT	E							
	<u>25th</u>	26th	27th	28th	29th	<u> 30th</u>	<u>31st</u>	lst	2nd	3rd	4th	5th	6th	7th	8th
0000		213	234		279	301	316	340	357	380	402	423	445		14. 00 12. 4. 18.
0015		214	235		280		317	341	358	381	403	424	446		
0245		215	236	257	281	302	318	342	359	382	404	425	447		
0300		216	237	258	282		319		360	383	405	426	448	~~~~	
0315		217	238	259	283		320	343	361	384	406	427			
0545		218	239	260	284	303	321		362	385	407	428	449		
0600		219	240	261	285	304	322	344	363	386	408	429	450	~~~~~	
0615		22 0	241	262		305	323	345	364	387	409	430	451		
0845	~_~~	221	242	263	286	306	324		365	388	410	431			
0900		222	243	264	287	307	325		366	389	411	432			
0915		223	244	265	288	308	326	346	367	390	412	433			
1145	201	224	245	266		309	327	347	368	391		434			
1200	202	225	246	267	28 9	310	328	348	369	392	413			. بابه امار هي بين بين اين	****
1215	203	226	247	268	290		329		370	393	414	435			
1445	204	227	248	269	291		330		371	394		436			
1500	205	****	249	270	292		331	349	372	395	415	437			
1515	206	400 MIL 400 MIL	250	271	293	311	332	*****	373	396	416	438			
1745	207	228	251	272	294		333	350	374		417	439	_		
1800	208		252	273	295		334	351	375	397	418				
1815	209	229	253	274	296		335	352		398	419	440			
2045		230	254	275	297	312	336	353	376			441			
2100	210	231	255	276	298	313	337	354	377	399	420	442			
2115	211	232	256	277	299	314	338	355	378	400	421	443			
2345	212	233		278	300	315	339	356	379	401	422	444			

* Blanks indicate no photograph was obtained.

DOF MERCINES

PLACE: BRUCE

1.70

B

INDEX NUMBERS FOR CLOUD PHOTOGRAPHS, SERIES A, AUGUST 21 - 31, 1957** (Degrees show direction in which camera was pointed.)

TABLE C

IOUR:***	0600	0900	1200	1500	1800
DATE 21	0655: 331° B2-9*		241° 83-3* 331° 83-4	241° B3-5 331° B3-6	241° B3-7 331° B3-8
22	0645: 241° 83-11	241° B3-12	241° 84-1* 331° 84-2	241° 84-3 331° 84-4	241° 84-5 331° 84-6
23	0645: 241° B4-7* 331° B4-8		241° B4-9 331° B4-10*	241° 84-11 331° 84-12	241° 84-13 331° 84-14
24	0645: 241° 84-15 331° 84-16	241° 84-17* 331° 84-18*	241° 84-19	241° 85-1 331° 85-2	241° 85-3 331° 85-4*
25	0620: 241° 85-5* 331° 85-6*		331° B5-11*	241° 85-12* 331° 85-13*	241° 85-14 310° 85-16 331° 85-15
26		No photographs	available		
27		No photographs	available		
28				241° 87-14* 331° 87-15*	241° 87-7* 331° 87-8*
29	0645: 241° 87-5 331° 87-6	200° B7-2 241° B7-3			
30		0945: 60° 88-12 241° 88-14 331° 88-13	241° B8-10* 331° B8-9	241° B8-8* 331° B8-7*	241° 38-6 331° 88-5
31	0645: 241° 88-4* 331° 88-3*	241° 88-2* 331° 88-1*			

** In requesting photographs listed above, be certain to refer to <u>A Serie</u> *** The 3-hourly times given at the top of the columns apply except where other times are entered. ž.

Lange Ver Haller

Section Section

HOUR:***	0600	0900	1200	1500	1800
DATE					
18			61° K1-1 151° K1-2	61° K1-5 151° K1-6	61° K1-8 151° K1-11
19	0630: 61° K1-12 151° K1-13	61° K1-17 151° K1-18			
20			1210: 61° K2-2 151° K2-3	1510: 61° K2-5 151° K2-4	1810: 61° K2-6
21		0910: 61° K2-8 151° K2-9	61° K2-10	61° K2-12* 151° K2-13	61° K2-14* 151° K2-15*
22	0640: 61° K2-16* 151° K2-17*	0900: 61° K3-9* 151° K3-8*			
23	· · ·	40° K5-1* 151° K5-2	61° K5-3		
24		No photograph	hs available		
25			61° K6-20* 151° K6-19*	61° K6-18* 151° K6-17*	61° K6-16* 151° K6-15*
26	0655: 61° K6-14 151° K6-13	61° K6-12 151° K6-11	61° K6-9* 151° K6-10*	61° K6-6 151° K6-5	61° K7-2*
27	0700: 61° K7-4* 151° K7-5		61° K7-6 151° K7-7	61° K7-8 151° K7-9*	151° K7-11
28	0650: 61° K7-12				61° K8-2 151° K8-1
29	0645: 61° K8-4 151° K8-3*	61° K8-6* 151° K8-5	61° K 8 -8 151° K8-7*	61° K8-10 151° K8-9	61• K8-12 151• K8-11
30	0700: 61° K8-14 151° K8-13	6 1• K8-1 6*	61° K9-11* 151° K9-10*	61° K9-9 151° K9-8	30° K9-5 61° K9-7 151° K9-6*
31	0645: 61° K9-4 151° K9-3	61° K9-2 151° K9-1*			

DUR ARCHIVES

1.00

PLACE: BRUCE

INDEX NUMBERS FOR CLOUD PHOTOGRAPHS, SERIES B, JANUARY 29 - FEBRUARY 8, 1958** (Degrees show direction in which camera was pointed.)

TABLE E

1 **1**94

HOUR:***	0900	1200	1500	1800
DATE				
29		241° B2-1 331° B2-3	241° B2-4 331° B2-5	241° B2-6 331° B2-7
3Ò	241• B2-8* 331• B2-9*	241° B2-10 331° B2-11	241° B2-12 331° B2-13	241° B2-14 331° B2-15
31	241° B2-16* 331° B2-17	241° B2-18 331° B2-19	241° B2-20 331° B2-21	241° B2-22 331° B2-23
1	241° B2-24* 331° B2-25*	241° B2-26* 331° B2-27*	241° B2-28 331° B2-29	241° B2-30 331° B2-31
2		241° 83-1* 331° 83-2	241° B3-3 331° B3-4	250° 53-5 331° 83-6
3	280° B3-7* 331° B3-8	241° B3-9 331° B3-10	241° 83-11 331° 83-12	241° 83-13 331° 83-14
4	241° B3-15 331° B3-16	241° B3-18 331° B3-17	241° B3-20 331° B3-19*	241° B3-22 331° B3-21
5	241° 83-24 331° 83-23	241° B3-26 331° B3-25	241° B3-28* 331° B3-27*	241° 83-30 331° 83-29*
6	241° B4-1 331° B4-2*	241° 84-3* 331° 84-5	241° 84-6 331° 84-8	
7	0830: 241° B4-9 331° B4-10	241° 84-11	241° 84-13* 331° 84-14	331° B4-15*
8	200° 84-18* 241° 84-16 331° 84-17			

