MARSHALL ISLANDS FILE TRACKING DOCUMENT

ماريخ وگريمواه بيهد در زر رو

File Na	me (TITLE): <u>A</u>	Padrologic.	I Study of	. Longelag	2. Apel
Docum	ent Number (ID): <u>[// (</u>	UFL-42			<i>195</i> 4-55
DATE:	8/1955		,		
Previou AUTH	is Location (FROM):	Son			
Addditi	onal Information:				-,
					
				۳۰۰۰۰۰ ۱۹۰۰ - ۱۹۰۰ - ۱۹۰۰ - ۱۹۰۰ - ۱۹۹۰ - ۱۹۹۰ - ۱۹۹۰ - ۱۹۹۰ - ۱۹۹۰ - ۱۹۹۰ - ۱۹۹۰ - ۱۹۹۰ - ۱۹۹۰ - ۱۹۹۰ - ۱۹۹۰ -	

OrMIbox: ______
CyMIbox: _____

Charles Stores Store

UWFL-42

PAR **P**

9

Ť

٠<u>٠</u>,

A RADIOLOGICAL STUDY OF RONGELAP ATOLL, MARSHALL ISLANDS, DURING 1954-1955

n Baran (n. 1997), an Santa a Santa an Sant

Applied Fisheries Laboratory University of Washington Seattle, Washington

Lauren R. Donaldson Director

August 15, 1955

Operated by the University of Washington under Contract No. AT(45-1)540 with the United States Atomic Energy Commission.

Contente

;

するのであるという

:..

;

1.2.5

÷

ł

4

eline StorBack of

> : 1

,

.

South and and and and

Contra Vanken

たいないである

1.1

.....

+1. 3. ×1. 1124

	Page
Introduction to arreade at the general works	
Sample processing procedures and techniques	63 *1 8 - 8
Radioactivity and its rate of decline in for items	6 .
Evaluation of radioactivity in the biologics samples Fish	9 Treshesa 9
Invertebrates Land plants and algas	2000 200 11 120 000 2000 11
S. Birde Lission in son characters of Archig S. Sec. Liberts & Since Scherlie Themesica Plankton	14 12 12 12 12 12 12 12 12 12 12 12 12 12 1
Sollesses in the second state of the second st	
Evaluation of the chemical analyses of the blological samples	aerol é A ^{na (2} 2) 23 114
Study of the rate of physical decay of radi in the biological samples	etion 26
in de leven dat generalistichen einen de de landen einen einen de de Appendix de leven Constant en dat generalistichen genera	1975 30 1997 - 30 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
9. C. Levelov of cubicscience of in Prove and printing from markin congressive cubics marks to the Assess We left oblights.	1. 200 12. 200 12. 12. 12. 12.

Pigures کې بېدې ورو ورو ورو د کې د ورو ورو کې ورو

Ν 1 , Stor. ,

Antite to a serve

ŧ, مقت الخنيكة وا

and the second

たいというという

いため、これを見るい

「「「「「「「「「「「「」」」」」

÷,

.

and the second secon

.

:

Figure No	2.	Page
1.	Collecting areas at Rongelap Atoll	
2.	Rate of decline of radioactivity of Rongelap foods	бъ
3.	Average emounts of radioactivity in micro- curies per kilogram in fish tissues from Kabelle Island 1954-1955	9a
4 .	Average amounts of radioactivity in micro- curies per kilogram in liver, bone and muscle of carnivorous and omnivorous fishes from Kabelle Island 1954-1955	10a
5.	Radioactivity in microcuries per kilogram in fish tissues collected in the vicinity of Rongelap Atoll, December 1954 and January 1955	270 10b
6.	Radioactivity in sea cucumber (<u>Holothuria</u> <u>atra</u>) tissues from Kabelle Island 1954-1955	11a
7.	Radioactivity in giant clam tissues: <u>Hippopus</u> on March 26, 1954 at Kabelle; <u>Tridacha</u> on July 16, 1954 at Kabelle, on January 28, 1955 at Labaredj and on January 30, 1955 at Gejen	11b
8.	Radioactivity in tissues of the land hermit crab, <u>Coenobita</u> , on March 26 at Labaredj, on July 16, 1954 at Kabelle, and on January 26, 1955 at Rongelap	110
9.	Rate of decline in land plants, algae and soil samples at Kabelle 1954-1955	13a
10a.	Decline of radioactivity in muscle, liver, and kidney samples from north Rongelap expressed as a ratio to the March 26, 1954 collection (birds)	15b
106.	Decline of radioactivity in bone and ileum samples from north Rongelap expressed as a ratio to the March 26, 1954 collection (birds)	150
	CONFIDENTIAL	

Figures (continued)

あたけのという

2

計びるが

CHO MADE

Contraction of the second second

 Semi-log plots of decay turves of gastric mill of crab, Grapcus grapcus, and muscle of sea cucumber, Holothuria atea, collected March 26, 1957 at Kabelle particular Log-log plots of Rongelap decay samples of from Kabelle, and soil on which decay Log-log plots of radicative decay rate of the formation factors were based from Kabelle, and soil on which decay Log-log plots of radicative decay rate of surgeon fish (Acanthurus elongatus) collected Log-log plots of radicative decay rate of surgeon fish (Acanthurus elongatus) collected March 26, 1954, and of liver and muscle of surgeon fish (Acanthurus elongatus) collected Additional complex from the decay for and anoth from strangelap decay sector fish and the strangelap acapter to Mological sector fuel complex for and a coll from strangelap camples and a collected of log-fisher for additional complex from from the Mological sector fuel complex for and a collected of log-fisher for a collected of log-fisher a collected of log-fisher for a collected of log-fisher a collected of log-fisher for a collected of log-fisher a collected of log-fisher a collected of log-fisher a collected of log-fisher a log-fisher a collected of log-fisher a collected of log-fisher a c	Pigure N	<u>o</u> .	Page
 March 26, 1957 at Kabelle second as a second seco	11.	Semi-log plots of decay curves of gastric mill of crab, <u>Grapsus grapsus</u> , and muscle of sea cummber, Holothuria stra, collected	and the second s
 12. Log-log plots of Rongelap decay samples of March 26, 1954: plankton from Labaredj; muscle and mantle of glant clam, <u>Hippones, from Kabelle; and soll on which decay</u> 13. Log-log plots of radicactive decay rate of in coconut milk, <u>(Cocos)</u> collected December 8, 1954 at Kabelle, and of liver and muscle of surgeon fish <u>(Acanthurus elongatus)</u> collected 7. Nuly 16, 1954, as solitoneration in a solit from Acastle and an and muscle and muscle and a soliton the surgeon fish <u>(Acanthurus elongatus)</u> collected 7. Nuly 16, 1954, as solitoneration in a solit from Acastle and collected response in a solit from Acastle and a soliton in a s	er pet pri s trate	March 26, 1954 av Kabelle persons das	27a
 from Kabelle; and soll on which decay f. convection factors were based to be the solution of the solution of	12.	Log-log plots of Rongelap decay samples of March 26, 1954: plankton from Labaredj; muscle and mantle of giant clam, Hippopus.	by and an and a second se
 13. Log-log plots of radioactive decay rate of % coonut milk, (Gooss collected December 8, 1954 at Kabelle, and of liver and muscle of surgeon fish (Acanthurus elongatus) collected % August 16: 1954, and sector collected in notif from screening Atoll % Addio-streaking the redio-collected in notif from screening Atoll % Addio-streaking the redio-collected in Notific screening at the redio-collected in Michogacal surging from Special expression at the singe of the log-log redionership of autivity of the log-log relation and he she singe of the log-log relation and at the singe of the log-log relation of autivity of the screening Atoll, 1. Addio-screening of Correctionates educe first accels activity of correctionates activity at the second activity at the seco		from Kabelle; and soil on which decay correction factors were based	276
 Surgeon Lish (Academic Constraint) Collected Ally 16, 1954, and and a call and a call in a second and a call investigation in the biological surples from the collected in the biological surples from the callest of the biggins constant of a call and a call in a free free constant of the biggins in the callest of the biggins of a call and a call in the callest of the biggins in the callest of the biggins of a callest of the biggins of a callest of the biggins of the biggins in the callest of the biggins of a callest of the biggins of a callest of the biggins of a callest of the biggins of the biggins of a callest of the biggins of the biggins of a callest of the biggins of the biggins of the biggins of a callest of the biggins of a callest of the biggins of the biggins		Log-log plots of radicactive decay rate of coconut milk, (<u>Cocos</u>) collected December 8, 1954 at Kabelle, and of liver and muscle of	105 15a
 VIX. Astionations and sidianceptre in Municipal complex Asea Respire to the Municipal Asea Respire to the State Respire to the State Result in 1988 of antivity of the Institute in 1988 of antivity of the Institute Asea in the State Result in 1988 of antivity of the Inst Perselop Andlin 39 Scient the neuron of finites I. Redictorized of Constant Perselop Andlin 39 Scient the constant of finites I. Redictorized of Constants States educe finite constants of antivity of the Perselop Andlin 39 Scient the constant of finites I. Redictorized of Constants States educe finite states I. Redictivity of constants from Perselop Andlin 39 Scient to the Science Perselop Additional 39 States I. Redictivity of constants from Perselop Addition 39 States I. Redictivity of constants from Perselop Addition 39 States I. Redictivity of constants from Perselop Addition 39 States I. Redictivity of constants from Perselop Addition 31 States I. Redictivity of constants from Perselop Addition 31 States I. Redictivity of constants from Perselop Addition 31 States I. Redictivity of constants from Perselop 31 States I. Redictivity of constants from Perselop 31 States I. Redictivity of a constants from Perselop 31 States I. Redictivity of a constants from Perselop 31 States I. Redictivity of a constants from Perselop 31 States I. Redictivity of a constants from Perselop 31 States I. Redictivity of the Perselop 31 States 	stierts A.J. z	surgeon fish (<u>Acanthurds elongatus</u>) collected 3.July 16, 1954, and sodic-coloins in 3.011 from Stockies Abeil	270 233
 Viii. Dromy rates of Hengeley camples expressed as the slope of the Lageley polythormally of autivity of the Annual 1, 1995 Reducedually of the Annual Science Atoli, 1995-90 Reducedually of the Annual states of the outele contact of Science atoli, 1995-90 Reducedually of Correlatedor chart the outele collected at Second Science Atoli, 1995-90 Nedicectivity of cars: free Persons atoli, 1995-90 Nedicectivity of cars: free Persons atoli, 1995-90 St. Reducedually of carse Persons atolic persons atolic persons atolic persons atolic persons atolic persons at persons atolic persons atolic persons atolic persons atolic persons atolic persons at persons a	· 전 建 2000 2000 (11) 10:10 (20) 10:10 (20) 10:10 10:10 (20) 10:1	Astio-straction and said asterna in Malogael areas from Respire Leal	
 Indicativity of the iters Forestop Andl. I. Reflectivity of the iters Forestop Andl. Detent fits cases of finites II. Madiene truits of investments when the ecodes addeneed as Seconds, the addeneed as Seconds, 1998. Net sectivity of surel free Persons Atult. Net sectivity of seconds free Hengeles atult. Reflexestivity of seconds free Hengeles atult. Reflexestivity of seconds free Hengeles atult. Reflexestivity of seconds free Hengeles atult. Betweet is a first free hengeles atult.<		Drow rates of Hedgeles camples expressed as the slope of the log-leg reletionship af activity to time after March 1, 1954	
 Reductly of the term Frankley Apoll, 1995-95 Activity of the term Frankley Apoll, 11. Madioscoly of Constantiates where then could address at Newporth Apoll, 1995-95 Nadioscolyity of court from Parceley Atoli, 1995-95 Nadioscolyity of court from Parceley Atoli, 1995-95 Nadioscolyity of court from Parceley Atoli, 1995-95 Nadioscolyity of courts from Parceley Atoli, 1995-95 		ikica (kyrasica)	
 Seisel'dis casus of fields II. Madioscourt of Experiences size: source actions of Experiences size: action action at hermoles seed: lefters Netionscivity of const from Forgeles actions is a constant of the States IF. Redioscourt of constant from Forgeles atom, 1955-55 	in the	Independent of fight liver Parawich during autili, 1994-199	
 Madioscouvity of invariantics view time. courts collected at herporty stati. Aspined; Medioscolyticy of const from Perspines Atoli, 1958-33 Redioscolyticy of constant from Perspines. Redioscolytics of constant. 		Satati the cases of filters	a
III. Modiomonivity of corri free Forgeley Adult, 1954-55 IV. Rediverbivity of concentr free houghly Aboll, 1954-55	in the international and an all	Mafiration of interaction date then anothe schlering as benefits addited lapte S	
IV. Redicestivity of measure some houghless About, 1954-55	ang an ang Bara San ang ang ang San ang ang ang ang	Modiancuivily of termi from Yangaley Atuli, 1924-93	مر م معرفی روید کرد. روید کرد.
	े. 	Refinestivity of Associate free Sougelog Atolly 1954-55	

