NVO-269-8 (Rev.)

408259

RADIOLOGICAL RESURVEY OF ANIMALS, SOILS AND GROUNDWATER AT BIKINI ATOLL, 1969-1970

VBCHINES

by Edward E. Held

DRAFT

University of Washington College of Fisheries Laboratory of Radiation Ecology Seattle, Washington

> Allyn H. Seymour Director

> > February 1971

Work done under Contract AT(26-1)-269 with the United States Atomic Energy Commission

٠,

RADIOLOGICAL RESURVEY OF ANIMALS, SOILS AND GROUNDWATER AT BIKINI ATOLL, 1969-1970

> by Edward E. Held

المراجع والمراجع المراجع الم

University of Washington College of Fisheries Laboratory of Radiation Ecology Seattle, Washington

> Allyn H. Seymour Director

February 1971

Work done under Contract AT(26-1)-269 with the United States Atomic Energy Commission

Sr-.08, Cs-.13; pelagic tish, reef fish, Co-2.6, spiny lobster, ⁶⁰Co-.12; giant clams, ⁶⁰Co-24; curlews, ⁶⁰Co-.94, ¹³⁷cs-380; turnstones, ⁶⁰co-7.7, ¹³⁷Cs-56; terns, ⁶⁰co-1.1, ¹³⁷Cs-.08. Average concentrations of Sr in the muscle of coconut crabs from Bikini and Eneu Islands were 12 pCi/g wet and .05 pCi/g wet, respectively. There are no striking differences between average values for edible foods of marine origin, including the sea birds, compared with values reported in 1967. Predominant radionuclides in undisturbed soils in 1969 are 55 Fe, 60 Co, 65 Zn, 90 Sr, 125 Sb, 137 cs and 207 Bi. In the crater sediments 55 Fe, 60 Co, 90 Sr, and ²⁰⁷Bi predominate. There are quantitative and qualitative differences in radionuclide content associated with the feeding habit of fish and there appears to be an increasing concentration of some radionuclides with increasing age of fish and clams. The radionuclide content of bird species presents a sharp contrast, both qualitatively and quantitatively, associated with feeding habit. It appears that some Co and Bi is being transported eastward by the bottom current in the lagoon. Silver-108m, previously unreported in fallout, was found in the hepatopancreas of the spiny lobster. Tritium levels in groundwater are within the range of values for continental surface water samples. The present levels of radionuclides and their distribution at Bikini are not likely to change significantly except for decrease in amounts, due to physical decay.

DOE VISCHINES

•

trations of Sr, and covering the village area at Bikini Island with coral gravel from the beaches, which is consistent with local custom and provides a shield against radiation from the soil. The panel also recommended that old structures and other such debris from the tests be removed from the islands and beaches and that the island be further monitored during the cleanup. Additional monitoring was necessary because dense vegetation on

· ·		
<u>َ رَ</u>		
1		
•		
<u>, 1</u>		
		<u> </u>

The panel's recommendations were made to the Chairman of the Atomic Energy Commission, who informed the Secretary of the Interior, the administrator for the Trust Territory of the Pacific.

DOE VECHINES

Health Service took the responsibility for external radiation measurements, and for the collection and analysis of those land plants that are food items; the U of W Laboratory of Radiation Ecology was asked to sample and analyze other biological and environmental samples in 1969. Additional samples were collected in 1970, with the emphasis on air filters and soil samples. The former were analyzed and reported by the U.S. PHS (SWRHL-111r). This report presents the results of the Laboratory's analyses.

SELECTION OF SAMPLES AND SAMPLING SITES

The sampling program was based on the objective of obtaining data for evaluation of potential radiological hazards to man. The samples were limited, for the most part, to things that might be eaten by returning Bikinians, except for land plants. Additional samples, for example soils, crater sediments and groundwater, were taken to provide data for estimating the future distribution and amounts of radionuclides in the biota.

_	
Y .	
-	
r	
n - Chi	

<u>interpopus</u> , some of the spectes of intudend never on	
interpopus, some of the spected of intuction never on	,
Intppopus/. Some of the spected of intudend never on	
Interpopus/. Some of the species of interaction never on . .	
Interpopus). Some of the species of induction never en-	
Interpopus). Some of the species of induction never en-	
Interpopus). Some of the species of induction never en-	
Interpopus/. Bonne OI the spected OI Intuction Actor on	
Interest of the spected of interest of and hereit of the spected o	
Interver of the spected of interver of	<u> </u>
Interpopuls). Bonne of the spectres of financial never en-	
	<u></u>

were found near Bikini Island.

In response to a special request to check the levels of radioactivity at Aerokoj Islet, received during the survey, the land hermit crab, a known concentrator of 90Sr, was collected. Since coconut crabs are both an indicator organism and a food item, they would have been sampled instead of hermit crabs, but coconut crabs were not found on Aerokoj.

Thousands of terns nest at Bikini Atoll, mostly on the western islets. Both the birds and their eggs will be used as food. The terns almost always feed at sea, outside the lagoon or reefs. On the other hand, the curlews and turnstones feed along the shores and on the reef, and the curlew also eats the seeds of an endemic shrub, <u>Scaevola serica</u>, or the beach magnolia. Although the curlews and turnstones are transients and are present in small numbers, at most a few hundred, they contain the highest levels of radionuclides among the birds. Curlews, turnstones, noddy terns, and fairy terns were sampled.

Rats are not used as food but they are the only mammal living on the atoll, and a few were taken to determine their radionuclide content.

Groundwater was collected by driving half-inch pipe with well points into the soil. The well-point sites on Bikini and

-	
-	
ļur -	
Į.	
1	
T.	
	resampred and the subsampres were recained and analyzed indi-
	vidually to indicate the variability between subcomplete Complete
	Aradary to indicate the variability between subsamples. Samples

from soil profiles were taken at well points 1, 4, and 5.

₩Ę)

FIGURE 2.

<u>.</u>			
	7. Ma		
	75 7w		
	7. 14 		
	/ /*		
	л. ж- 		
	n 10		
	7. 7. 		
	// ///////////////////////////////////	 	
	7 72 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
	/		

values were corrected for decay to the date of collection. The error given for individual values is the 95% error.