¥

\$2.5

Quality fair only. In requesting photographs listed above, be certain to refer to <u>B Series</u>. The 3-hourly times given at the top of the columns apply except where other times are entered. ** ***

155

Den TROMMES

Sec. 1

^

JANUARY 25 - FEBRUARY 8, 1958** (Degrees show direction in which camera was pointed.)								
HOUR :	0900	1200	1500	1800				
DATE								
25			1010 -1 1	61° K1-2*				
			151° K1-1	151° K1-3*				
26	61° K1-4	61 [°] K1-6	61° K1-8	61° K1-10*				
	151° K1-5	151 ⁰ K1-7	151° K1-9	151 ⁰ K1-11*				
27		61° K1-15	61 [°] K1-17	61 [°] K1-19				
£1		151° K1-16*	151° K1-18	151° K1-20				
	0	_	<u>~</u>					
28	61° K1-26*	61° K1-29	61° K1-31					
	151 ⁰ K1-28	151° K1-30	151° K1-32					
29	70° K2-28	50° K2-26		50° K2-23				
	190° K2-27	140° K2-25	140° K2-24	140° K2-22				
20	50° K2-21	50° K2-19	50° K2-17	50° K2-15				
30	140° K2-20	140° K2-19	140° K2-17	140° K2-14				
31	50° K2-13	70° K2-10	70° K2-8	70° K2-6				
	140° K2-12	160° K2- 11	160° K2-9	160° K2-7				
1	40 ⁰ K2-5	70° x2-4						
T	40 KZ-5	160° K2-3						
	_							
2	70° K2-2	50° K3-33	0	50° K3-30				
	160° K2-1	140° K3-32	140° K 3-31*	140° K3-29				
3	50° K3-28	50° K3-26	50° K3-24*	50° K3-22				
	140° K3-27	140° K3-25	140° K3-23*	140° K3-21				
4	50° K3-20	50° K3-17		50° K3-15*				
4	140° K3-19	140° K3-17		50° K3-15* 140° K3-16*				
			-					
5			50° K3-13 140° K3-14					
			140 K3-14					
6	50° K3-2	50° K4-1						
	110 ⁰ КЗ-1	140° K4-2						
	140° K3-3							
7		50° K4-3	50° K4-5	50° ×4-7				
		140° K4-4	140° K4-6	50° K4-7 140° K4-8				
•				/_ =				
8	50° K4-9 170° K4-10							

DOP AN LINE -

* Quality fair only. ** In requesting photographs listed above, be certain to refer to <u>B</u> Series.

APPENDIX III.

And Barres & Sugar Sec.

BIBLIOGRAPHY

<u>NOTE</u>: The following bibliography is not intended to be comprehensive. Rather it lists works cited in this publication together with a few additional items that may prove particularly useful to those analyzing the data presented in this study.

A. For general information on geology, hydrography, and geography:

- (1) Emery, Kenneth O., "Submarine Geology of Bikini Atoll," Bull. GSA, LIX, 855-60, 1948.
- (2) Emery, Kenneth O., J. I. Tracey, Jr., and H. S. Ladd, "Geology of Bikini and Nearby Atolls," <u>Geol. Surv. Prof. Paper 260-A</u>, Washington: GPO, 1954.
- (3) Gordon, Jr., A. R., <u>Digest of Oceanographic Data for the Marshall Islands Area</u>, U. S. Navy Hydrographic Office (duplicated), March, 1956.
- (4) U. S. Department of Commerce, Coast and Geodetic Survey, <u>Tide Tables 1958</u>, "Central and Western Pacific Ocean and Indian Ocean." Washington: GPO.
- U. S. Navy Hydrographic Office, <u>Sailing Directions for The Pacific Islands</u>, I (H.O. Pub. No. 165A), Washington: GPO, 1952.

B. For meteorological data and discussions of the weather and climate of the Marshall Islands area:

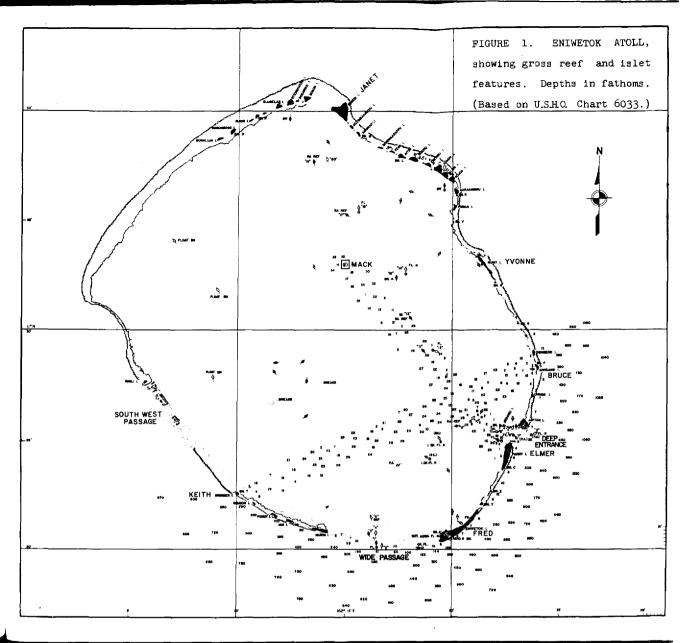
- (1) Reports by Joint Task Force Meteorological Center:
 - (a) JTFMC TP-1 Meteorological Report on Operation REDWING Volume 1, Eniwetok 15 Nov 1956
 - (b) JTFMC TP-5 A Study of the 30,000 Foot Wind Field over the West Central Pacific 20 Dec 1957
 - (c) JTFMC TP-8 Meteorological Report on Operation HARDTACK Volumes 1 - 6 March-July 1958
 - (d) JTFMC TP-15 A Study of the Mean Vertical Wind Structure over the Eniwetok Proving Ground Area 8 May 1959

157

Den 181 MAPS

NOTE: There are several other JTFMC reports that provide marginal information that may be of interest. For a list of these and of reports issued since February 1, 1960, inquiry may be made to: JTF-7 Meteorological Center, c/o Fleet Weather Central, FPO 128, San Francisco, California.