Tables (Text)

		Tables (Sext)	48
Styres I.	Table No.		Page
	1.	Radioactivity of foods from Rongelap Atoll, 1954-55	6a
1997 1997 1997 1997 1997 1997 1997 1997	II.	Coefficient of variation in percent for values in Table I	- 6a
	III.	Radioactivity of fish caught at Kabelle Island, Rongelap Atoll	9b
	ÏV.	Radioactivity of fish caught at Rongelap Atoll, other than at Kabelle Island	100
	V.	Radioactivity of Rongelap birds and bird oggs	。 15a
	VI.	Fission products and radio-calcium in soil from Rongelap Atoll	23a
	VII.	Radio-strontium and radio-cerium in biological samples from Rongelap Atoll	230
	VIII.	Decay rates of Rongelap samples expressed as the slope of the log-log relationship of activity to time after March 1, 1954	28a
	for the second	Tables (Appendix)	
	· I.	Radioactivity of fish from Rongelap Atoll, 1954-55	30
		Scientific names of fishes	33
	II.	Radioactivity of invertebrates other than corals collected at Rongelap Atoll, 1954-55	34
	İII.	Radioactivity of coral from Rongelap Atoll, 1954-55	36
	IV.	Radioactivity of coconuts from Rongelap Atoll, 1954-55	37
		CONRIDENTIAL	х.

Tables (continued)

and a state of the second of

のないのか

48

<u>.</u> . . .

ſ	1	
		Tables (continued)
i.	Table No.	
	v.	Radioactivity of edible plants other than coco- nuts from Rongelap Atoll, 1954-55 38
	VI.	Radioactivity of plants other than those commonly eaten from Rongelap Atoll, 1954-55 39
	IIV.	Radioactivity of marine algae from Rongelap 40
	VIII.	Radioactivity of birds collected at Rongelap Atoll, 1954-55 41
N.N.D.W		Radioactivity of tern eggs from Rongelap 42
	the solution	Radioactivity of plankton, soil-send, and water samples from Rongelap Atoll, 1954-55 43
	st P eci	Data for computing percent activity of fission products and calcium in Rongelap soil samples based on 1 milliliter replicates 44
Carline Lawrence .	XII.	Physical decay rates of Rongelap samples $r = t^{-x}$; to March 1, 1954 45
and a state of the		
Same and		, egy olda a biologie gwert, gwerder Barrene (Marrene (Newerld)) gwerd Werder
	a tha an	len beglanderig is ende test for the taking a german
	an an tha an	en de la companya de
e a la companya de la	e Maria e ser e se e Maria	n Na shi a 110 - Bha Tatara a sa sanar na ƙwallon New Sector (an teor
		n en
		en sel el el como a lo como else celos elyfolos que destrices
		ne si-iu nes alla angle the translation (11) webs that
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		e of 1144. Company beneficien completes where formal for
	The set of the set	No, and trade, blad ward't test, and for system,

ABSTRACT

. Statester

The detonation of shot one at Bikini Atoli on March 1, 1954, produced a fallout of radicactive ash upon Rongelap Atoll, Marshall Islands. The distribution of the radioactive ash on the islands and in the plants and animals of the area has been studied and evaluated by the Applied Fisheries Laboratory, maiversity of Washington.

During the first expedition to Rongelap Atoll on March 26, 1954, biological samples were collected and measurements made of the radiation contamination. On three additional expeditions extensive collections of material were made for this study, the last on January 25-30, 1955.

The decline in radioactivity was measured in 1499 samples of fish, invertebrates, land plants, algae, birds, plankton, soil and water from the Rongelap area.

During this study particular emphasis was placed upon evaluation of the radioactivity in food used by the natives. Coconut milk collected on March 26, 1954, contained 1.03 microcuries per kilogram of wet tissue while the coconut meat had 1.16 uc/k. By January 25-30, 1955, the level in coconut milk had declined to 0.041 uc/k and the meat to 0.036 uc/k. Fish muscle on March 26, 1954, averaged 2.74 uc/k and fish liver 204. uc/k. The decline to January 25-30 was 0.10 uc/k for the muscle and 3.52 uc/k for the liver of fish. Somewhat similar declines were found for clam muscle, orab muscle, bird muscle and liver, and for squash,

papaya, arrowroot and pandanus.

÷

£

h

Û

一位

U

1

H

Ø

Î

Ø

B

-

10

Ň

Ê.

C

Í

The level of radioactivity was highest in the northern portion of the stoll, except for samples of algae and fisheating birds, collected during January 1955 from the southern part of the stoll, which had higher levels of radioactivity than samples collected from the northern islands on the same date. This may indicate a translocation of radioactive materials within the lagoon.

the next for the firsters set asynthuse of the Saligab of And dotted benefitte from the Marga L. 1924 dependence increduced the next for one needs of their over and above the glassed prograde the two shows the Margalays doll where the Saligat manad the first of the castly provided

(a) a second a left of the second second of the left of the second dependent of the second dependen

Le concerción of Mangalai, in response le chin requese, Le control en Carelling C. L. chin territorich and support polo de la COS Machine (1991, 1993). Successor of Mathematical Polo de control e listalizado. Nejar Unicles Succes, Starra Reig, Polo de control e la faul ficor. Dr. Churke Supera, St. Marses S. Polo de la control e la faul ficor. Dr. Churke Supera, St. Marses S. Polo de la control e la control de la control de control de control Polo de la control de la control de control de control de control Polo de la control de la control de control de control de control Polo de la control de control de control de control de control de control Polo de la control de control

A RADIOLOGICAL STUDY OF RONGELAP ATOLL, MARSHALL ISLANDS DURING 1954 - 1955

Introduction

The program of study of the Applied Fisheries Laboratory, University of Washington, (Program 19.1 of Operation Castle) was outlined in the Laboratory's report UWFL-36. This program involved detailed studies of radiological contamination of the fauna and flora of Eniwetok Atoll, with exploratory trips to Bikini Atoll on a quarterly basis to ascertain the levels of radiation remaining during the year following the test program.

The unexpected pattern and magnitude of the fallout of radioactive materials from the March 1, 1954 experiment introduced the need for new areas of study over and above the planned program. One such area was Rongelap Atoll where the fallout caused the evacuation of the native people.

On March 21, 1954, the Laboratory received a request from Dr. Faul B. Fearson, AEC Division of Biology and Medicine, to make a survey of the islands in Rongelap Atoll to determine the extent of radiological contamination of the native foods.

The expedition to Rongelap, in response to this request, Was organized by Task Group 7.1, with transportation and support provided by the USS Nicholas (D.D.R.449). Members of Program 19.1 Were Lauren R. Donaldson, Major Charles Barnes, Edward Held, Ralph Palumbo and Paul Olson. Dr. Thomas Shipman, Dr. Thomas N. White, P. R. Schivone and W. W. Robbins accompanied the expedition to aid the natives in capturing some of their animals on Rongelap Island and to make radiation readings on some of the

islands in the southern part of the atoll.