Strontium-90 Analyses

Strontium-90 was determined by measuring the equilibrium concentration of its ⁹⁰Y daughter. Yttrium-90 was separated by solvent extraction and precipitation techniques (Petrow, 1965), with stable yttrium serving as both a carrier and a yield dewere used for separating and purifying ²⁰⁷Bi. Bismuth-212 was used as a yield determinant.

Plutonium-238, 239 Analyses

1113

extraction and anion exchange techniques (McCowan and Larsen, 1960; Kressin and Waterbury, 1962), with electrodeposition as the final step in the separation. Plutonium-236* was used to determine yield. A quantitative separation of plutonium from the corallire soils and sediments is exceptionally difficult and it is therefore essential that ²³⁶Pu be used as a yield determinant and that counting be done by alpha spectrometry.

Tritium Analyses

Well water samples were measured for tritium content by a liquid scintillation technique with a minimum level of detection of 200 tritium units.

* Provided by the USAEC Health and Safety Laboratory, New York.

and maximum values often differ by factors of four or five and sometimes by a factor of ten. The values for concentration of radionuclides in individual samples are given in Tables 1 through 19.

	Dry weights were used for the basic calculations because	
+- ⁻		
, L.	he true water content of some samples is difficult to determine.	
		_
`		
v		
- ?		
· ·		
· · · · · · · · · · · · · · · · · · ·		
Ę.		

i.				
(
<i>.</i>				
, <u>-</u>				
			I	
}· 				
-				
_				
		p. 474-101		
			<u></u>	
	55 60 Q0 12			

.....

-	
,	

well-point four at Bikini Island were sampled by one-half centimeter increments in 1970, and the samples show a gradient of concentrations of Pu of the samples analyzed.

The radionuclides are available to the land animals through the vegetation, or other animals, where there is selection of specific radionuclides, or through direct ingestion of soil. Similarly, the marine animals may ingest radionuclides by eating another organism or by ingesting sediments. In addition, the marine organism may absorb radionuclides directly from the water, or radionuclides may be adsorbed on the surface of the organism. Although adsorption is an important means of contamination of organisms by fresh fallout, it is probably no longer important

0				
·				
<u>z — </u>				
·				
- (-				
<u>}</u> ,				
•				
	*			
. <u> </u>				
				-
_				
5				
- •.				
12				
19				
·····	me dstionary	Large surrace ar	cu presencea 2. m	

(Table 9).

The spiny lobster, a strictly marine crustacean, contains no detectable 137 Cs or 90 Sr and only small amounts of 60 Co (Table 10).

There are quantitative and qualitative differences in the radionuclide content of organisms associated with feeding habit. The goatfish, a bottom-feeding carnivore, contains more 60 Co and 207 Bi than the convict surgeonfish, a grazing herbivore,

·				
	4			
÷				
			-	
		sk. (* /**********************************		
<u>+</u>				

of ⁶⁰Co in the kidney, and the longer the clam lives in an environment where ⁶⁰Co is available, the more ⁶⁰Co it accumulates in the kidney, if ⁶⁰Co has a long biological half-life. This is not a concentration through the food web, since the clams are filter feeders.

The radionuclide content of bird species presents a sharp contrast, both qualitatively and quantitatively, associated with feeding habit (Table 17). The fairy terns and noddy terns feed mostly at sea outside the lagoon and contain small amounts of fallout radionuclides, less than the amount of naturally occurring

· · · ·	
1	
_ \	
· · · · · · · · · · · · · · · · · · ·	
	Lisnery ranged from 3.3 to 1600 pC1/g dry; most of the values
h	
	ior yerrowith tuna from Bikini (Table 187. it abbears, therefore.
	55
	that a major amount of the Fe in the Bikini tuna is from world-
	wide fallout.

۰.

4.1			
			3
*			
	<u> </u>		
Ţ			

Bravo Crater and 16 miles eastward near Bikini I. is only by a factor of less than two. At the same time, the ⁶⁰Co concentrations in goatfish from near the crater and those at Bikini I.differ by a factor of about ten.

It appears that the physical redistribution of 207 Bi in the lagoon is similar to that of 60 Co, but since the levels of 207 Bi are lower than those of 60 Co by a factor of about 20, we are at

DOE ARCHIVES

19

the limits of detection, with the method used, for samples distant from the crater. The use of larger samples, chemical separation and more sensitive counting methods would make it possible to determine 60 Co: 207 Bi ratios in sediments, lagoon water and organisms in different parts of the lagoon. These ratios would indicate whether transported radionuclides were primarily in solution or on particles. If the ratios remained constant, that would be a strong indication of transport on particles. The results of analyses of selected samples for 207 Bi by gamma-ray spectrometry and by chemical separation are compared in Table 19. Bismuth-207 will be a useful tracer in the future because it has a long half-life, 30 years compared to 5.2 years for 60 Co.

Plutonium-239, with a half-life in excess of 24,000 years, is another potentially useful tracer at Bikini. The presence of ^{239,240}Pu and ²⁰⁷Bi (Table 12) in goatfish viscera is consistent and probably results from direct ingestion of fine particles of sediment during feeding. Two samples of goatfish viscera collected at Nam I. in 1969 contained ²³⁹Pu in concentrations of 13 pCi/g dry and 29 pCi/g dry. The absence of ²³⁸Pu in goatfish viscera as compared with the sediment merely reflects a low concentration of this radionuclide, below the limits of detection.

Although none of the 1969 or 1970 samples were analyzed for the X-ray emitter ⁶³Ni, this radionuclide was found in concentrations of 80 d/m/g dry weight in Bravo Crater sediment collected in 1967 (Beasley and Held, 1969). Nickel-63 is of particular interest as a tracer since it has a half-life of 92 years. In addition, the clam kidney accumulated ⁶³Ni, as it does ⁶⁰Co, and is therefore an indicator organism for the presence of ⁶³Ni.

Another long-lived radionuclide, ^{108m}Ag, with a half-life of approximately 125 years, has been identified for the first time among the radionuclides at Bikini (Beasley and Held, 1970). This radionuclide was first detected from the gamma-ray spectrum of the hepatopancreas of spiny lobsters collected in 1969 (Fig. 4). The spiny lobster hepatopancreas is a known concentrator of silver isotopes (Seymour, 1963). Thus, ^{108m}Ag is another potentially useful long-lived tracer, with its indicator organism.