- (2) U. S. Weather Bureau, <u>Climatological Data</u>, <u>Hawaii</u> and <u>Climatological Data</u>, <u>Pacific</u>.
 Prior to 1956, daily rainfall and temperature reports for stations in the Marshall Islands appeared in <u>CD</u>, <u>Hawaii</u>; thereafter they have appeared in <u>CD</u>, <u>Pacific</u>.
- (3) U. S. Weather Bureau, <u>Local Climatological Data</u>, <u>Majuro</u>. This provides fairly detailed climatologic data in monthly and annual summary form.
- (4) Central Meteorological Observatory, <u>Climatic Records of Japan and the Far East Area</u>. Tokyo: CMO, 1954. This provides mean monthly data for the period of Japanese occupancy of the Marshall Islands.
- (5) <u>Mitteilungen von Forschungsreisenden und Gelehrten aus den Deutschen Schutzgebieten</u>, various volumes, 1906-1914. Gives daily rainfall values for stations in Micronesia.
- (6) Schott, Gerhard, "Klimakunde der Südsee-Inseln," <u>Handbuch der Klimatologie</u>, IV, Part T, Berlin, 1938.
- (7) Tüllman, Hubert, Die Niederschlagsverhältnisse der Südsee-Inseln: <u>Archiv der</u> <u>Deutschen Seewarte</u>, LVI, nr. 5. Hamburg.
- C. The references cited above (especially the first three items) provide data that can be used to compile frequency distributions for meteorological variables in the Marshall Islands area. Types of distributions common in meteorology are discussed in the following:
 - Brooks, C. E. P. and N. Carruthers, <u>Handbook of Statistical Methods in Meteorology</u>, M. O. 538. London, 1953.
 - (2) Panofsky, Hans A. and Glenn W. Brier, <u>Some Applications of Statistics to Meteorology</u>, Penn. State Univ., 1958.


DOL PECHUSPO

FIGURES AND PLATES

1

يية : 10 م كانف و أولى ولي تو قو

DOE WE UP FS

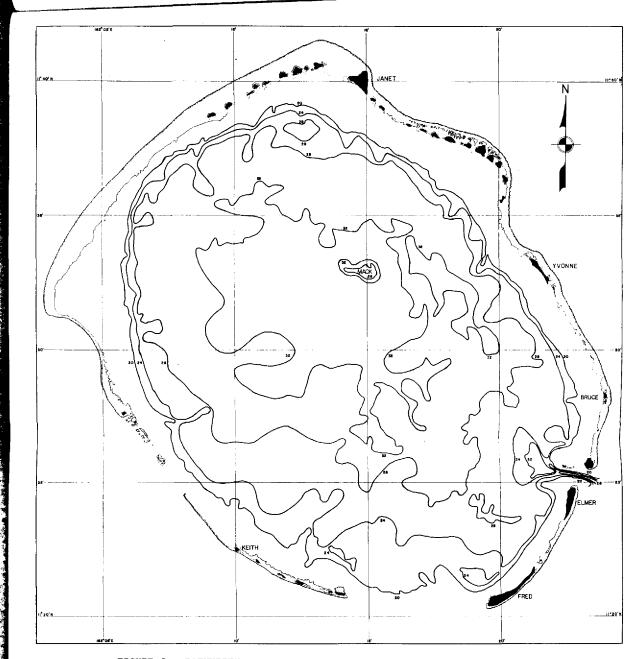
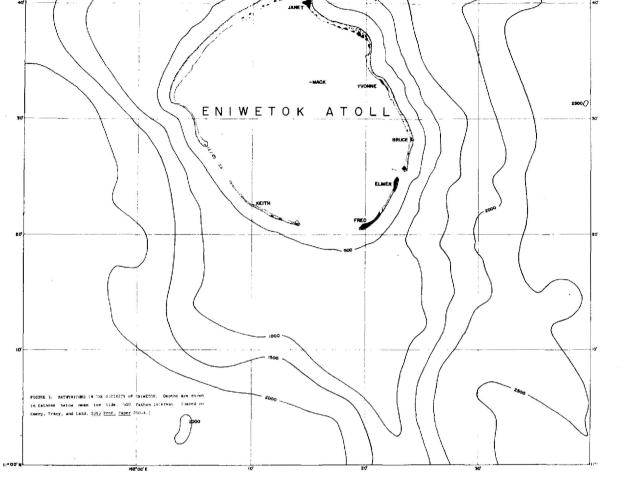



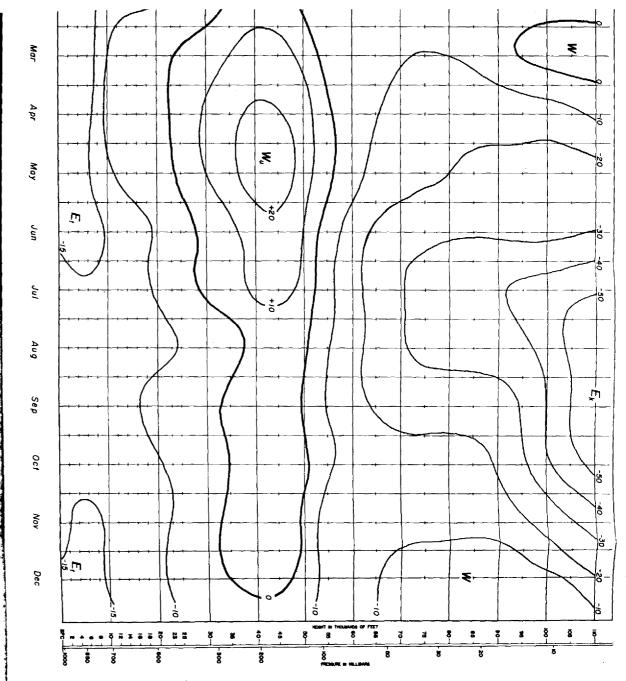
FIGURE 2. BATHYRITHMS, ENIWETOK LAGOON. Values are in fathoms below mean low tide. (Generalized bathyrithms, omitting coral heads and other details, adapted from Emery, <u>Bull. GSA.</u>, LIX, 858.)