時間にはないないというないのではないでいた。こことに

 $\mathcal{T}_{i,n}$ 18

Collections of plants and animals, soil samples and radiation readings were made at Labaredj Island on March 26, 1954. Radiation readings were obtained with a Juno (AEC model SIC-17C, serial No. 89) under a variety of conditions. The shield of the instrument was closed for the first reading and open for the second for each of the locations listed below.

Radiation Levels Labared J Island

March 26, 1954 - mr/nr

1.7(1)-

	Location	eight 3'	Height 1"
	Intertidal sone	26 31	
	High tide line	215 395	300 1000
·	Open grass area on island	250 330	370 900
•	Open grass area on island	240 500	280 (6*) 700 (6*)
	In Pisonia woods	270 700	600 1. Acathera, 1 1500 Leday, House
	Beach rock slabs	37 100	1940) - 1970 - 1970 - 1971 - 1972 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 400 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 -
1999, son 1 1999, son 1 199	Beach above high tide line north side of island	180 300	220 Sources 40 600 Sources 40 600
	East side of island above high tide line	200 350	220 carses das 700 carses de la composición de la composi Composición de la composición de la comp

A second series of collections were made on the same day at Kabelle Island in the extreme northeastern part of the lagoon. Radiation readings were also taken at this island as follows:

Radiation Levels Rabelle Island

March 26, 1954 - mr/hr

Location	Height 3'	Height 1"
Beach rock inter-	48	30
tidal zone	90	300
Beach sand at	190	150
high tideline	260)	350
Edge of brush line	280	370
on island lagoon side	500	1400
Open area in vege-	300	410
tation-covered portion of island	600	1700
Coconus grove on	250	480
island	370	1500
Edge of trees	🖤 (shiel	d open) 2000
Lee side of trees	•	<u> </u>
Windward side of tree	≥S geo	° 2800

The second expedition to Rongelap Atoll was made on July 16, 1954. A U.S. Navy Grumman Albatross plane (U.S.N. ASR-16, No. 902) from the U.S. Naval Station, Kwajalein, was used to transport the group to the atoll. Program 19.1 members making the trip were Lauren R. Donaldson, Frank Lowman, Arthur

Welander and Lt. Cmdr. Clarence P. Pautzke.

Collections were again made at Kabelle Island and radiation readings taken in the same general areas as those recorded on March 26, 1954.

Meand rediction where on incompol of these.

in for the pick of the film string and to tollect additions

CONFIDENTIAL

.

123

18.3

100

13

12

£.

B M

A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A

41

K.

1¢

ter en de alle des des des propulses 16 pe 1954 (million de la constance de la constance de la constance de la Restance The Location of the Height 3 Means and Height 1 " States en tete de Lowiwater line d'al de la conte 9 Señeral Prochastina 150 de la High tide mark and A20 and a day present 70 1.44 on beach The second 100 high tide line 28 100 100' inshore from en ander ander high tide line og af a fra a grander fra de service de se On Scaevola brush 28 100 30⁻¹⁰⁰-100 Under Messerschmidla and state of the provident of the contract full Martin Mater Lee edge of coco-BERNELSENER NUL BROVE STREET, CLARKER STREET, S Middle of island 25 In dead brush in dead brush his street Open clearing in 25 million at 27 million watch at the 45 million middle of island Meture of Middle of Coconut on Art 20 1. Mar 1984 April 60 M Desca and to the test official colorador of the

During the month of December 1954 three collections of samples were made at Rongelap Atoll. For the first trip on December 8, the U.S. Naval Station, Kwajalein, provided a PEM (No. 2471) with a fine crew. Landings were made at both Kabelle and Rongelap Islands. Dr. Walter D. Claus, AEC Division of Biology and Medicine, accompanied Edward Held, Faul Olson, John Taylor and William Blakeman on this expedition. Film strips were placed at a number of locations by Claus, Taylor and Blakeman to record radiation over an interval of time.

On December 18, the Navy again furnished a PBM for the trip to Rongelap to pick up the film strips and to collect additional

piological samples. A successful landing was made at Rongelap Island where the objective was accomplished. An accident to the anchoring mechanism of the plane, however, prevented completion of the sampling at Kabelle Island. Robert Rinehart and Paul Zigman of U.S.N.R.D.L. accompanied Lauren R. Donaldson, Jared Davis, Edward Held and Paul Olson on this trip.

The most extensive survey and biological collecting trip was conducted at Rongelap Atoll from January 25 to January 30, 1955. This survey was made in conjunction with U.S.N.R.D.L., with the U.S. Navy furnishing the OS vessel "Rio Grande" for transportation and support facilities. Allyn H. Seymour and Frank Louman, Program 19.1, shared the responsibility for the biological sampling. Readings were again made with the survey meter on most of the islands visited. The readings were taken at a height of three feet unless otherwise noted.

Radiation Levels Rongelap Atoll

January 25-30, 1955 - mr/hr

	and the second secon	and a share was seen to be address to be added
	Rongelap Island	0.5
	Enlactok Island	5.0
	Busch Island	1.5
i.	Labared J Island	
	Kabelle Island	3.0
	\$t \$t 1	5.0 at ground level
£	Lomuilal Island	8.0
	Geten Island	7.0
	Lukuen Island	410 百日 能融合法 法财务法法

The collections at Rongelap Atoll during this period of

study provided material for 1499 samples which have been processed, the radioactive content determined and the results tabulated and evaluated.

sample Processing Procedures and Techniques

20

er.

88

¢0

13

F.

124

đ

63

The techniques and procedures used in collecting, storing, preparing, and counting the Rongelap samples were similar to those used in former years. For complete details see WT-616 (UNFL-33).^{*} The specimens were put on ice while in the field. Tissues were dissected, weighed and dried at the Eniwetok laboratory. At the University of Washington, the dried samples were ashed at temperatures up to 540°C, cooled, slurried, dried, and then counted in an internal gas-flow counting chamber. Counts per plate were converted to disintegrations per minute per gram of wet tissue as of the date of collection by correcting for sample weight, geometry, backscatter, self-absorption, coincidence, and decay.

For the summary tables as used in this report, the radioactivity expressed in disintegrations per minute per gram (d/m/g)was converted to microcuries per kilogram by

$$uc/kg = \frac{d/n/g}{(2.2)(10)^3}$$

Radioactivity and Its Rate of Decline in Food Items

A general survey of the radioactivity of foods is given in Table I, with the rate of decline of these items shown in Figure 2. It should be noted that the differences due to species and

 Radiobiological Studies at Entwetok Before and After Mike Shot -Lauren R. Donaldson, Applied Fisheries Laboratory, University of Washington, Seattle, Washington, November 1952.
 ** The rate of decline is a phrase coined to express the combined physical decay and the biological uptake and decay rates.

Rongelap Atoll, 1954-55

Values expressed in microcuries per kilogram of wet tissue

-<u>6a</u>-

Date and Island	Cocc Milk	onuts Meat	Misc. 1/ Fi Muscle	sh Liver	Clams Muscle- Mantle	Crabs Muscle	Bi Muscle	rds Liver
3/26/54 Kabelle, Lab	aredj 1.03	1.16	11.3 2.74	204.	43.5	70.0	5.38	25.4
7/16/54 Kabelle	.049	.123	.423	24.0	2.14	2.39	.576	3.23
12/8 or 18/54 Kabelle, Ron	gelap .019	.048	.021 .066	2.05		•	.040	.213
1/26-30/55 <u>2</u> /	.04]	036	.049 .100	3.52	1.03	.498	.129	.418
$\frac{1}{\text{edible po}}$	rtions of so	luash, pi	apaya, arrowroot	, pandanu	is, spinac	h.	* *	
<pre>Z/ Kongerap,</pre>	Enlactor, I	abareuj	, Adeile, Gejen	I, LUMUIIA	ii, Dukuen	л /		
	Table	II. C	oefficient of Va	riation i	In Per Cen	t≟/		
Date	Coconut Milk N	is leat	Misc. Muscle	.sh Liver	Clams Muscle- Mantle	Crabs Muscle	Bir Muscle	ds Liver
3/26/54	42(4) ^{2/}	(1)	(1) 65(12)	119(12)	36(4)	79(3)	41(5)	38(5)
7/16/54	10(2) 13	(3)	73(20)	65(20)	54(2)	35(5)	75(7)	48(7)
12/8 or 18/54	37(5) 57	(5)	23(8) 48(3)	30(3)	•		27(4)	37(4)
1/26-30/55	61(18) 76	(16)	88(16) 68(81)	97(81)	115(4)	178(11)	99(13)	95(13)
<u>l</u> /C in % =	(standard de	viation	÷ mean) (100)	•				
2/ number of	samples							

Contrant (Chenker)

eres, which are considerable and which are evident in the tables of the appendix where all the individual sample counts are tabulated, are not apparent in this generalization. The significance of these differences, however, is discussed on pages 9 to 21. From Table I and Figure 2 the past, present, and future gross radioactivity in the principal food items of Rongelap Atoll can be approximated.

-7-

The method selected to indicate the error in estimating the values in Table I is the "coefficient of variation" which is the ratio of the standard deviation to the mean. These values, C, expressed in percent, are given in Table II (page 6a). The range in values from 10 percent to 178 percent indicates a high degree of variability.

These data are closest to being points on a straight line when plotted on a log-log scale using the time of the blast, March 1, 1954, as time of origin.

From these data it appears that mixed fission products are the principal source of radioactivity in the food stuffs. Exceptions are bird thyroids, in which the radioactivity was practically all I^{131} , and the gastric mill in a coconut crab, for which the decay curve was nearly a straight line on a semilog plot. For the purpose of making an approximation of the average rate of decline, the slope of a least-squares line through the averages of the points in Figure 2 was determined and found to be -1.75.