Tritium in well water is present at low concentrations; the maximum value found in 1969 was 14 pCi/ml, or 4300 tritium units, at Nam I., whereas at Bikini and Eneu Islands the concentration was 2 pCi/ml, or approximately 600 T. U. (Table 15). Samples taken in 1970 from well-points 4 and 5 and from the cistern at Bikini and from the well and cistern at Eneu all contained less than 400 T. U. These values fall within the range of tritium

DOE ARCHIVES

22

	_			
· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·				
1 				
1				
1.6_				
				T
		[í.
	······································	((
				· ·
		(.		
				1
		<u>.</u>		1
				1
				· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
		i .		
		(.		
				4
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·

redistribution within the lagoon, a flushing from the lagoon,

• •

-

or both.

supervised all of the radiochemical analyses and who did many of them himself. Dr. Allyn Seymour and Dr. Beasley were of great help in planning the collections and in interpreting the results of the survey.

I am grateful to Dr. Beasley, Rodney Eagle, Terrence Jokela, and Raymond Lusk for their part in the field collections.

I appreciate the cooperation of personnel of Joint Task Force Eight and Holmes & Narver, Inc., and recognize that the field collections would not have been successfully completed without their help.

We exchanged samples in the field with Drs. John Harshbarger and Donald Squires of the Smithsonian Institution and thank them for samples of coconut crabs from Oroken Island and rats from Bikini Island.

Dr. Jack Tobin, Trust Territory of the Pacific, made valuable suggestions regarding the collections and was instrumental in obtaining the services of two Bikini people to assist with the collections.

William Moore, U.S. Public Health Service, accompanied us during most of the collections and pointed out areas giving the highest external radiation measurements; well water and soil samples were collected from these areas.

The final guidelines for the survey were developed during a preliminary survey of Bikini Atoll in March, 1969 with Frank Cluff and Donald Hendricks, Nevada Operations Office, and Alan Smith, U. S. Public Health Service.

Physics 11:1445-1457.

- Kressin, I. K. and G. R. Waterbury. 1962. The quantitative separation of Pu from various ions by anion exchange. Anal. Chem. 34:1598-1601.
- McCown, J. J. and R. P. Larsen. 1960. Radiochemical determination of cerium by liquid-liquid extraction. Anal. Chem. 32:587-599.
- Moghissi, A. A. and C. R. Porter. 1968. Tritium in surface waters of the United States, 1966. U. S. Dept. of Health, Education and Welfare, Public Health Service, Radiological Health Data and Reports 9(7):337-339.
- Palmer, H. E. and T. M. Beasley. 1967. Iron-55 in man and the biosphere. Health Physics 13:889-895.
- Petrow, Henry G. 1965. Rapid determination of strontium-90 in bone ash via solvent extraction of yttrium-90. Anal. Chem. 37: 584-586.

- Seymour, Allyn H. 1963. Radioactivity of marine organisms from Guam, Palau, and the Gulf of Siam, 1958-1959, p. 151-157. <u>In Vincent Schultz and Alfred W. Klement, Jr. (ed.) Radio-</u> ecology. Reinhold, New York, and Amer. Inst. Biol. Sci., Washington, D. C.
- Sill, Claude and Conrad P. Willis. 1965. Radiochemical determination of lead-210 in mill products and biological materials. Anal. Chem. 37:1661-1671.
- Welander, A. D. 1967. Distribution of radionuclides in the environment of Eniwetok and Bikini Atolls, August 1964, p.346-354. <u>In</u> D. J. Nelson and F. C. Evans (ed.) Symposium on radioecology. (Proc.) U. S. Atomic Energy Commission report CONF-670503.
- Welander, Arthur D., Kelshaw Bonham, Ralph F. Palumbo, Stanley P. Gessel, Frank G. Lowman, William B. Jackson, Raul McClin, Gary B. Lewis. 1967. Bikini-Eniwetok studies, 1964: Part II. Radiobiological studies. U. S. Atomic Energy Commission report UWFL-93 (Pt. II)

DOE ARCHIVES

ı

Radionuclides in the Surface One-Inch of Soil Collected at Bikini Atoll, June 1969

pci/g dry

									901
Sample No.	Island	Location	60 Co	125_{Sb}	137 _{Cs}	207 _{Bi}	90 ^{Sr}	55 _{Fe}	
506	Bikini	W-P-1	42±1.2(1)	67 ± 1.1	1220±8•0	ns ⁽²⁾	462	173 °	
507	=	W-P-2	9.3±.41	12±4 。 3	499±3.3	ns	256	36	
504	=	WP3	43±2•0	88±43	l740±15	ns	830	149	
505	Nam	W-P-1	1.4±.19	6.0±1.5	63± • 18	ns	17.6	8•4	
756	Aomen	ns	17±.45(3)	20±1.7	29±•74	.59±.27		ヤヤて	
755	Enyu	Camp Blandy	, 39± , 13	ns	6.0±.27	.25±.12	·		
757	Oroken	ns	174.41	32±1.7	24± • 69	. 44± . 25		132	
758	Aerokoj	S-11	l.2±.14	ns	2.0±.77	ns		35	
481	Aerokoj	s-6	•28±.11	រ ខ	•694.15	.21±.10	5.6	ທ • ທ	
500	Eneman	"hot" area	186±6(4)	304±25	19±7	8.9±4.5	109	522	
489	Eneman	Seaward Shore	9,0±,80 ⁽⁵⁾	29±3•5	4.1±1.0	2°5±•63	13		
(1) 95% (2) Val	<pre>< counting .ue less th</pre>	error. 1an the 95% co	wurting erro	• بر					
(3) = = = = = = = = = = = = = = = = = = =	73 2.424 ° 65424 1.3424	-4 (27
	· · · · /	2							

•

• , -

***** 444

DOE ARCHIVES

Radionuclides in Soil Collected from the Most Radioactive Part of Eneman Islet, June 1969