Service and and

•

C2500-

N


50 50

1. A.

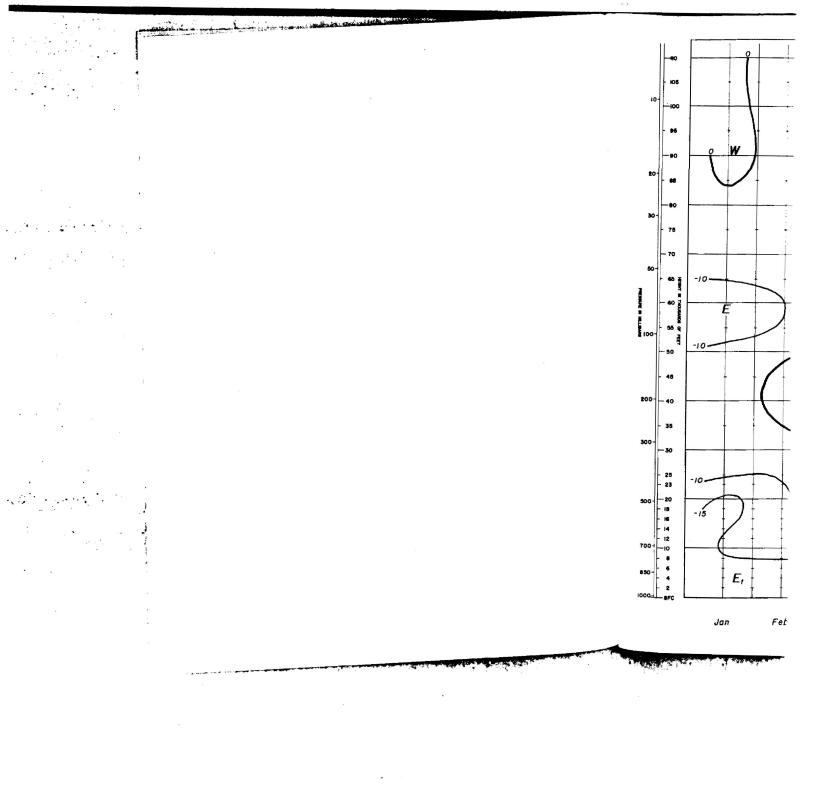
J

DOE ARY

,

のないのであるという

1.1.2.2.

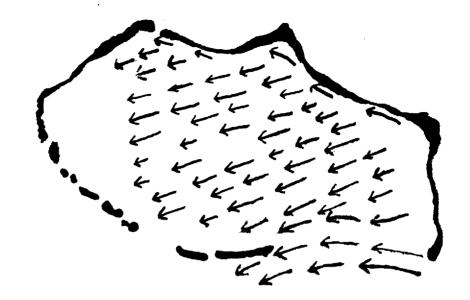

ļ.

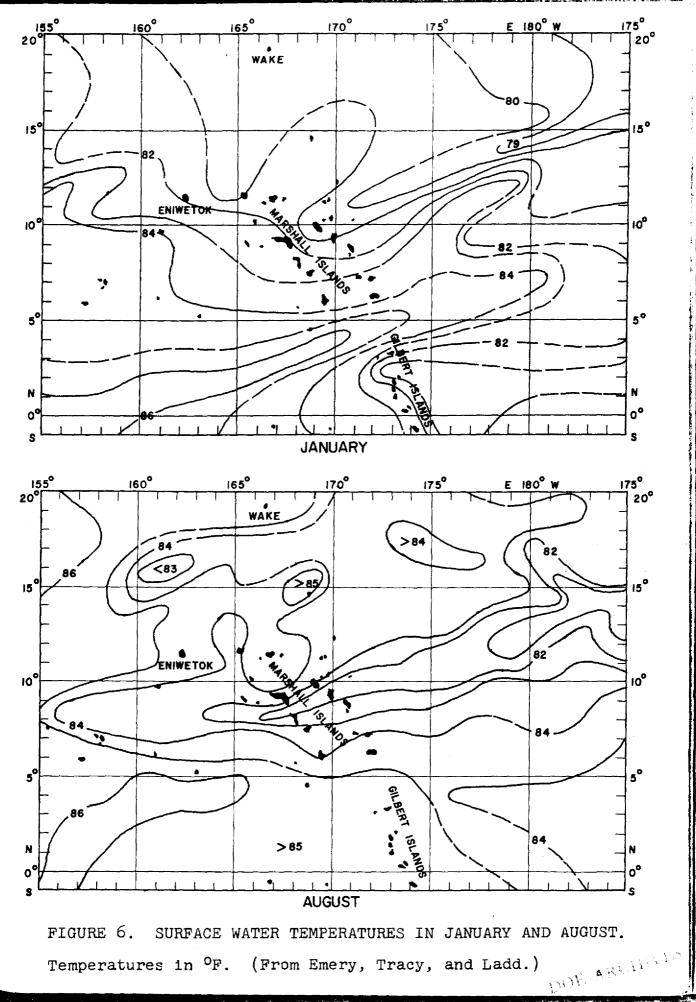
i.

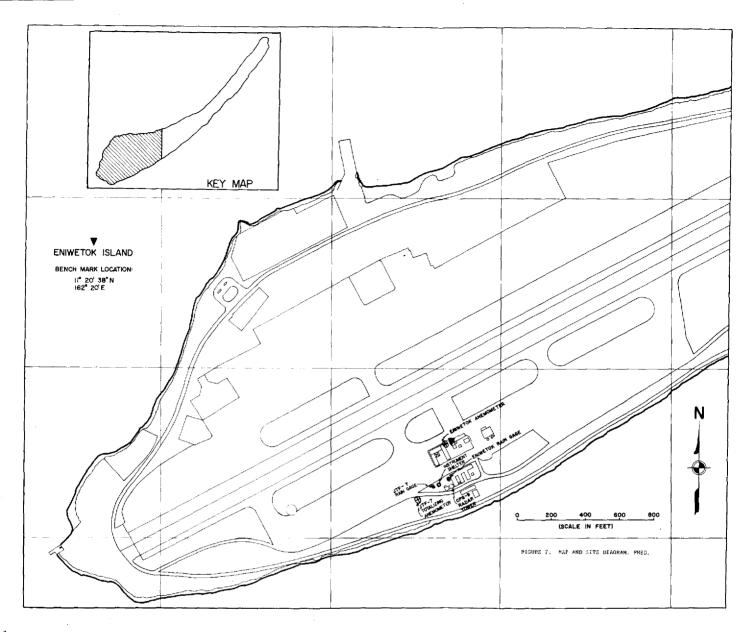
FIGURE 4. MEAN MONTHLY EAST-WEST WIND COMPONENTS, ENIWETOK, AS A FUNCTION OF ALTITUDE. Values in m.p.h., with west wind components positive. E_T : tradewind flow; W_U : upper westerly flow; E_E : equatorial easterlies; E_K : Krakatoa easterlies; W_B : Berson westerlies. (Based on twice-daily soundings, 1949 through 1958, and on additional soundings