The variation in radioactivity associated with area, in most instances, is related to fallout. Rongelap Atoll was on

the southern edge of the fallout from the Narch 1, 1954 Bikini experiment and as a consequence there was considerably more redicactivity in the northern part of that area. The biological samples show the same pattern except for the bird collections and the algae and sand samples from deep waters of the lagoon, taken during January 1955.

10

16

31

20

17

81

bđ

W

位

0

1

b

Yes species calended for analysis are bare construct found by an state and used for food. They socked demost fish. Resource, parent figh, spainted fish, surgeon fish, goodfies, measure compare, rolist and huma. The extentific news of the Mandes are sized in the apprehim.

The discose wood for analysis of radiousthickly who allo March, bund, hiver and other viscars. The latter inclusion from at the observe conserve as well as the allowetary coust, for ouch cases.

In an achieve to economy similar species from the case which contracts we inside to the scenter from Wabello which contracts of the serie and in vectors adjusted to big that a barrie 25, 1954. Any 15, 1954, and decoury 29. 1951. The achieving area lies near the mosth and of the bigs and consists of a cosmi-diffed sharest good to the sec which and area the restriction of the timument from the field which in the redirectivity of the timument from the field which at matching area that is figure 3. The data are bounded in the 171.

Evaluation of Radioactivity in the Biological Samples

Pish

1 201

NO.29

bilbaq.

ACC AR

brit.

135 gt

4

出来

Most of the fish specimens, as in former years, were collected by poisoning with derris root in shallow waters on or near the reefs. Some specimens were caught in the deeper waters of the lagoon with hook and line. Two flying fish were obtained outside the atoll when they landed aboard ship during the night.

-9-⁻⁻

The species selected for analysis are those commonly found on the stolls and used for food. They include damsel fish, groupers, parrot fish, squirrel fish, surgeon fish, goatfish, wrasse, snappers, mullet and tuna. The scientific names of the species are given in the appendix.

The tissues used for analysis of radioactivity were skin, muscle, bone, liver and other viscers. The latter included part of the stomach contents as well as the alimentary canal, in most cases.

In an attempt to compare similar species from the same locality analysis was limited to the samples from Kabelle Island. Collections of fish were made in waters adjacent to this island on March 26, 1954, July 16, 1954, and January 29, 1955. The collecting area lies near the north end of the island and consists of a coral-filled channel open to the sea at high tide. The radioactivity of the tissues from the fish collected at Kabelle is summarized in Figure 3. The data are listed in Table III.

FIG. 3 AVERAGE AMOUNTS OF RADIOACTIVITY IN MICROCORIES PER KILOGRAM BY FIGH TISSUES FROM KABELLS ISLAND (954 - 1935

Table III. Radioactivity of Fish Caught at Kabelle Island, Rongelap Atoll

Values expressed in microcuries per kilogram of wet tissue

	Date	Number of Specimens	Skin	Muscle	Bone	Liver	Viscera
All fish	3/26/54	12	20.8	2.74	12.8	204.0	514.0
	7/16/54	32	2.46	0.50	2.92	22.4	35.7
	1/29/55	27	.359	.083	.491	3.18	3.59
Omnivores	3/26/54	4	34.5	4.54	24.7	439.0	1,345.0
	7/16/54	15	2.95	.650	2.95	22.2	60.4
	1/29/55	18	.330	.082	.486	2.55	4.10
Carnivores	3/26/54	8	14.8	2.01	7.95	103.0	110.0
	7/16/54	17	2.03	.370	2.90	22.7	13.9
	1/29/55	9	.414	.085	.500	4.42	2.56
Damsel fish	3/26/54	2	21.4	3.45	9.45	614.0	1,700.0
	7/16/54	2	2.74	.256	2.30	44.4	38.4
	1/29/55	4	•545	.085	.426	4.24	3.18
Grouper	3/26/54	3	7.54	1.42	3.37	38.5	101.0
	7/16/54	6	1.47	.309	1.50	16.4	11.7
	1/29/55	5	.303	.051	.288	5.23	1.43

عرف)\ية بديكانية مارو) م

These data substantiate the general hypothesis, mentioned earlier in this report, that the radioactivity in the tissues appears to be due principally to mixed fission products. Deviations from a straight line in the curves might be due to gelective uptake, either by the tissues themselves or because there was selective uptake in the animals used as food by the fishes. In general the slope of the curves compares favorably with the average decline curve used for all food items discussed at the beginning of this report.

Differences between the omnivorous and carnivorous fishes as to amounts of radioactivity in comparable tissues were greatest on March 26, 1954. These differences decreased with passage of time and by January 29, 1955, were negligible in some tissues (Figure 4, Table III). These same data when analyzed by definite species of omnivorous fish (damsel fish) and carnivorous fish (grouper) show the same trends (Table III).

DBT WITORY TH

20 LMILING

Variation in radioactivity, associated with area and related to fallout and current movements within and around the atoll, indicates an increase in the contamination of the atoll from south to north (Figure 5, Table IV). The lagoon fish taken in the northern part of the lagoon, off Kabelle or Mellu Island, are comparable in levels of radioactivity to reef fishes taken in this region. The two flying fish taken outside the atoll are remarkably alike in tissue radioactivity.

DAYS AFTER MARCH 1. 1854

1003

<u>0</u>

5.0

10:00

AVERAGE AMOUNTS OF RADIOACTIVITY IN MORCOURIES PER KEDGRAM (M , EDRE 440 MUSCLE TISSUE OF CARMIVOROUS AND CHMIVOROUS FIRMES FORELLE SLAND 1939 - 1935

Table IV: Radioactivity in Fish

Caught at Rongelap Atoll, other than Kabelle Island

ဝဂ

Values expressed in microcuries per kilogram of wet tissue

Date and Area		Number of Specimens	Skin	Muscle	Bone	Liver	Viscera
1/30/55 Between Bongolan and						. • •	
Rongerik Atolls	Flying fish	1	.050	.017	.031	.094	.052
2/1/55 Between Bongelan and			· · · · · · · · · · · · · · · · · · ·				
Ailinginae Atolls	Flying fish	1	.152	.014	.035	.110	.145
1/25/55 Rongelap Island	Omnivores Carnivores All fish	10 12 22	.124 .235 .185	.022 .045 .034	.184 .390 .296	1.02 2.74 1.95	2.07 1.20 1.60
1/28/55 Labaredj Island	Omnivores Carnivores All fish	23 11 34	.577 .741 .632	.159 .153 .157	.682 .782 .718	5.36 3.31 4.64	17.00 5.36 12.90
1/30/55 Gejen Island	Omnivores Carnivores All fish	1 8 9	1.56 .709 .804	.159 .125 .129	1.09 .804 .836	12.4 6.18 6.86	17.1 2.75 4.34
December, 1954 and January, 1955			2 14 1				
Lagoon Fish Combined	Carnivores	10	1.11	.081	.278	2.06	1.20

CONTRIDUCTION

Invertebrates

「ない」というないのというというという

Sanyo Licto delegatola da duanad

1

Rongelap invertebrates showed levels of activity of from 10² to 10⁴ uc/kg on March 26, 1954. By late January 1955 the levels had dropped about two orders of magnitude. The almost ubiguitous black sea cucumber, Holothuria atra, serves best to exemplify the trend (Figure 6). Next best as indicators were giant clams, Hippopus and Tridacna; land hermit crab, Coenobita; coconut crab, Birgus; corals; and spider snail, Pterocera. Radioactivity was highest in the digestive and excretory organs, intermediate in the integunentary organs, and lowest in the muscle. Actual values for the samples are tabulated in the appendix. The kidney of the giant clam (Figure 7) is of special interest because of its high level of activity and slow rate of decline. A graph of activity of the tissues of land hermit crabs collected at the more radioactive northern islands in March and July 1954 and from a less radioactive southern island in January 1955, shows the effect of geographical differences in redicadtivity upon the trend of decline, accentuating the slope in the later period (Figure 8). The spider shail was similar to the hermit crab in the level of activity of its tissues, while the corals were about an order of magnitude lower.

-11-

115

Land Plants and Algae

Land plant and algae collections were made at Labaredj, 20 Rabelle, Lomuilal, Gejen, and Hongelep Islands. Most of the edible plants were collected in December 1954 and January 1955 at Rongelap Island. "These were coconut, squash, papaya; arrowsom MARLE ISLAND 1954 - 1955

CONBIDIENCEATE

ECONICIDENCE AT E

poth in the shallow water near shore and in the deeper water of the lagoon, usually in the vicinity of the fish-collecting stations.

Sample values are given in Appendix Tables IV, V, VI and VII. From these tables it can be seen that the activity varies widely even within samples of the same kind. In January, for example, the pulp from one papaya had an activity of 8.6 x 10⁻⁷ uc/g (wet), the highest level found in any edible plant portion on that date, while the pulp from a second papaya specimen had an activity of 1.3 x 10⁻⁷ uc/g (wet).

In both edible and non-edible plants the specific activity was higher in the leaves than in the fruit, the difference generally being two to eightfold. Much of the activity in the March 1954 plant samples was probably due to surface contamination. High counts in the internal portions of stems, however, indicated rapid uptake of fission products by absorption through the root systems. Later collections also indicate uptake of fission product material within the leaf tissue. For example, leaf buds formed after the initial fallout contain as much activity as do older leaves, and washing removes very little of the activity.

In the earliest collections the bark of shrubs and trees and the epidermis of edible plant parts contained from 1 to 40 times more activity than the internal parts. In the later collections, however, this ratio was always less than two. It is not definitely known, however, whether differential uptake or

ONFIDENTIAL

-12-

residual surface contamination accounts for the higher activity of the external plant parts.