				*4	ci/g dry			
Sample No.	Depth (Inches)	60 _{C0}	65 _{Zn}	125 _{Sb}	137 _{Cs}	207 _{Bi}	90 _{Sr}	55 _{Fe}
500	- 1-0	186±5.8(1)	65±24	304±25	19±6.5	8.9±4.5	109	522
496	1-2	63±2.2	17±5.7	66±6.5	4.7±1.6	2.5 ± 1.1	56	177
495	2 - 3	71±2.0	16±5.1	57±5.5	4.7±1.5	2.3±1.0	52	189
503	3-4	79±1.6	22±4.9	51±4.1	4.7±1.2	1.7±.82	52	253
498	4 - 5	47±1.2	15±3.5	38±3.1	4.3±.92	1.9±.62	20	144
502	5-6	12±.53	5.6±1.5	7.6±1.8	4.7±.57	- (2)	49	64
497	6-7	7.0±.41	3.5±1.4	4.9±1.5	4.7±.49	.65±.29	49	ц С
201	7-8	5.1±.41	3.3±1.3	3. 0±1.6	4.4±.53	.44±.29	57	28
499	89	4.1±.37	3.2±1.3	4.0±1.5	3.4±.49	I	51	26
494	9-12	3.2±3.5	2.8±1.2	2.4±1.4	3.0±.45	ł	46	28
493	12-17	4.1±3.1	2.7±1.1	3.6±1.2	4.0±3.9	.34±.22	59	26

(1) 95% counting error.(2) Value less than the 95% counting error.

28

•

0 f
Shore
Seaward
the
ц
Collected
soil
in.
Radionuclides

n

Table

Eneman Islet, June 1969

90 Sr с С ы С Ч ч Ч 11 44 4) 1-1 14 Ц 207_{Bi} 2.5±.63 1.7±.45 1.1±.33 3.94.39 .894.45 .76±.39 .77±.25 l.5±.65 .51±.35 1.4±.41 .74±.47 137_{Cs} 4.1±1.0 3.0±.73 1.9±.55 2.5±.80 1.8±.63 2.2±.74 2.2±.65 1.2±.37 3.9 ± 1.1 2.9±.67 2.0±.51 pCi/g dry 9.7±2.7 125_{Sb} 15±2.5 29±3.5 28±4.3 21 ± 2.4 20±2.5 11±2.4 14±1.9 12±2.5 20±2.9 16±3.1 7.7±2.9 8.8±3.1 6.1±.20 4.6±2.2 4.2±1.6 5.6±2.4 4.2±1.6 4.8±1.8 6.1±1.1 3.7±1.8 3.5±1.2 65_{Zn} 4.9±.35 9.04.30 9.4±.94 6.9±.57 7.14.61 5.4±.51 7.0±.70 6.24.47 6.54.59 8.8±.71 7.4±.61 6000 (Inches) Depth 11-14 10-11 9-10 7-8 8-9 0 - 11-2 2:3 3-4 5-6 6-7 Sample .0N .483 489 492 485 488 486 482 490 487 491 484

DOE ARCHIVES

<u> </u>														
	· · · · ·									7	-			
1														
. 4														
1														
										,				
~														
	,													
							•							
\$ `														
۲ 														
					C									
· · · · · · · · · · · · · · · · · · ·														
		-												
·														
1.4.4														
		_		-										
			,											
~														
T														
										<u> (</u>				
	нс	1 0 - 1 0	<u> </u>	U U	ч г С	3 = -	ល	щ о.	ő -	ы т т		<u>.</u>	а а	
	Ŭ	is,	й —	н.	<u> </u>	ਕੋ -	Ĩ	ц Ш	й ⁻ .	йv	n n n n n n	й.	H	
		а В С			t n	•		с 2 С а		an	ы В С В			
		~		•	•						~ ~			

				, L 2 5 4	•										•
Depth 0-1" Composite Samples		Bul	ldoz	ed Ar	va ea	lues	in pci	/g dr	X	Undis	turb	ed Are	a		
lst Baseline North to 2nd Baseline North	137 _{Cs}		.25 _{Sb}		-	ço ço		137	Cs	12	5 sb		60 Co		
Row 24 " 30 " 38 Lagoon Road	229 + 4 170 + 3 169 + 1 44 + 1	n N N	8 19 19 19 19 19 19 19 19 19 19 19 19 19	0 4 0 . 0 4 0		++ ++ ++ 0 00 -+ 0 0	1 M Q J	362 323 209	+1 +1 +1 4 10 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	+1 +1 +1 10 00 44		124 151 141+1+	б. и. 	÷
2nd Baseline North to 3rd Baseline North															
Row 24 and Seaward Beach Road to inter- section with Row 38	53 + 1.	0	3•4	+ + -		+۱ ص	.21	130	N +1	12	· 4 1	4	3.4 4		
Row 38 to intersection with Seaward Beach Rd.	- 62 +	4	2 8	+	• •	+ 	н •	121	14 14	ω	. 7	3.1	3.1	4	
Seaward Beach Road - 3rd Baseline North to Lagoon Road	62 + 1	Ч	ດ 4.	- 8 - 1 - 8		r • 7	• 22	118	± 1.7	17	-+1	5°0	ຕ. ຜ	4.	
Lagoon Road	• +! 68	7	ຕ ຕ	r-1 +1			.15	82	ທ +I	Ч	4. +	. 65	.72-	- 11	
Air Sampling Stati	ions														
#_ - 1- 0	26 + 21 +	43 24	.96 .70	+1 +1	чω	58 22	+ - 10 10								
ω4	37 ± 1. 20 ± 1.	1 44	н. 	++ 2.0	ထ	. 295 . 295	н н - 18								
۲	54 +	ω	3.4	+ 1.2	• •	6.1	н •								۰.

Table 4 (continued)

DOE ARCHIVES

Table 4 (continued)

+ + + -24 17 5.8 2.2 1.39 .40 .34 - 7 - 7 - 7 - 7 2.2 60 Co 3.2 12 Undisturbed Area 125_{Sb} +1 +1 6.7 35 137_{Cs} Values in pC1/g dry 11 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 **316 558 30 103 103 103 80 103 1049 1049 1049 1049 1068 1068 1068 1068 1068 1068 2255** 6.9 +.49 15 +.49 .13 +.64 1.5 +.25 neg .73 +.21 ns 21 ± 12 .62 ± 17 .38 ± 14 .76 ± 14 .53 ± 12 2.0 ± 23 3.0 ± .17 6.9 ± .49 15 ± .64 60 Co ខ្ល 3.7 + 1.9 3.7 + 1.9 3.0 + 1.9 3.0 + 1.6 2.1 + 1.6 3.8 + 1.4 .6 + 1.4 .6 + 2.5 2 Bulldozed Area 3.0 2.1 2.1 ---н н н н н н н в н н н н н н н в н о п в о о о в п о п в о о о в п о о о о в п о 6.8 221 27 27 1.1 1.1 1.1 5.4 1.1 5.4 125_{Sb} ល 6.8 21 27

 ++
 ++
 ++
 ++
 ++
 ++
 2.0
 3.2
 3.4

 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 ++
 137_{Cs} 181 181 106 106 73 21 22 22 22 22 24 24 Ist Baseline North Individual Cores Depth 0-1" to Centerline 10 1234507 ∞ ന Row 38

微

DOE ARCHIVES

DOE ARCHIVES

i.