NOR NAME AND

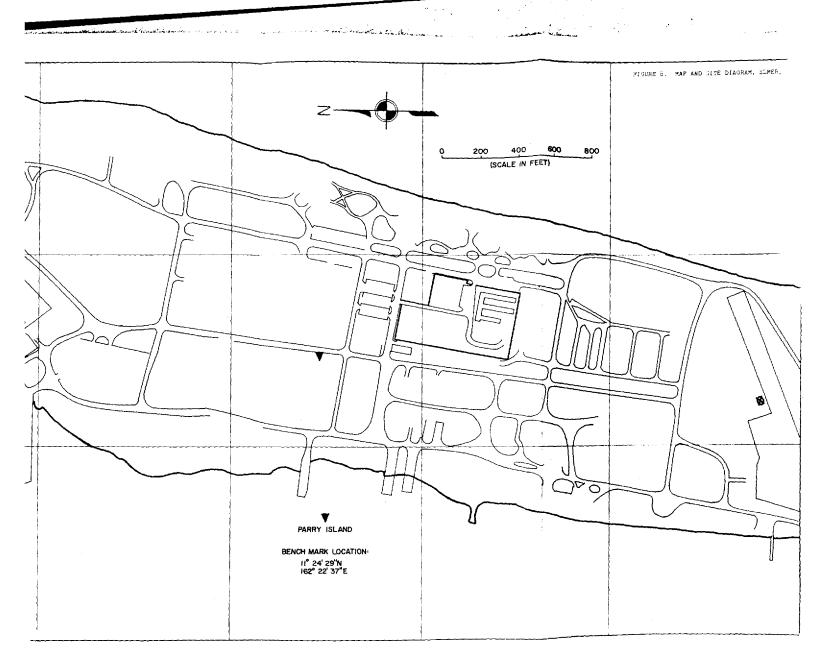
out and HIV 55

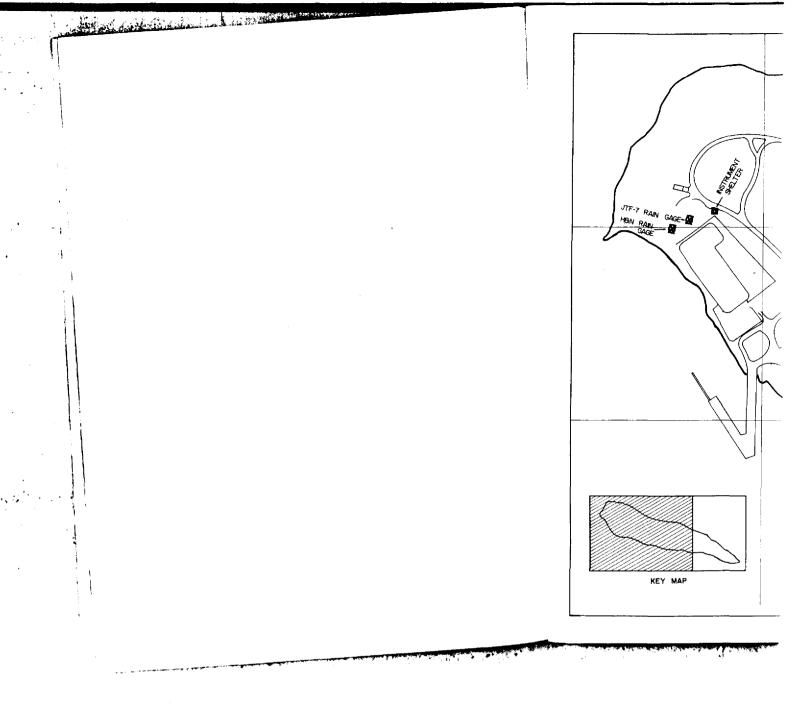



FIGURE 5-A. SURFACE WATER CURRENTS IN BIKINI LAGOON WITH AN ENE WIND. North is at the top of the map. Arrows show the flow pattern. (After A. R. Gordon, Jr.)

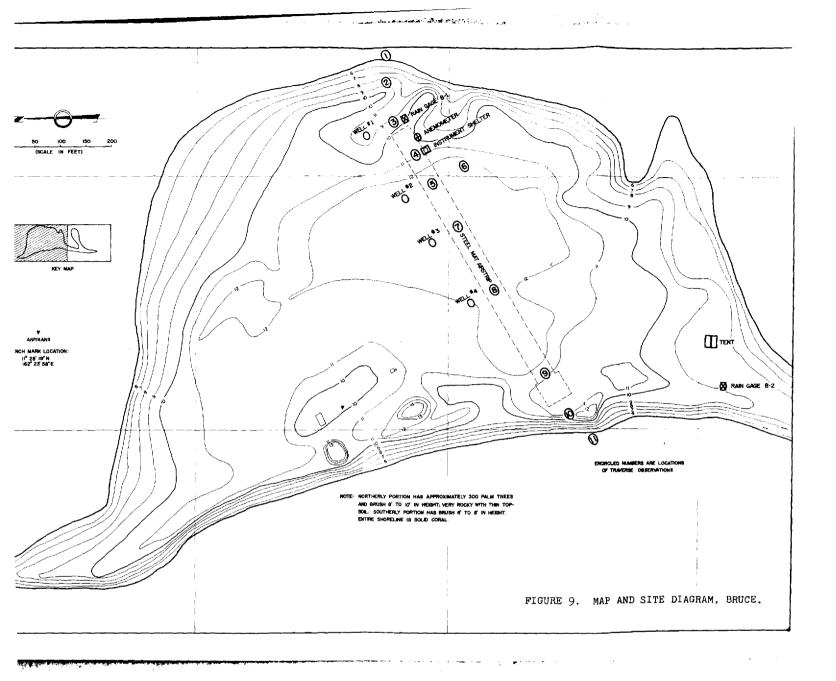

FIGURE 5-B. SURFACE WATER CURRENTS IN BIKINI LAGOON WITH A SE WIND. North is at the top of the map. Arrows show the flow pattern. (After A. R. Gordon, Jr.)

THE ARCHIES

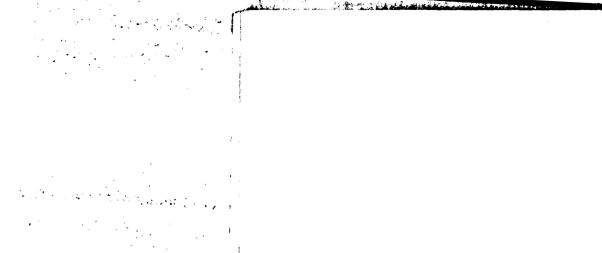



Drye With Provide

17.



•


Depression Price

Carlos Antonio de Carlos d

Section Sheatthe

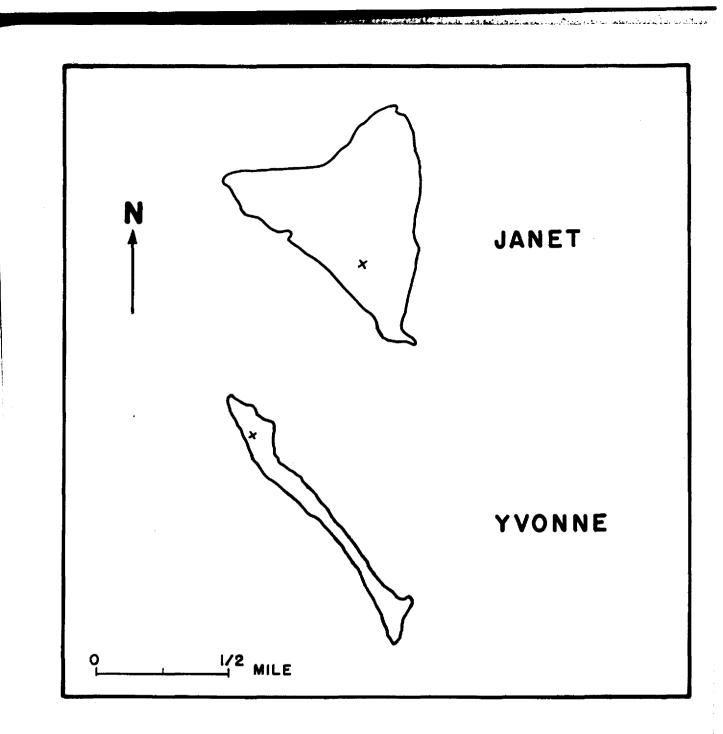
•

.