10000-

Dog ;

100

810

138

122

1 3

1

10

18

C

1

C

E

13-

Levels of activity in successive collections through and including December 1954 drop in accordance with the expectation for mixed fission products. The January 1955 land plant collections, however, show a trend toward increasing activity levels (Figure 9). This could be due to a sampling error, but might also be a reflection of greater availability of the fission products to the plants associated with more rainfall during late December to January.

The values for arrowroot collected on Rongelap Island in January 1955 fell within the range of values for arrowroot from the northern islands. The same is true of algae collected at depths of 10 to 25 fathoms in the vicinity of Rabelle and Rongelap Islands. However, the maximum activity levels found in <u>Halimeda sp. and Caulerpa sp. from Rongelap are higher by a</u> factor of about two than the maximum levels found in the same species collected at Kabelle. <u>It appears likely then that al-</u> though maximum fallout occurred at the north end of the atoll. the radioactive material is being redistributed throughout the atoll.at least in the deeper waters.

Decay rates of five individual samples of algae and land plants collected in July and December 1954 indicate half-lives ranging from 160 - 210 days during the period from December 1954 to April 1955. A sample of account milk collected at Kabelle Island in December 1954, however, shows a half-life of approximately three years. The slopes of the decay curves of land and

CONFIDENCE

marine plants, other than the coconuts, differ only slightly from one anothenand from the slopes of the soil decay curves, the average slope being -1.25 (-1.05 to -1.36). This indicates that in these plants little or no differential uptake of fission product material has been taking place. In coconuts, however, fission products mixtures with longer half lives have been absorbed into the meat and milk fractions. Decay ourve slopes of -.96 and -.54 for the coconut meat and -.24 from the coconut milk indicate a different isotope mixture from that found in soil collected in the same area. Lica of the trans and the same an Protocol do Chernan and Alanda an Shift da, "Hadde the Bandabalake to Birds in sense is a consideration and a consistence of the state of the second constants of the second const

Birds were collected at four islands of the atoll. Specimens from the northern islands of Gejen, Kabelle and Labaredj were considered to be from the same area and were collected on all four dates, while those from the southern island of Rongelap were taken only on January 26, 1955. and the second for the second seco In the second
The birds are of two types as based on feeding habits and migratory characteristics. These are: (1) the noddy, crested and fairy terns, which tend to stay in the vicinity of a few islands within the atoll and feed principally on small fish, and (2) the migratory shore birds, which are transients and feed mainly on crustaceans along the beaches. The latter group includes the plovers, curlews, turnstones, and tattlers.

The terns, because of their limited tendency for migration, are more representative than are the shore birds with regard to chronic uptake of radioactive material.

n para di Sangari da kana sa k Bana sa kana sa

CONFIDENTIAL T

-14-

Contraction of the Contraction o

The shore birds contained greater amounts of radioactive materials in the different organs and tissues shortly after the fallout at Rongelap than did the terns. A similar tendency was noted in 1952 at Eniwetok following Mike shot (see WT-616 (UWFL-33)).^{*} However, the average levels of activity in the organs of the shore birds decreased more rapidly with increasing time after fallout than did those of the terns. These differences may be accounted for, in part at least, by the differences in feeding habits and migrational characteristics.

The average specific activities of the organs and tissues of Rongelap terms are given in Table V. With the exception of muscle, which is consistently low compared with the other tissues, there is no distinct pattern of relative activities between different organs.

The decline of radioactivity levels in the organs and tissues of terns may be divided into three types (Figures 10a and b): (1) organs in which the decline is semilogarithmic, half-life 40 days - these include the muscle, liver, and kidney; (2) organs in which the decline is logarithmic - these are the bone ($r = t^{-2.35}$) and ilcum ($r = t^{-2.85}$); and (3) organs in which the variability is extremely great - the skin and lung represent this group.

The shapes of the radioactivity decline curves for the different organs are determined by a combination of (1) availability of the isotopes, (2) total uptake and degree of selective uptake of different isotopes, (3) radioactive half-life, and (4) biological half-life. Since the relative effects and

CONFIDENTIAL

* Radiobiological Studies . . . op. cit., p. 6.

N EM

(in provide the second

663 3

615

120

12g

03

ិច

LICE

68

19

No.

10

£

9. ve 5	Table V. Radioactivity of Rongelap Birds and Bird Eggs									
	Values ex	pressed i	n microcur	ies per	kilogram	of wet	tissue			
Date and Island	Organi sm	Number of Specimens	Skin	Muscle	Bone	Thyroid	Lung	Liver	Kidney	Ileum
3/26/54 Labaredj and Kabelle	noddy and fairy terns	4	167.	4.82	41.0	76.4	7.64	22,7	18.4	179.
3/26/54 Kabelle	curlew	l	2,260.	7.73	161.	6.82	16.8	35.9	132.	30.0
7/16/54 Kabelle	noddy, fairy, and created terms	6	1.31	•641	•754	6.86	14.3	3.60	2.68	1.72
7/16/54 Kabelle	durlew	1	•714	.183	1.69	6.68	•795	1.03	1.50	9.91
12/8/54 Kabelle	noddy and fairy terns	4	•454	•0395	.0973		. 169	.212	.17 2	•0586
1/26/55 Rongelap	fairy terns	5	• 586	° 256	•654		1.10	.814	•877	۰486
1/26/55 Rongelap	furnstone and plover	2	.173	.0445	.182		.124	.226	.240	.425
1/28-30/55 Labaredj,		•		• • •		· · · · ·				
Kabelle, and Gejen	noddy and fairy terns	6	•741	°0495	.105		.285	.154	.183	.0791
			Bir	d Eggs						
	Date an Islan	d Nu d Sp	mber of ecimens	Egg Shell	Yolk	Whi	te	Embryo		
	7/16/54 Kabel	le	5	•650	•932	•02	55	•335		
	12/8/54 Kabel	, le	3	•295	.129	•00	909			
	1/29/55 Kabel	le	4	.140	.020					an a

STATE TO A

PT MONTON AND

1

-15a-

1

لتنقط متقينان وتبه لاواليوهين

i de la companya de l

dender frei werten werden

an and the fight of the second s

 $|\mathcal{L}| \geq 10$

ć

110001

FIG. 10 B DECLINE OF RADIOACTIVITY IN BONE AND ILEUM SAMPLES FROM NORTH RONGELAP EXPRESSED AS A RATIO TO THE MARCH 26, 1954 COLLECTION

CONTENDENERA
degrees of interaction of these variables upon the decline of radicactivity with increasing time after contamination are not known, rigid interpretations of the shapes of the curves should not be attempted. However, the curves are useful in estimating the levels of activity in the different organs on given dates following the contamination of the atoll. Decay curves were made for a limited number of samples. Of these, only that of the thyroid evidenced a preponderance of a single isotope, 1¹³¹, which accounted for 99.9 percent or more of the total activity. In decay curves for bone, liver, and kidney there was evidence of mixtures of isotopes. Slopes of $r = t^{-1.28}$ for liver, $r = t^{1.65}$ for bone, and a curve for kidney, which is not a straight line either logarithmically or semilogarithmically, indicate that these organs do not contain similar ratios of radioactive isotopes. The decay curve slope for tern liver is similar to that of Rongelap Soil. Chemical separation for strontium was done on two bird samples collected March 26, 1954, at Kabelle. Skins from two different terns contained 2,9 percent and 3,5 percent of the total activity as radioactive strontium. In samples of total muscle plus total bone from the same birds. Sr⁸⁹⁻⁹⁰ comprised 3.9 percent and 11.3 percent of the total activity (Table VII). The only collections at Rongelap Atoll containing birds from both the northern and southern islands were made January 26-30, 1955. In view of the fact that the general levels of contamination were higher on the northern islands, it was expected that the northern birds would contain more radioactivity

CONFIDENTIA

11

-16-

than the southern birds. This was not the case except for the skin. The ratios, south to north, of activity for the different organs and tissues are as follows:

見られた

skin muscle bone lung liver kidney ileum 6.2 .79 5.2 6.1 3.9 5.3 4.8 The presence of more than six times as much activity in the intestinal tract of the southern island terns as that found in the same organ of the northern island terns suggests that the southern birds have access to a supply of food fish containing greater amounts of radioactive material. The higher level of activity in the southern bird intestinal tracts is reflected in the greater concentrations of radioactive material in the other internal organs of the same animals. In view of these observations it probably would be advisable to obtain samples from Alinginae Atoll, located seven and one-half nautical miles southwest of Rongelap Atoll, since the Rongelap natives collect birds at 「おり Alinginae as part of their food supply.

Tern eggs were collected at Kabelle July 16, December 8, 1954, and January 29, 1955. The levels of radioactivity in the various parts of the eggs were low, with that of the shell approximating the levels found in the bones of terns collected the same day. Radioactivity in the egg yolks varied from 1½ to 3 times that found in the muscles of birds in the same collections. The whites of the eggs contained the lowest amounts of radioactive isotopes of all bird samples examined. These levels were from 1/25 to 1/2 those found in bird muscle collected the same day. The unhatched embryos contained levels of radioactivity approx-

CONFIDENTIAL

「「「「「「「「「」」」」」

10 b

bS

031

0ri

K:

61

13

te:

to

3

N N

Ø.

simately one-half that found in bird muscle Appendix Table VIII.

<u>Plankton</u>

The Rongelap plankton collection consists of a single tow on March 26, paired tows on July 16, December 8 and December 18, 1954, and four paired tows January 26-30, 1955. A Michael Sars type net, 1-meter in diameter and with either #6 or #20 silk mesh was used. Tows were taken at the surface during daylight hours.