33

Table 4 (continued)

			Une	listurbed		
Along Cent	erline	137 _{CS}		125 _{Sb}	60 _{Co}	
Even 2-40	Row 2	50 41	.45	1.2 ± .61	ns	
Soil #58	4	152 +	1.6	10 ± 2.2	3.1+	.25
	9	61 +	г. -	2.4 ± 1.7	ns	
	ω	152 #	1.7	6.9 ± 2.3	2.0 +	. 22
	10	102 ±	.2.4	8.5 ± 3.7	2.2	.43
	12	+i 88	1 . 3	4.6 ± 1.8	1.4 ±	.21
	14	100	.49	1.9 ± .67	-58∔	.12
	16	25 +	.49	1.2 ± .82	.25±	11.
	18	93 4	1.6	3.6 ± 2.2	.72±	. 22
	20	76 +	. 60	n s	. 384	.13
Soil #59	22	143 ±	.93	ns	.67±	.16
	24	41 90 7	.68	2.1 ± 1.2	.52+	
	26	+ı €9	1.2	3.3 ± 1.8	.45+	. 20
	28	111	1.	4.4 ± 1.7	$1.7 \pm$	Ч
	30	134 ±	.88	2.4 ± 1.1	.82±	-16
	32	87 ±	1.5	5.1 ± 2.3	1.4 ±	. 25
	34	168 +	.91	2.0 ± 1.2	1.4 ±	ч. Ч
	36	324 ±	1.6	7.2 ± 2.0	5.4 ±	.26
	38	52	.72	1.4.± .98	.29±	.11
	40	25 ±	.53	1.7 ± .92	.36±	.12

.13

.16 .09 .15

đ	0
C	Q
Н	4F
кЦ.	

HNW4502000HNW4502000

Camp Soj

Table 4 (continued)

DOE ARCHIVES

Table 5

Gamma-Emitting Radionuclides in Soil from Well Point 4, Bikini Island, Collected June 1970

Soil #	57 Depth Cm	60 _{Co}	125 _{Sb}	¹³⁷ Cs
1	05	32 ± 1.7	66 ± 9.2	243 ± 4.9
2	.5- 1.0	30 ± 1.5	60 ± 8.6	274 ± 4.6
3	1.0- 1.5	15 ± .74	23 ± 4.1	302 ± 4.1
4	1.5- 2.0	6.3± 1.1	23 ± 8.0	264 ± 4.7
5	2.0- 2.5	7.8± .95	18 ± 6.6	239 ± 4.1
6	2.5- 3.0	2.2± .77	8.2± 4.7	218 ± 4.4
7	3.0- 3.5	1.6± .74	13 ± 6.0	205 ± 3.7
8	3.5- 4.0	ns	22 ±21	147 ±12
9	4.0-4.5	ns	5.3± 4.2	145 ± 3.7
10	4.5- 5.0	1.7± .39	3.4± 2.0	111 ± 1.7

• •

Plutonium and Cesiam-137 in the Surface One Inch of Bikini Atoll Soils and Bravo Crater Sediment

		_pCi/	'g dry	
	N	239,240 _{Pu}	238 _{Pu}	137 _{Cs}
Bikini Island 1967		<u></u>		
Soil Pit l		5.1 ± 0.3	ns	360 ± 6
" 5		117 ± 7.4	ns	1200 ± 18
" " б		36 ± 2	ns	49 ± 1
1969				
Well Point 1		⊥30 ± 8	ns	1220 ± 8
н и 2		27 ± 2	ns	499 ± 3
" " <u>3</u>		111 ± 5	ns	17 40 ± 15
1970				
lst BL* N to Centerline				
Row 24 Undisturbed	13	74 ± 9	ns	299 ± 2
Disturbed**	13	27 ± 3	ns	156 ± 3
lst BL N to 2nd BL N				
Row 30 Undisturbed	20	65 ± 8	ns	323 ± 5
Disturbed	21	56 ± 8	ns	170 ± 3
lst Bl S to 2nd BL S				
Row 36 Undisturbed	18	87 ± 14	ns	470 ± 9
Disturbed	18	28 ± 4	ns	228 ± 3
Camp area to Lagoon Rd.				
Row 66 Undisturbed	14	16 ± 2	ns	175 ± 2
Disturbed	14	6.2 ± 0.9	ns	90 ± 1
Base Camp, Random				
Sample	16	3.9 ± 0.5	ns	U.2 to 18
Eneu Island				
1969				_
Camp Blandy		.71± 0.1	ns	6.0± 0.3
1970				
North Central				
Undisturbed	5	35 ± 4	ns	156 ± 2
Disturbed	4	3.0 ± 0.4	ns	21 ± 0.5

DOE ARCHIVES

Table 6 (continued)

		pC.	i/g dry	
	N	239,240 _{Pu}	238 _{Pu}	¹³⁷ Cs
Eneman Island 1969				
SW Corner, 0-1" depth 8-9" depth		79 ±3 9.3±0.4	49 ±2 4.1±0.2	19 ±6 3.4±0.5
Bravo Crater 1969		60 ±2	4.0±1	

N Number of subsamples in composite sample ns Not detectable

* BL = Baseline

****** Bulldozed planting strip

NOTE: Multiplication of the above values by 3×10^4 will give an approximate value in units of pCi/m².