. .

0

COL MENTERS



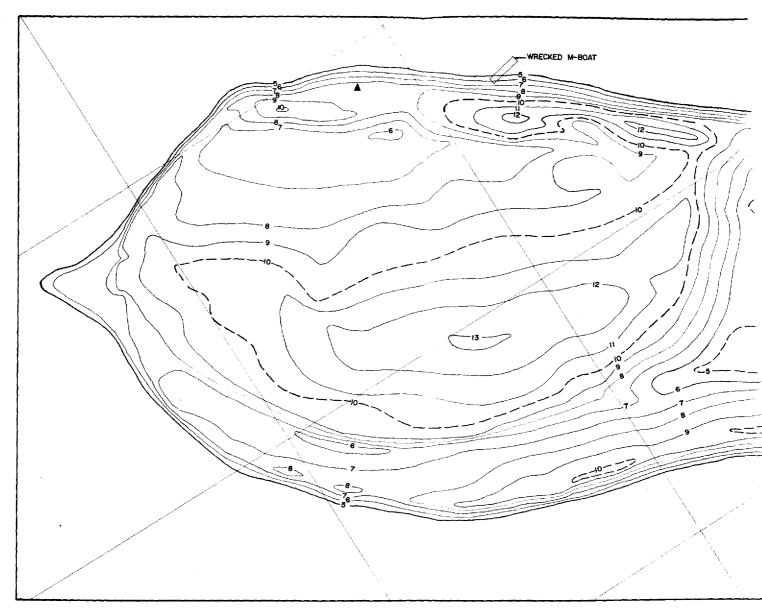
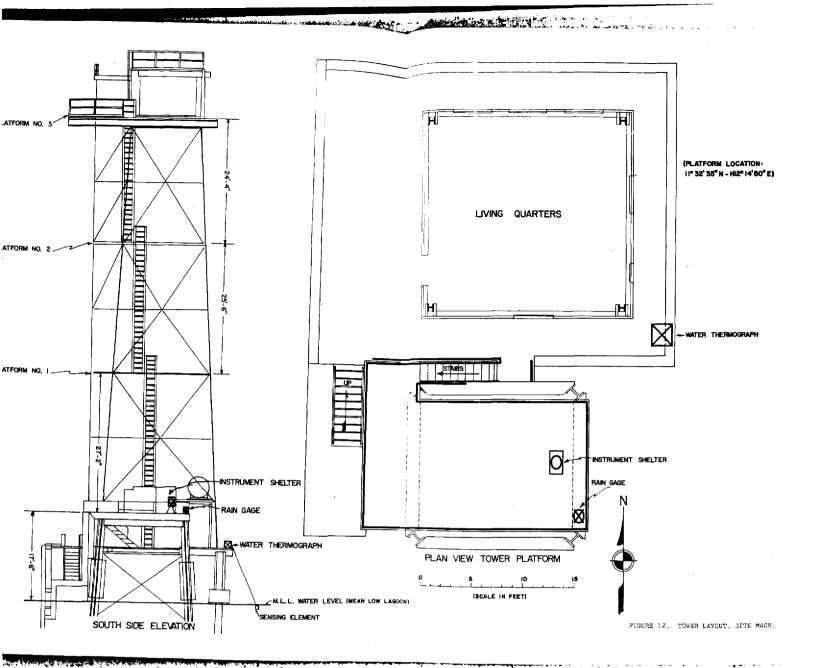
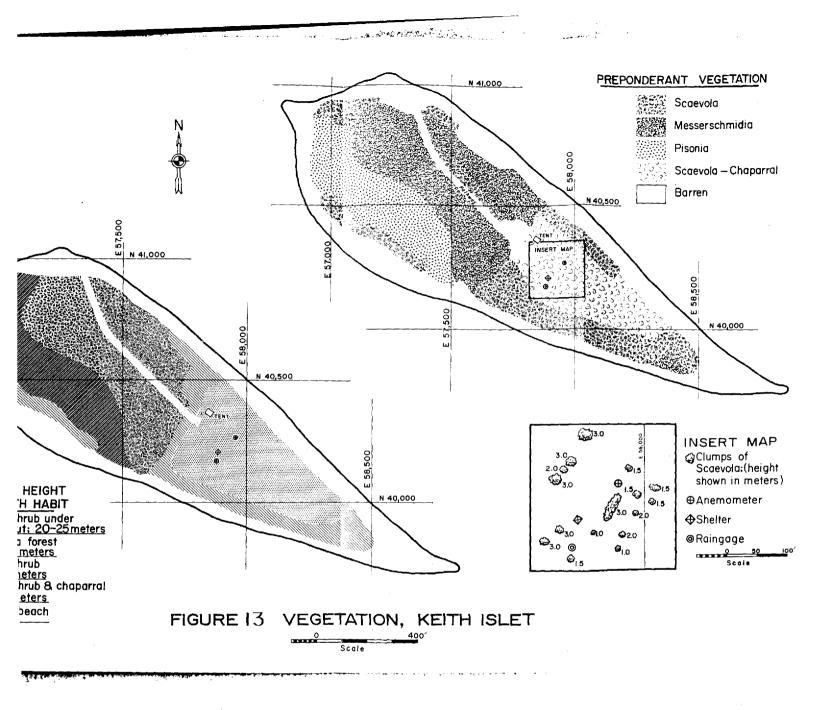
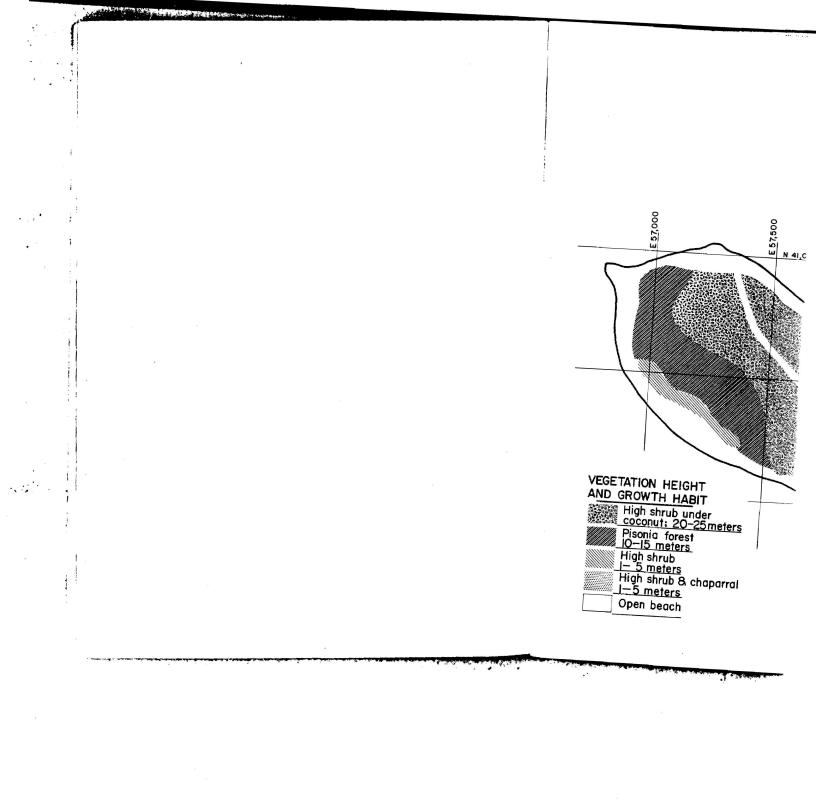