·福克·夏·波 化大型 医小型 计模样 行成 建放出化 Radicactivity of the Rongelap plankton samples was more is tructure or is the second than one hundred times greater than that of plankton samples · 新聞· 開始時, 小市 大部立的复数 重要先的 (新聞) collected from the open ocean waters of the Western Pacific with the USCOC "Taney" during Operation Troll. On the cruise 常的时 医外肌炎 of the "Taney" during March and April, 1955, 85 plankton , 新教品語的程度:電影片:電源電影: samples were taken along the route from Kwajalein to the Philippines to Japan. The average activity of these samples was .015 x 10^{-3} uc/gram of wet sample, the highest values being .050 x 10⁻³ uc/g. For the eight January 1955 Rongelap plankton samples the average value was 2.0 x 10^{-3} uc/g, the 计 电应能调整误离 网络利尔门鼠 物口感性 地名马格纳林 lowest value being 0.41 uc/g.

Other conclusions from the Rongelap plankton samples are (1) that the radioactivity per unit weight is greater than for most other biological samples, (2) the decay rate is similar to that for the soil sample, and (3) there is considerable variation in the radioactivity of samples from paired tows.

subirity of the March 1964 Sempler and the Seasory 1995 complete In the name of the Scilles in activity of the Sector chatles

Soll rearrant and the largest history reading the The soil and sand camples included those from the islands proper, from the beach, and from the lagoon bottom. The radioactivity of a sample taken from the top inch of soil on Labaredj-Island March 26, 1954, was 6.8 microcuries per gram, which is equivalent to one curie per 325 pounds of top soil. The activity of this sample ten months later, January 29, 1955, was one thirtieth its original value, i.e., it had passed through nearly five half-lives. The decay rate for this period is expressed by the formula, r = t -1.31, with March 1, 1954. as the date of origin (Figure 12). This rate approximates the mixed fission product decay rate and in general approximates the decay rate for many of the biological samples. For these reasons the decay factor for correcting counts back to the day 白鳞 收入出熟意 化肉菜菜和肉炒香油。 of collection was based on the decay curve of a similar soil للودين ويعلا 计可以结合设备 的复数强制改变 行机法的 装饰的 sample.

The decline in radioactivity of the soil samples can be observed from the figures in Appendix Table X. Considerable variation in the activity of soil samples from the same area on the same day can be expected because of the nature of the fallout pattern and should be kept in mind when interpreting results. If consideration is given to the Kabelle samples only, the rate of decline is greater than the decay rate from March to July 1954, but less from July 1954 to January 1955. When the sample counts from all islands are averaged, the relative decline in activity of the March 1954 samples and the January 1955 aamples is the same as the decline in activity of the decay sample.

-19-

Profile samples of the lagoon bottom were obtained off gabelle Island at depths of 60 feet and 40 feet and off Lomujlal Island at 55 feet. The samples were obtained by an aqualung equipped diver driving a foot long, $1\frac{1}{2}$ aluminum tube into the bottom sand. The core was removed from the tube and samples were taken at various levels. From the counts of these samples it was observed that the radioactive sand on the lagoon bottom was several inches thick with the level of activity rather constant for the first five or six inches. The radioactivity per unit weight was less than that of the soil from the island proper but off Kabelle it was greater than that of the sand in the intertidal zone.

the sea of a first solution to the said statements

The water collection included eight salt-water samples from the lagoon and eight fresh-water samples from the islands proper. A 5-milliliter sample was used for the radioactivity determination except for the December 18th collection (cistern water, filtered well water), for which 25-milliliter samples were used. Because the radioactivity of water samples is often stated in terms of the radioactivity per liter, which would mean extrapolation considerably beyond the observed values, it is especially necessary to state the counting error. For these data the 0.95 counting error, " which is equivalent to two standard deviations, was arbitrarily selected. In Appendix

 AECU-262 (Non P-126) Statistical methods used in the measurement of radioactivity (some useful graphs) - A. H. Jarrett, T.I.S., Oak Ridge, December 1949.

CONFIDENTIAL

代目的になるという

20-

Table X the values for the water samples expressed in $d/m/ml^{\pm}$ 0.95 counting error are given.

de.Z

TOT.

100

190

-672

1

1 2

111

13

20.

"Whole water" samples were used for counting, i.e., none of the natural-occurring radioisotopes were chemically removed, so the values in the above table are those for total radioactivity. For occan waters, the atomic disintegrations per minute per kilogram for potassium-40 are 560 and for all other natural-occurring isotopes about 10.⁴ This means that the contribution of natural-occurring isotopes to the values in Appendix Table X for lagoon water samples ranged from 0.6 to 1.2 d/m/ml.

Because of the relatively great counting error of the lagoon water samples neither the rate of decline nor the decay rate was estimated. A conservative approximation of the radioactivity of the lagoon water, based upon the average difference between the observed value and the positive 0.95 counting error for the January 26-30, 1955 samples, is 2400 d/m/1 (.0011 uc/1).

For the fresh-water samples the counting data are more reliable (Appendix Table X). The samples include distern water, filtered well water, standing water and ground water. The standing water was taken from an open can on Enlaetok Island and the ground water from a two-foot hole that was dug on Kabelle Island. The ground water was most radioactive, 48,000 d/m/1 (.022 uc per liter) and may have contained radioisotopes that had leached from the soil. However, the decay rate $r = t^{-1.35}$ for the period from March 23 - July 30, 1955, was similar to that for mixed * Schubert, J., "Radicactive Poisons," <u>Scientific American</u>, Vol. 193, No. 2, pp. 34-39, August 1955.

fission products. For filtered well water the decay rate for the same period was similar, $r = t^{-1.39}$. Another observation was that the radioactivity of the fresh-water samples increased from south to north with the activity of the Rongelap Island sample being 1/4, 1/6, and 1/10 of the activity of the freshwater samples from Enlactok, Labaredj, and Kabelle Islands, respectively.

j – Televilai vara laida dina ila rajonala ani sali re ilara ila di 1931 - Janua Dave Astronizij ecco Alberila – To bilez rean zelaci reditela 2022 - Containe Indiani refere secondatenta Terra eritoria reall 2022 - Containe Indiani refere secondatenta Terra eritoria perali 2022 - Containe Indiani referitari attatenta Containe reconductori personale 2022 - Containe Indiani referitari di Containe containe containe reconductori personale 2022 - Containe Indiani referitari de containe containe containe containe containe containe 2022 - Containe indiani referitari de containe containe containe containe containe containe 2022 - Containe indiani de containe containe containe containe containe containe containe containe 2022 - Containe containe containe containe containe containe containe containe containe 2022 - Containe 2022 - Containe 2022 - Containe
enseles ber ekonome releate gridertelt to sonden built of a sodere ret rectifier out merit built to sinte? To control the of a original retuined for somerers substances projet to antice city est at binds trained ref ogéater office as fasteries

entques langulation in searcism and contractions in printers and

GONFIDENTIAL

127

40

8

20

¢6

28

£2.

\$,

1

þ

gyaluation of the Chemical Analyses of the Biological Samples

N

N.

AL.

P.K

- Real

Fission product and calcium analyses were made of three soil samples, strontium analyses of selected foods, and I^{131} analyses of plants. Additional samples collected December 8 were sent to Dr. Walter Claus, Division of Biology and Medicine, for chemical analyses.

Samples were taken from the top inch of soil on March 26, 1954, from both Labaredj and Kabelle. Fortions were ashed and then dissolved in dilute nitric acid. There was only a very small amount of insoluble residue containing less than 0.1 percent of the radioactivity of the solute. Aliquots of this solution were used to determine total activity and to provide samples for chemical separation.

Standard methods of separating fission products and calcium .) e c ta were followed. Counts obtained from the analyses for cerium, zirconium, niobium, strontium, ruthenium, and barium were corrected for chemical or spike yield. The chemical yield is the LDATAS. est above high ratio of the weight of recovered carrier to added carrier. A yield for calcium was not determined because of the large amount of calcium carbonate in the sample. The radioactivity of seven fission products and calcium corrected for yield and adjusted to 100 percent recovery and expressed as a percentage of the total radioactivity is given in Table VI. The chemical yields and the observed counts from which these values were computed are tabulated in Appendix Table XI.

The results of radiostrontium analyses of biological samples from Rongelap Atoll are given in Table VII. Radiostrontium was

Table VI. Fission Products and Radio-calcium in Soil from Rongelap Atoll^{1/}

Per Cent Activity 2/

	Sample Number					
Element	7500 3/	7501 4/	7502 5/			
cerium	37.	32.	30.			
trivalent rare earths	24.	22.	24.			
zirconium	16.	25.	24.			
niobium	5.9	7.2	7.0			
ruthenium	6.9	6.7	5.9			
strontium	4.4	2.4	2.5			
barium	5.5	4.1	6.2			
calcium	< .3	< .6	.4			
total	100.	100.	100.			

1/ samples collected March 26, 1954 and analyzed
May 11, 1954, activity as of counting date

2/ per cent activity corrected for yield and adjusted to 100% recovery

3/Labaredj Island 100 feet above high tide line 4/Labaredj Island, 150 feet above high tide line 5/Kabelle Island, 150 feet above high tide line

THE DISCHART

-238-

MESVB

leage

to the second se

Ret

國王白

on's

Mc j

8.0

de

8.62

13

12

1

a 10

Table VI. Fission Products and Radio-calcium in Soil from Rongelap Atoll $\frac{1}{2}$

Per Cent Activity 2/

	Sample Number					
Element	7500 3/	7501 4/	7502 5/			
cerium	37.	32.	30.			
trivalent rare earths	24.	22.	24.			
zirconium	16.	25.	24.			
niobium	5.9	7.2	7.0			
ruthenium	6.9	6.7	5.9			
strontium	4.4	2.4	2.5			
barium	5.5	4.1	6.2			
calcium	く .3	< .6	.4			
total	100.	100.	100.			

1/ samples collected March 26, 1954 and analyzed May 11, 1954, activity as of counting date

2/ per cent activity corrected for yield and adjusted to 100% recovery

3/Labaredj Island 100 feet above high tide line 4/Labaredj Island, 150 feet above high tide line 5/Kabelle Island, 150 feet above high tide line

DINIGIDIGNE AND

-238-

Leva

ange.