Cesium-137 in Rat Tissues Collected at Bikini June 1969 and June 1970

1969

Location	Number of Rats	Tissue	pCi/g dry
1000001011	III TOOLSa Sampes		
Bikini I.	5	Muscle	466 ± 7
Aerokoj I.	1	Muscle	2.4 ± 0.6
11	1	Remainder	1.6 ± 0.4
1970			
Bikini I.			
Camp Area	9	Muscle	827 ± 10
11	11	Lung	705 ± 15
u	If	Liver	627 ± 10
16	11	Bone	187 ± 1.9
Centerlin	e Road		
Sample	1 19	Muscle	340 ± 5.3
11	2 "	\$\$	513 ± 5.9
81	1 "	Lung	525 ± 9.8
11	2 "	11	405 ± 3.5
11	1 "	Liver	402 ± 1.9
11	2 "	11	417 ± 4.2
11	1 "	Bone	334 ± 5.4
11	2 ¹¹	11	221 ± 2.9

·....

Island	n'issue'	samptes	HVY.	Trailge	nvy.	Range
Bikini	Muscle	6	2.7	1.1-3.5	759	429-933
	"Liver"	6	14	5.2-23	305	122-470
	Skeleton	6	nd*	nd34	134	86-209
Envu	Muscle	1.3	.59	nd-1.3	70	32-240
	"Liver"	13	2.6	.76-4.8	29	11-95
	Skeleton	13	.06	nd18	9.9	3.9-30
	Ditolagoon		-			
Orokon	Mucalo	Ę	70	47-1.1	89	52-123
OLOVEU	HUSCIE	5	•70 35	2 0 - 6 4	74	39-118
	TITAGT		J.J	2.0-0.7	24	17-28
	Skeleton	5	.09	nato	24	17-20

* A single significant value was 0.34 \pm 0.27

e der

STRONTIUM-90 IN SAMPLES COLLECTED AT BIKINI ATOLL, MARCH, JUNE, AUGUST, 1969

	Av	erage Va	alues and Range	
	_N (1)	pCi/g Avg.	dry Range	pCi/g wet ⁽²⁾ Avg.
Coconut Crabs				
Muscle Enyu I.	13	2.0	(0.6-3.4)	0.05
Bikini I.	6	50.1	(16.4-99.0)	12
Oroken I. ₍₃) Rukoji I.	5 3	8.9 75.2	(4.9-14.9) (36.6-144)	2.1 18
"Liver" Enyu I.	13	9.6	(3.0-28)	5.1
Bikini I.	6	117	(38.3-204)	62
Oroken I.(3) Rukoji I.	5 3	21.3 116	(15.4-30.0) (57.2-164)	11 61
Skeleton				
Enyu I.	8	97.2	(72.6-113)	75
Bikini I.	6	1410	(912-2035)	1100
Oroken I. ₍₃) Rukoji I.	5 3	346 2330	(184-571) (1200-3870)	270 1800
Troll Caught Fish				
Light muscle	3	<0.1	(<0.1-0.29) (4)	<.03
Dark muscle	3	<0.1		<.03
Bone	3	<0.1		<.04
Ulua (Jack)				
Light muscle	3	<0.1		< • 03
Dark muscle	3	< 0.1		<.03
Bone	3	1.4	(1.1-1.9)	0.6

(1) Number of individuals.

- (2) Converted from dry weight by using average wet:dry weight ratios.
- (3) Collected May, 1967.
- (4) Two samples contained <0.1 pCi/g dry and one sample contained 0.29 ± 0.06 pCi/g dry. We think the sample was contaminated when being ground.

DOE ARCHIVES

Table 10

Gamma-Emitting Radionuclides in Spiny Lobsters Collected at Bikini Atoll, June 1969

Average Values

pCi/g dry

Teland	Tissue	No. of Samples		40 _K	(⁶⁰ co
TOTAUA	TEDDAC	Dumprop	Avg.	Range	Avg.	Range
•···						
Enyu	Muscle	5	12	8.7-15	.30	nd 45
	"Liver"	5	nd		10	6-12
	Skeleton	5	3.0	2.2-4.0	.22	nd80
Namu	Muscle	8	13	8.8-17	.75	.37-1.1
	"Liver"	8	nd		28	15-37
	Skeleton	8	3.3	nd-5.5	.32	.1458
	Remainder	- 8	5.0	2.7-8.5	1.9	.75-2.8

, ,	4
(-	U H
۲ E	T C D T

ł

Radionuclides in Eviscerated Whole Reef Fish Collected at Bikini Atoll, June 1969

Average Values

					ł					
				pC1/4	g dry			рı	C1/g we	ا د ر
Island Common Name	*	6(Avg.) Co Range	13. Avg.	7 <mark>Cs</mark> Range	90, Avg.	Sr Range	60 _{Co} Avg.	137 _{Cs} Avg.	90 sr Avg.
Bikini Mullet	, m	9.6 8	2.9-4.6	.21	.1238	.10	.0512	₽~1 • ►1	.06	0
Goatfish	2	2.8	2.6-2.9	nd**		- 00	.05,.07 16 16***	0 7 8 8	.21	. 0. 040
Surgeon	т	1.7	1.3-2.1	• 73	.6484	•	07.07.		•	
<u>Enyu</u> Goatfish	7	.45	nd,.90	• 08	nd17	not	done	•13	• 05	
Nam Mullet	4	12	8.8-19	. 78	.58-1.1	• 39	.3350	ы 4. 6	.22	.11.
Goatfish	2	32	31,32	. ад	nd62	.77	.61,.93	ט כ י ד ת		4 C
Surgeon	ഹ	2.7	1.6-4.3	.70	.28-1.2	9	.0980	0/• •	0	•
Pilotfish	Ч	5.0		nđ		not	: done	+ +		
<u>Bikini</u> Avg. of Avgs	•	2.8		,31		11.		.79	. 00	.03
Nam Avg. of Avgs (except pilotfish)	•	16		.60				4.5	.17	
*Number of **nd, Not de ***Two sample	sampl stects ss onl	les. 1ble. Ly anal	Value taken .yzed for 90	as zei Sr.	to in compu	ting av	rerages.			