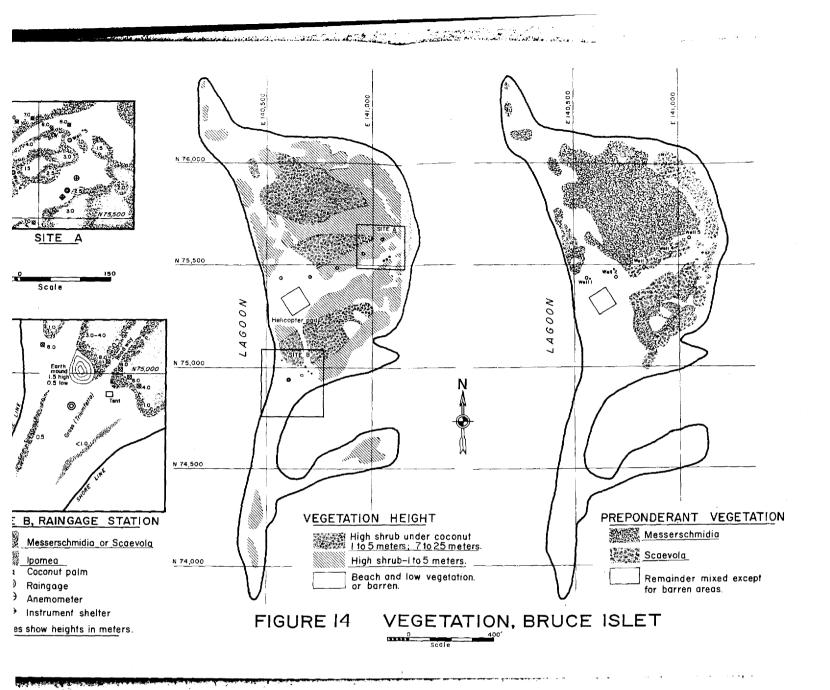
FIGURE 10. SKETCH MAPS OF JANET AND YVONNE ISLETS. Maps are approximate only. Scale correct within 15%. Raingage locations shown by "X". For positions of islets on the reef, see Figure 1.


and the second second

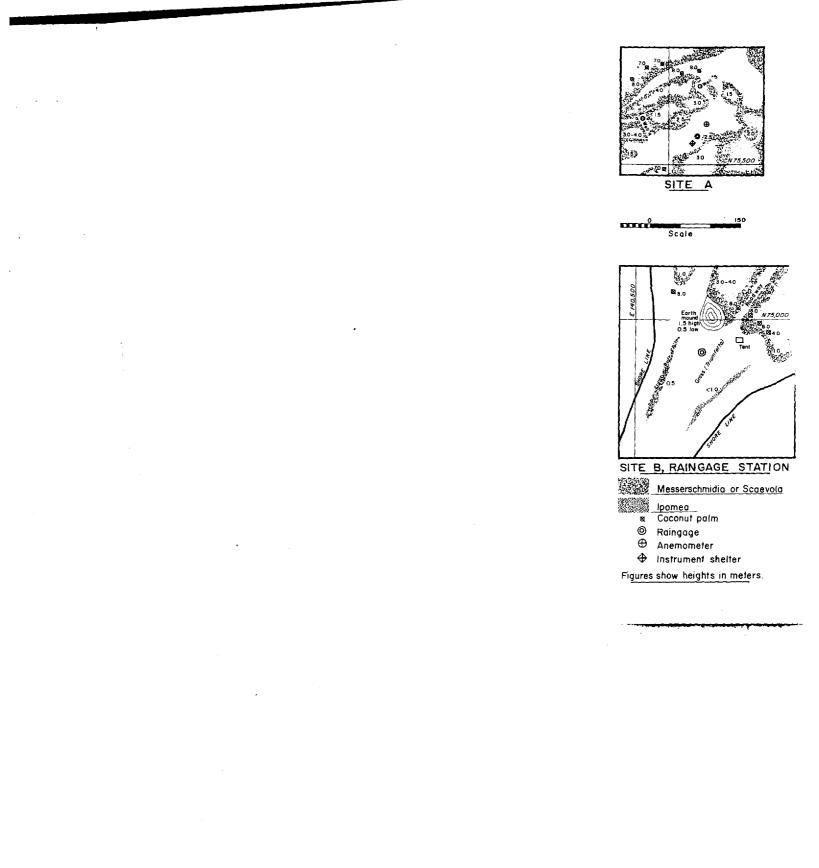



and the second second

.



July and Milling



ALL REALLY ES

ų

and Section 12

.

PLATE I-A. WEATHER INSTRUMENTS, BRUCE Islet, ocean side location. <u>Above</u>: Shelter, anemometer, and raingage, looking east (toward ocean). <u>Below</u>: Same, looking west (down old runway toward lagoon).

HOE RECHILLS

1 . .