20

03

360

R.C

23

12

63

131

歐

裔

趪

Table VII. Radio-strontium and Radio-terium in Biological Samples from Rongelap Atoll

Section Barrier

Values expressed in micro-microcuries per gram, wet

Group	Tissue	Date Area of C	and ollection	sr ⁸⁹ +sr ⁹⁰¹ /	90 Sr	% of total activity Sr ⁹⁹ +Sr ⁹⁰	Ce ^{1442/}	% of total activity Ce ¹⁴⁴
Bird " "	Carcass Skin Carcass Skin	3/26/54 "	Labaredj " Kabelle "	20. 40. 5.1 27.		11.3 2.9 3.9 3.5		
Squash Papaya Pandanus	Fruit "	1/26/55 "	Rongelap	2.2 1.9 2.3	2.1 1.8 2.3	1.5 2.6 2.6	1.1	1.4 1.38 N
	Meat Milk " "	" 1/28/55 1/29/55 1/30/55	" Labaredj Kabelle Gejen	0 0 0.11 0.03		0 0.38 0.02	0.11 0.05 0 0 0	0.38 0.24 0 0 0
Coconut crab	Muscle	1/29/55	Kabelle	31.	27.	5.7	5.5	1.0
Tuna Mullet	11 11	12/27/54 1/26/55	Mellu Rongelap	0		0	0.8 2.4	0.7 4.4

1/ The 3/26/54 collection processed in December 1954; the January 1955 collection in June - July 1955. Values as of date of analyses. 2/ Processed in July 1955. Values as of date of analyses. found in plants, birds, and crabs but not in fish muscle nor in some of the coconuts. The greatest amount of Sr^{99} found in the January 1955 samples was 27 x 10^{-6} us/g wet weight of coconut grab muscle.

<u>Method for Radiostrontium Separation</u>. The fuming nitric acid precipitation method was used, the sample being dissolved in dilute nitric acid and strontium carrier then added. For the bird tissues the strontium was precipitated by increasing the acid concentration to 72 percent by the addition of 90 percent nitric acid and stirring for one-half hour. The precipitated strontium nitrate was dissolved in water, scavenged with ferric hydroxide and precipitated a second time from 72 percent nitric acid, then counted for strontium radioactivity. Three spikes run concurrently with the bird samples gave a yield of 59.2 ± 0.9 percent. Separation of Y^{90} from the strontium indicated that one-third to one-half of the total strontium was strontium-90 as of the counting date, December 1954.

Strontium analyses of samples of coconut meat and milk and pandanus fruit from the January 1955 collection were made June 14, 1955. The procedure was similar to that above except that 75 percent nitric acid was used and the scavenge with ferric hydroxide was followed by a scavenge with mixed sulfides in acid and in alkaline solution. Four spikes in non-radioactive fish meal ash run concurrently with these samples gave a yield of 65.6 ± 5.3 percent. Four blanks using the same fish meal and run as a check on the radioactivity in the meal, the reagents and on the glassware gave counts of 0, 1, 0, and 0. Yields from

spikes run concurrently with the squash, papaya, crab and fish samples were 84 ± 3.1 percent. From the amount of Sr^{90} present which was determined by separation of Y^{90} , daughter of Sr^{90} , it is evident that only a small amount of Sr^{89} could be present (Table VII).

Nos

BOS

1207

6.20

193

190

Êď

10

12

3

H

ļ

The results of the Ce^{144} analyses are given in Table VII. The maximum amount found was 5×10^{-6} ue in crab muscle, while none was found in some coconut samples. Cerium analyses were made of the filtrate from strontium nitrate precipitation of the coconut, pandanus fruit, squash, crab, and fish samples listed in the above table. The rare earths were extracted with tributyl phosphate, and cerium was separated from the trivalent rare earths by ceric iodate precipitation. Recovery from "spiked" samples of non-radioactive fish meal ash run concurrently were 73 percent for coconut and pandanus fruit, and 75 percent for all the others.

Determinations were made of the amount of radiolodine present in three land plants and two algae collected at Rongelap Atoll on March 26, 1954. These analyses made on April 24, 1954, followed the procedures as outlined by Glendenin, et al.

The counts as obtained were corrected back to March 26, 1954. I^{131} was present in all five plant tissues counted, varying from 0.47 percent to 0.029 percent of the total activity found.

Glendenin et al., "Interchange of radioactive iodine with carrier iodine." In Coryell, C. D. and Sugarman, N., Radiochemical Studies: The Fission Products, Book 3, p. 1629, McGraw-Hill, 1951.

study of the Rate of Physical Decay of Radiation in the

(OR

協会

in the second
R.2

Ŋ

C.

Ŕ

Biological Samples row knastly (* ** , sentioned in the section ention)

The Rongelap samples are now unique among our Marshall Islands collections since they were taken from an area -Rongelap Atoll - in which the radioactivity resulted primarily from a single time source - the March 1, 1954 Bikini experiment; whereas the activity at Eniwetok and Bikini derived from several experiments over a number of years.

Rongelap decay data were studied with three primary objectives: (1) to evaluate suitability of the decay correction factor based on soil by a comparison of biological and other materials, (2) to aid in extrapolating into past or future time beyond the period of the present survey, and (3) to compare decay rates with decline rates.

Eighty-four samples of fish, invertebrates, algae, land plants, plankton, birds, and soil were counted an average of 11.5 (range, 2-73) times for various intervals during the period from 38 to 500 days after the Bikini test of March 1, 1954.

When log of count is plotted on the ordinate against log of time after March 1, 1954, on the abscissa (here called a log-log plot), a more nearly straight line is usually obtained than when the abscissa is arithmetic (semi-log plot). A mixture of fission products is supposed (Coryell and Sugarman) to give a straight line by log-log plot with a slope of about -1.25 for the period of time involved in this study. The decay of a single

* Coryell, C. D. and Sugarman, N., Radiochemical Studies: The Fission Products, Book 1, p. 456, McGraw-Hill, 1951

(sotope is linear on a semi-log plot, exemplified by bird thyroid containing predominantly I^{131} , mentioned in the section on birds.

Among the 28 plates counted most often (10 - 73 times) and presumed to be counted frequently enough to detect the existence of a linear semi-log relationship, only one other sample was more nearly linear by semi-log than by log-log plot. This was the gastric mill of a crab, <u>Grapsus grapsus</u>, taken March 26, 1954, at Kabelle. The graph (Figure 11) was sufficiently curved to indicate the presence of more than one isotope. The early portion 50 - 300 days gave a half-life of 78 days, and the portion 300 - 430 days gave a half-life of 107 days. A section of the curve of another sample, muscle of sea cucumber (Figure 11), was typical of semi-log linearity. The radioactivity of this sample decayed over the period from 50 to nearly 200 days with a half-life of about 75 days, but more slowly later.

Although a single isotope displays a downwardly concave curvilinear plot by log-log presentation, a mixture of as few as two isotopes with half-lives of similar orders of magnitude, such as Ce^{141} and Ce^{144} of 30- and 280- day half-lives, may appear almost linear on a log-log plot over the period of 70 to 500 days.

Most decays were best suited to log-log plotting as seen in the seven examples in Figures 12 and 13. Although some appear slightly curved, straight lines were fitted and slopes were scaled graphically of DECAN CURVES OF SAMER OF CRAS Definition of the curves requires evaluation not only of

the degree of variance or scatter about the line, but also by the nature of the deviation from linearity among the smooth, curvilinear plots. Those curves which were concave upward were of fish tissues, none of which had been counted more than seven times.

298.

The average slope of 83 decays on log-log plots was -1.43. Table VIII shows a breakdown into groups by types of organisms and by tissues, and all samples grouped by collecting dates are recorded in Appendix Table XII.

Differences in decay rates of tissues of the animals are not great, although the liver rate of decay is steepeat to a degree that is of borderline significance. Comparison of rate of <u>decline</u> of food items, -1.75, with rate of <u>decay</u> of all <u>soil</u> samples, -1.43, shows that food items, with the exception of such plants as the coconut, decline more rapidly in their radioactive content than can be accounted for solely on the basis^{10,04} of their physical decay. However, the steep trend of decline may result from the inadequacies of sampling. The January 1955 collection may reflect variability in the effects of currents or season. Future sampling will show whether the indicated decline is truly unusually steep, or a vagary of sampling.

From a study of the decay curves it is seen that most biological samples follow the soil trend sufficiently well to justify use of the soil decay rate in correcting sample counts back to the time of collection over short periods. However, some samples diverse widely.³ Of greatest concern is the coconut, in the milk of which the radioactivity may decay very

Table VIII

-28a-

Decay Rates of Rongelap Samples Expressed as the Slope of the Log-log Relationship of Activity to Time after March 1, 1954

	Fish, invertebrate, and bird tissues							
	Skin & Mantle	Muscle	Bone	Liver	Gut or Viscera	Gill		
n Ŧ	11 -1 34	12	10 -1 40	12 -1 68	11	1		
s/x	0.16	0.11	0.11	0.16	0.30	0		

	Miscellaneous							
	Kic	iney bird	Plankton	Algae	Coconut	Other land plants	Soil	
	< 90d	>90d						
'n	2	2	3	3	3	2	7	
ž	- 1.25	-1.71	-1.35	-1.20	-0.60	-1.30	-1.31	
s/Ī	0.08	0.12	0.05	0.12	0.56	0.01	0.04	

n -	=	number of relationships	
ž.		mean slope	
3	=	standard deviation	

s/x = coefficient of variation of slope

Converding the second

plowly (r = $t^{-.24}$). At the other extreme are occasional samples of fish gut, the radioactivity of which decays fast (r = $t^{-2.4}$).