DOE ARCHIVES

	ម័	amma – Em	Collected	onucii at Bik	int Atoll,	June l	969 .			
				Avera	ge Values					
				pC1/	g dry			1	pci/g we	tt
Island		09		13 bud	7 Cs Range	20 Avg.	7 _{B1} Range	60 _{C0} Avg.	137 _{Cs} Avg.	207 _{B1} Avg.
Common Name	× Z	Avg.	Kange	• ה ^א	- Anny	- C			5	
<u>Bikini</u> Mullet	m	9.2	5.7-11	.81	.61-1.1	• 08	nd23	2.6	.23	.02
Goatfish	2	20	17-24	nd		nd		5		
Surgeon	б	9.7	6.2-12	1.6	.78-2.3	nd		2.7	.44	
<u>Enyu</u> Goačf1sh	5	5.8	5.6-6.1	nđ		.13		1.6		• 04
<u>Nam</u> Mullet	4	18	13-22		1.2-1.4	• 30	.1643	5.0	.36	80 r 08
Goatfish	7	216	172-260	nd		11	5.7-12	60	1	-1 [• ()
Surgeon	ស	11	6.0-13	1.4	.81-2.1	.24	nd57	сц С	е С.	· · ·
Flagtail	ы	13				.57		ů n		01.
<u>B1kini</u> Avg. of Avgs.		н Н		.80		.03		3.6	.22	.01
Nam Avg. of Avgs.		82	•	06.		3°8		23	.25	г. г
(except flagtail)										

*Number of samples.

Table 12

scera of Reef Fish 174 \$ (2 1 1 5

43

19:52

DOE ARCHIVES

Gamma-emitting Radionuclides in Goatfich Collected at Nam Island, Bikini Atoll, May 1970

Tissue	60 _{C0}	137 _{Cs}	207 _{Bi}
Eviscerated whole	13 <u>+</u> .28	.72 <u>+</u> .23	1.8 <u>+</u> .16
Viscera	146 <u>+</u> .90	.93 <u>+</u> .42	3.9 <u>+</u> ,49
Muscle	12 <u>+</u> .29	.78 <u>+</u> .26	7.2 <u>+</u> .23
Liver	397 <u>+</u> 2,5	ns	13 <u>+</u> 1.3
Bone	5.3 <u>+</u> .12	_45 <u>+</u> _08	1.1 <u>+</u> .09
Kidney	349 <u>+</u> 6.9	ns	18 <u>+</u> 2,9
GIT	214 + 1.2	.89 <u>+</u> .53	15 <u>+</u> .66
Ovary	179 ± 1.4	ns	3.8 <u>+</u> .72
Skin	26 <u>+</u> .51	ns	3.1 <u>+</u> .27
Remains	35 + .73	ns	3.1 <u>+</u> .37

pCi/g dry

Gamma-Emitting Radionuclides in Troll-Caught Fish, Bikini Atoll, March and June 1969

Averages Values

pC1/g dry

Common Name	Tissue	No. of Samples*	Avg.	40 _K Range	60 Avg.	Co Range	13 Avg.	7 _{Cs} Range
Yellowfin tuna	Light muscle Dark muscle Liver Bone	16 16 15	14 11 10 1.4	13-16 9.0-12 8.6-12 nd-3.4	о. 1.0 60. 1.0 60.	nd26 .08-4.6 .21-5 nd22	. 24 . 10 . 06	nd-1.3 nd32 nd25 nd16
Ulua (Jacks)	Light muscle Dark muscle Liver Bone	4 4 4 M	15 11 14 1.5	12-18 9.6-12 11-18 nd-2.3	.68 12 100 .17	.5290 6.7-20 26-203 nd27	1.2 .53 .09	.83-1.6 .4958 nd81 nd26
Dogtooth tuna	Light muscle Dark muscle Liver Bone	フュフュ	13 13 5,8	10-18	1.1 4.1 20	.77-1.6	.71 .49 .15	.32-1.3

*Individual fish

•.

DOE ARCHIVES

Strontium-90 in Eviscerated Whole Reef Fish Collected at BikiniAtoll, June 1969

Sample			No. of fis	h	
Number	Species	Location	in sample	e Length pC	i/g dry weight
25609	Convict surgeon	Nam	4	158-175mm	0.86 ± 0.05*
25611	H 11	11	6	130-155mm	0.37 ± 0.02
25613	11 11	51	15	112-135mm	0.27 ± 0.04
25615	11 11	31	25	95-110mm	0.14 ± 0.02
25617	11 II	41	19	90-105mm	0.09 ± 0.03
25621	Grouper (muscle)	Nam	3	41,62,78mm	0.29 ± 0.06
25622	Mullet	18	16	150-175mm	0.50 ± 0.05
25624	Mullet	11	15	160-200mm	0.35 ± 0.04
2 5628	Mullet	н	8	195-260mm	0.33 ± 0.04
2 5619	Flagtail	н	8	193-214mm	0.23 ± 0.04
25661	Goatfish	11	4	200-250mm	0.93 ± 0.03
25663	Goatfish	11	3	230-250mm	0.61 ± 0.03
25605	Convict surgeon	Bikini	16	94-115mm	0.16 ± 0.04
25607	11 11	11	4	132–152mm	0.16 ± 0.04
25630	Mullet	. 11	5	220-255mm	0.12 ± 0.04
25632	Mullet	11	13	150–175mm	0.05 ± 0.04
25634	Mullet	11	5	250-300mm	0.12 ± 0.04
25657	Goatfish	11	2	185,190mm	0.07 ± 0.02
25659	Goatfish	12	8	190-220mm	0.05 ± 0.02

* Error is $\underline{1}$ σ

-			
			1
	· · · ·		
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·			
		-	

except naturally occurring 40K.

(2) Two samples consisted of 3 individuals pooled and one sample consisted of 2 individuals pooled.

• **

DE ARCHI 'ES

Gamma-Emitting Radionuclides in Birds Collected at Bikini, 1969

Average Values

			pCi/c	g dry		pCi/o	g wet*
		60 ₀		13	7 _{Cs}	⁶⁰ со	137 _{Cs}
Species and Tissue	No. of Samples	Avg.	Range	Avg.	Range	Avg.	Avg.
Curlew Muscle	3	2.8	nd-6.3	1174	520- 2260	. 94	395
Liver	3	5.9	nd-11	992	605- 1510	2.1	348
Turnstone**							
Muscle	1	23		165		7.7	56
Liver	1	40		98		14	34
Noddy tern***							
Muscle	1	4		.46		1.3	.15
Liver	1	7.6		nd		2.7	nd
Fairy tern***							
Muscle	1	.87		nd	•	.29	nd
Liver	l	1.2		nd		.42	nd

*Calculated from pCi/g dry using average wet:dry ratios.
 **Tissues from 6 birds pooled.
 *** " " 5 " " .