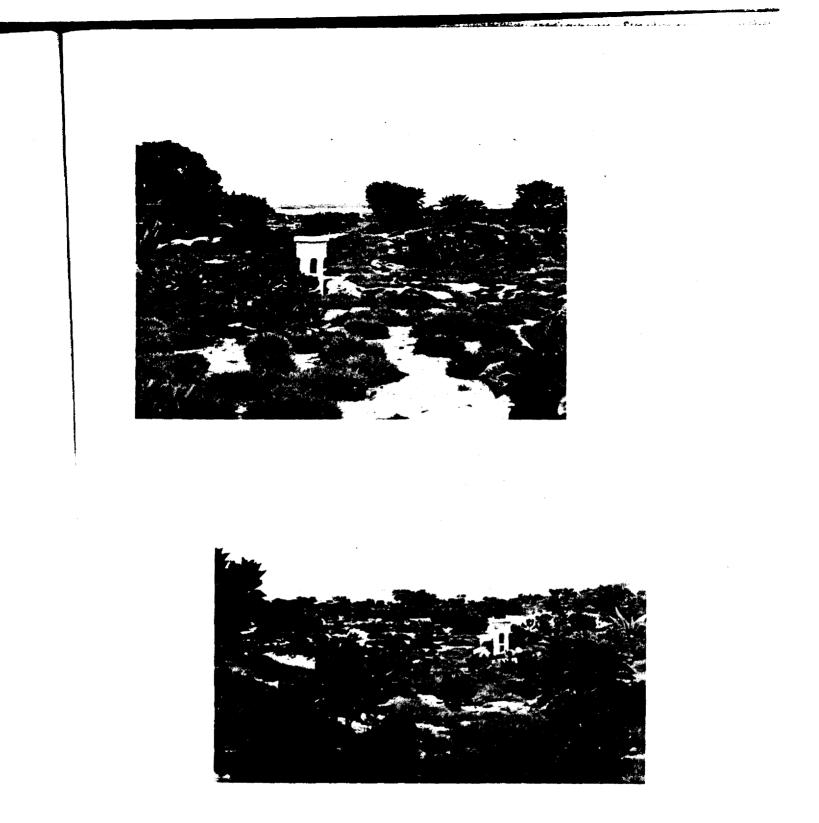
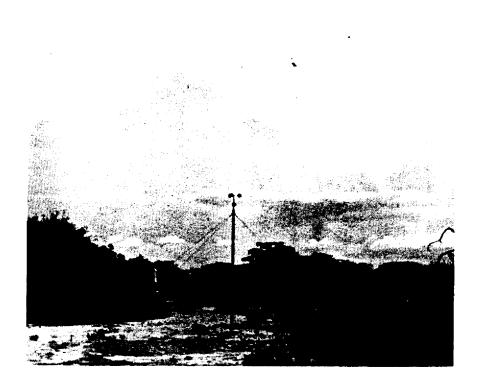



PLATE I-B. RAINGAGE, BRUCE Islet, lagoon side location. <u>Above</u>: Looking east (toward ocean). <u>Below</u>: Looking west (toward lagoon).

DUT ARCHITES

Above: Anemometer and shelter, looking SSW (toward ocean). Raingage is to right beyond shelter.

<u>Right</u>: Anemometer mast, showing barren nature of surrounding ground and looking SW.

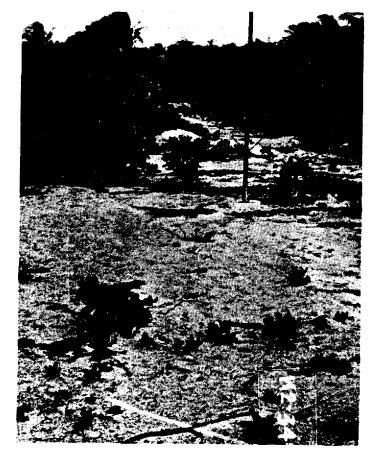
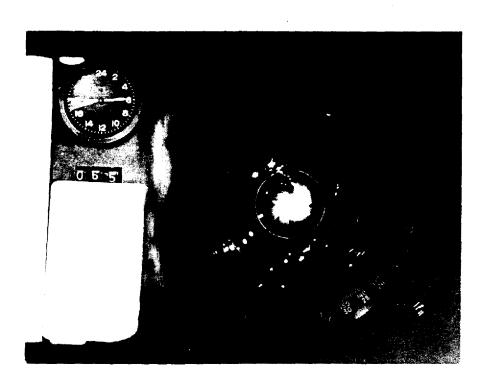



PLATE II. WEATHER INSTRUMENTS, KEITH Islet.

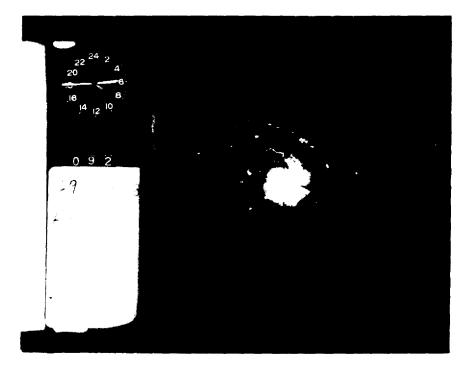


PLATE III. TYPICAL RADARSCOPE VIEWS. Range: 75 miles. North is at the top of the scope.

DUE AROMITEL

manus is in the second interest in the second s

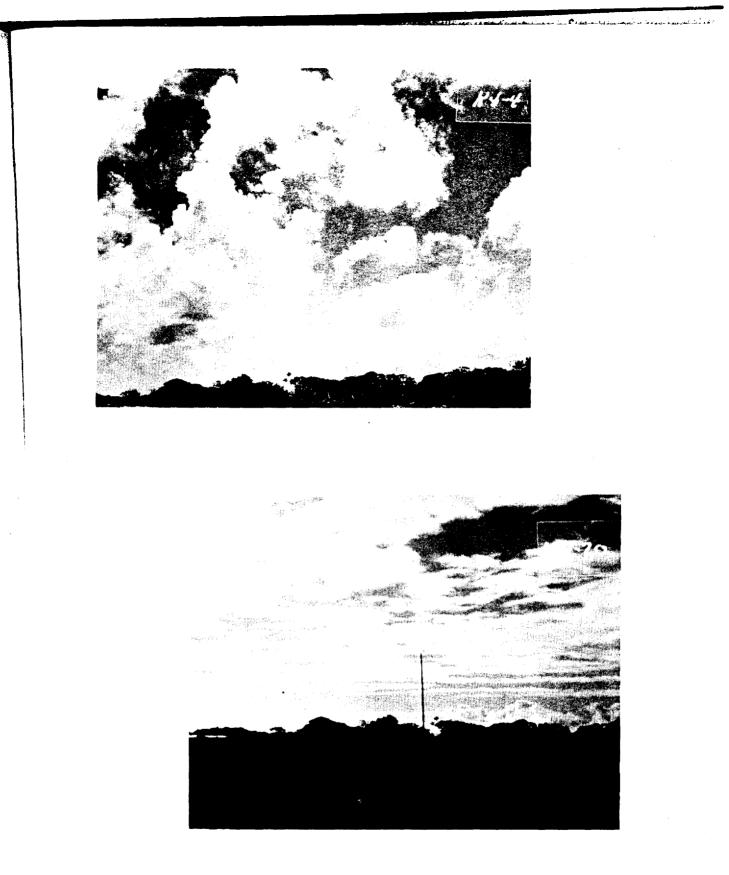


PLATE IV. REPRESENTATIVE CLOUD PICTURES. The two shown were taken from KEITH Islet, January, 1958.

•

1.20