稻

OE ARCHIVES

				pCi/g ar	У
Collection Site	Common Name	Tissue or Organ	No. of Samples	Avq.	Range
Bikini I.	Surgeon	Whole (Eviscerated	2	52	18-85
Enyu I.	Goatfish	Whole (Eviscerated	2	81	74-87
Bikini I.	Mullet	Viscera	3	108	22-228
11	Goatfish	u	2	416	391-442
82	Surgeon	11	2	199	148-250
Enyu I.	Goatfish	н	2	1250	828-1670
Nam I.	Mullet	н	, 3	237	122-348
" " Envu T.	Surgeon Goatfish Grouper	" " Muscle	3 2 4	297 526 13	239-404 366-686 7.7-18
Nam I.		"	1	38	
Enyu I.	11	Liver	4	14,700	9,090-25,600
Enyu Pass	Yellowfin tuna	Light muscle	16	29	8.5-62
н	Ulua	11 11	3	210	72-214
I	Dogtooth tuna	11 H	1	116	
11	Yellowfin tuna	Dark muscle	16	334	108-867
н	Ulua	в н	3	2,950	1,290-3,630
01	Dogtooth tuna	11 11	1	915 · ·	

Iron-55 in Biological Samples Collected at Bikini Atoll, June 1969 Average Values

pCi/c fury

COTTECTION	common	T TOOLC	110.01		
<u>Sitc</u>	Name	or Organ	Samples	Avg.	Range
Enyu Pass	Yellowfin tuna	Liver	16	374	75-894
61	Ulua	н	3	23,400	8,190-40,900
"	Dog tooth t	una"	1	1,528	
Bikini I.	Coconut crab	Muscle	3	5.2	2.4-9.4
Enyu I.	*1	11	9	3.3	1.1-7.2
Oroken I.	11	n	5	13	5.6-15
Bikini I.	61	"Liver"	2	74	65-82
Enyu I.	н	11	5	28	15-44
Oroken I.	H	н	5	54	38-60
Enyu I.	Spiny	Muscle	3	1.4	.96-2.1
Nam I.	n 10DSCEL	н	5	11	5.5-17
Enyu I.	16	"Liver"	3	74	59-96
Nam I.	11	11	5	205	32-420
Enyu I.	н	Skeleton	2	1.0	ns*-2.1 .
Nam I.	н	11	3	2.8	ns - 4.4
Nam I.	11	Remainder	5	18	4.0-32
Bikini I.	Giant clam	Muscle &	5	27	16-51
Nam I.	H H	"	3	85	43-108
Bikini I.	11 11	Viscera	5	47	35-58
Nam I.	21 11	н	4	105	ns - 219
Bikini I.	31 11	Kidney	5	469	163-709

Πĩ.

* Less than the 95% counting error. Taken as zero in computing average.

Table 18 (continued)

			pCi/g dry		
Collection	Common	Tissue	No. of		
Site	Name	or Organ	Samples	Avg.	Range
Nam I.	Giant clam	Kidney	3	182	133-287
Nam I.	Curlew	Muscle	3	72	18-143
	Turnstone	Muscle	1	312	
II	Curlew	Liver	3	2610	312-5810
54	Turnstone	Liver	l(1)	2820	
Oroken I.	Noddy tern	Muscle	1(2)	497	
16	Fairy tern	н	1(2)	425	
81	Noddy tern	Liver	1(2)	1220	
34	N D	п	1(2)	763	
11	Eggs	Albumin	2(3)	12	9.1-15
H	(1	Embryo & yc	lk 1(3)	300	

(1) Six birds pooled.
(2) Five " "

(3) Nine or ten eggs pooled per sample.

DOE ARCHIVES

Table 19

Bismuth-207 in Soils and Sediment Collected at Bikini Atoll, 1969

Sample		Location	Туре	pCi/g dry		
•				Gamma	Chemical	
				Spectrum	Analyses	
				(95%)	
25488		Eneman	Soil 8-9"	0.39±0.40	0.62±0.25	
25500	1	Eneman	Soil 0-1"	8.9 ±4.5*	0.79±0.26	
25500	2	**			0.96±0.51	
25504	1	Bikini	Soil 0-1"	None	0.74 ±0.26	
25504	2	11	Well point 3		0.46±0.36	
25506	1	Bikini	Soil 0-1"	None	1.07±0.31	
25506	2	11	Well point l		0.60±0.26	
25652	1	Namu	Crater	50.0±1.2	56.8 ±0.6	
25652	2	tī	Sediment		53.3 ±0.6	

* High value due to the presence of $102_{\rm Rh}$ which was not included in the reference spectra.

. .

DOE ARCHIVES

*

.

+ ABARCONT

List of Common and Scientific Names of Organisms Collected at Bikini Atoll, 1969

∼ [*]	
Common Name	Scientific Name
Algae	Caulerpa urvilliana
Barracuda	Sphyranea sp.
Clam	Tridacna crocea
Clam, killer	Tridacna squamosa
Clam, horsefoot	Hippopus hippopus
Coconut crab	Birgus latro
Convict surgeonfish	Acanthurus triostegus
Crab, hermit	<u>Coenobita</u> perlatus
Crab, shore	Grapsus grapsus
Curlew	Numenius tahitiensis
Goatfish	Mulloidichyhys auriflamma
Grouper	Epinephelus sp.
Mullet	Neomyxus chaptali
Parrotfish	Scaridae
Pilotfish	Kyphosus cinerascens
Rat	<u>Rattus</u> sp.
S kipjack	Euthynnus yaito
Snapper	Lutjanidae
S piny lobster (langouste)	<u>Panulirus</u> sp.
Tern, fairy	<u>Gygis</u> alba
Tern, noddy	Anous stolidus
Tuna, dogtooth	Gymnosarda nuda
Tuna, yellowfin	Thunnus albacares
Turnstone, ruddy	<u>Arenaria interpres</u>
Ulua (jack)	<u>Caranx</u> sp.

53

62

÷