a said the first

de la constance
Table I. Radiosctivity of Fish from

-30--

Ronge 181 Atol1, 1954-55

となるのか、こころのないないとうないので、をうちゃくう

Wellies expressed in theusands of dim/g of wet tissue

10

	14.8 28 28.9 1,82 74.9 82	9. 3. 590 6. 3 , 320 4. 822	*
		میں ہے۔ مصفی کے معالم کی اور میں	,
이 가 우 전공이		osta – sta sta s	• • •
		191 - 195 121 - 1932	•
		8.2 180 4. 427	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.19		n station n 1955 n station n station
.1 2.90 .5 2.52	7.73 - 2 19.5 - 7		200 2.1
5 3 .25	9.52	2.2 323	
09 .903 04 .974	8.65 8.62		for a star normalization of the star normali
78 1.12 55 .335	4.31 5	13.2 13 18.1 12	بر از مراجع کر مراجع کر م
27 .796 PPBND	5.31 ° 1 T X	/ð.1. 23	19 10.9
na 184		71. 8 (24	₹.4.2. ₹.1
			7.64
	*		20.4 18.4
			19.0
	<i>i</i> .		12.5
85 - 549 80 - 588			
11 1. J.		4516 IX 21.2 II	5.9 1.1
78 1.46		ng și și	ф, 4 П
7 2.00 96 1.08			and and Start and and Start and and And and and and
.05 (332	y 6.83 ,	11월 14월 - 21일 111년 - 11일 111년 - 11일 111 111 111 111 111 111 111 111 111	10.0
			9.75 4.67
			6.24 4.67
41 .245	.473	14.8	6.39 8 K
.55 .761	3.50	197 - 1 (177) 197 - 1 (177) 197 - 1 (177)	6.23
	81 540 80 563 61 1-35 78 1-46 7 2.00 95 1-46 7 2.00 95 1-35 95 1-35 1-35 1-35 1-35 1-35 1-35 1-35 1-3	81 546 2.66 80 363 2.95 1.03 4.27 60 .970 2.80 78 1.46 30.1 7 2.00 12.4 95 1.08 15.2 .953 6.83 41 .28 15.2 .953 6.83	81 540 2.66 25.7 1 80 553 3.00 35.6 1 81 1.00 5.27 5.6 1 81 1.00 5.27 5.6 1 81 1.00 5.27 5.6 1 81 1.00 5.27 5.6 1 81 .970 5.28 21.2 1 78 1.46 30.1 152 1 78 1.46 30.1 152 1 78 1.46 30.1 152 1 79 2.000 12.4 91.2 1 95 .933 6.83 83.8 3 95 .933 6.83 83.8 3 95 .767 3.86 39.1 2

CONFIDENTIAL

Table I. Radioactivity of Fish from Rongelap Atoll, 1954-55

Values expressed in thousands of d/m/g of wet tissue

pate and Island	Common Name 1/	Skin	Muscle	Bone	Liver	Viscera	Entire
3/26/54 Kabelle	damsel 4 parrot 1 squirrel 2 grouper 5 " 4 " 1 shark "	41.5 52.5 102. 106. 74.0 35.6 12.4 20.9 16.5 28.7 23.1 36.5	4.85 10.3 11.4 13.3 8.44 6.25 3.45 4.22 1.75 2.95 2.90 2.52	14.8 26.8 79.9 96.0 21.5 12.5 9.53 7.50 5.19 17.3 7.73 19.5	889. 1,820. 381. 780. 680. 399. 98.2 141. 15.3 71.2 27.7 70.3	3,590. 3,890. 332. 4,020. 645. 331. 180. 417. 69.8 21.1 5.68 15.1	
7/16/54 Kabelle	<pre>mullet surgeon 1 butterfly 2 " " " " " " damsel 3 " " butterfly 2 " " " " " " " " " " " " " " " " " " "</pre>	13.6 3.09 4.04 4.78 2.55 4.27 6.03	3.15 .903 .974 1.12 .335 .796	9.59 5.35 8.82 4.31 3.80 5.31 5.07	59.3 23.7 60.2 23.2 28.1 70.1 97.8	328. 89.1 16.3 13.8 12.2 23.9 84.4	10.9 7.42 7.64 21.1 22.4 18.4 15.0 17.6
	halfbeak """"""""""""""""""""""""""""""""""""	4.81 4.80 5.41 3.62 9.78 11.7 6.96 6.05	.540 .353 1.09 .970 1.46 2.00 1.08 .933	2.86 2.95 4.27 2.80 30.1 12.4 15.2 6.83 3.86	24.7 36.6 45.6 21.2 152. 91.2 58.3 83.8 14.8 39.1	13.8 14.5 18.9 11.7 59.4 101. 39.2 29.2 29.2	10.0 9.75 4.67 6.24 4.67
<u>l</u> / see p	age 33 for	scient:	ific nam	ne	n an		

-30-

CONFIDENTIAL

Ċ,¢

[12010 - 0000	•)			and the second sec		•
pate and Island	Common Name	Skin	Muscle	Bone	Liver	Viscera
7/16/54 Kabelle (cont'd)	squirrel 1 """"	.596 1.32 1.37	•399 •454 •467	.850 5.95 4.25	10.5 54.2 61.1	48.2 17.7 12.1
12/27/54 Lagoon	tuna H	5.73 3.86	.079 .139	.770 .251	5.76 3.09	1.28 .972
12/8/54 Lagoon	snapper	.960	.218	.724	4.70	1.14
1/25/55 Rongelap	surgeon 2 """"""""""""""""""""""""""""""""""""	.209 .196 .097 .084 .062 .561 .347 .418 .668 .399 .298 .509 .514 .487 .487 .487 .487 .485 .473 .721 .752 .216	.061 .068 .026 .038 .031 .040 .061 .052 .065 .063 .085 .103 .091 .106 .082 .084 .138 .144 .093 .052	1.81 .214 .073 .195 .140 .304 .449 .295 .487 .907 .352 .981 .734 1.44 1.32 .682 1.11 .879 .395	3.15 1.04 .545 1.13 2.998 2.92 3.15 5.54 3.89 1.599 7.07 4.01 9.63 1.0 9.63 1.0 9.63 1.0 9.63 1.0 9.63 1.0 3.30 3.48	$1.02 \\ 1.04 \\ 2.77 \\ 3.36 \\ 9.34 \\ 5.91 \\ 5.37 \\ 6.27 \\ 7.08 \\ 1.96 \\ 1.01 \\ 2.50 \\ 1.59 \\ 2.87 \\ 3.64 \\ 2.21 \\ 5.09 \\ .986 \\ .766 $
1/26-29/55 Lagoon	grouper "- 4 snapper 1 " " " 2	1.25 1.52 2.20 1.62	.072 .089 .191 .375 .386 .165 .074	.671 .694 .682 .490	3.84 1.91 10.6 3.98 5.07 2.75 3.63	1.86 4.53 1.30 7.32
1/28/55 Labared j	damsel 2	2.08	.728 .374	3.08 2.62	21.6	8.85
•	""" surgeon 1 ""2 parrot 1 ""	.721 2.05 2.10 1.90 .932 .977 1.68	.436 .133 .251 .145 .149 .115 .201 .147	1.16 1.65 2.10 1.21 .815 1.06 1.59	7.00 1.73 18.0 1.41 7.26 7.88 25.8	10.9 12.8 27.1 9.45 3.20 45.7 29.1
	••	• (25	.104	.919	3.19	JO.5

-31-

ŝ

mable I cont.)

CONTRIDUCTION

(Table I cont.)

Date and Island	Common Name	Skin	Muscle	Bone	Liver	Viscera
1/28/55 Labaredj (cont'd)	mullet " " blenny 2 " " " " " "	1.05 .564 1.35 .789 .611 1.65 .614 .782 .577	2.49 .265 .513 .496 .236 .264 .306 .408 .278	1.91 .637 1.97 1.09 .758 1.29 1.41 1.50 1.84	8.22 4.35 5.50 28.3 4.81 10.1 8.74 14.8 14.4	286. 6.86 47.0 54.3 19.5 37.5 24.3 25.1 43.8
	wrasse 2 grouper goatfish lizard "	1.63 1.47 1.08 .828 2.34 2.13 1.61 1.92	.209 .348 .401 .175 .447 .353 .300 .386 .252	1.43 1.76 1.50 1.05 3.88 1.83 1.13 2.08	3.97 4.05 2.75 15.1 17.5 6.51 14.5 3.81	18.2 14.8 4.68 3.25 26.4 1.52 4.51 1.93
1/29/55 Kabelle	<pre>mullet " surgeon ? damsel 1 " blenny 1 " goatfish ? " shark grouper 4 " " " " " " " " " " " " " " " " " " "</pre>	1.19 $.382$ $.587$ $.641$ $.649$ 1.46 1.11 $.509$ $.525$ 1.36 1.78 1.05 $.687$ $.433$ $.826$ $.622$.181 .166 .184 .125 .139 .246 .168 .167 .253 .299 .436 .264 .125 .110 .117 .108	.952 .612 .926 .944 .906 1.70 .683 1.02 1.92 2.23 2.97 1.36 .191 .504 .726 .606	5.74 3.45 4.05 3.63 10.2 9.02 3.35 6.54 8.00 1.34 18.1 2.67 6.94 12.2 13.0	$\begin{array}{r} 9.35 \\ 16.9 \\ 11.2 \\ 2.30 \\ 3.76 \\ 15.8 \\ 4.06 \\ 11.6 \\ 11.2 \\ 14.4 \\ 10.3 \\ 9.85 \\ .490 \\ 2.77 \\ 6.24 \\ .249 \end{array}$
1/30/55 Gejen	damsel 1 wrasse 1 grouper 4 """ " 6 goatfish 1 flatfish	3.44 1.37 1.34 1.39 .591 .861 1.20 2.54 3.18	.350 .215 .279 .273 .118 .268 .396 .405 .248	2.40 1.42 1.79 1.15 .368 1.13 1.42 4.95 1.96	27.4 15.3 21.9 38.1 2.32 4.38 4.77 18.0 3.70	37.6 8.62 5.02 6.65 1.21 2.36 1.78 17.5 5.30

-32-

e kanjelij

Scientific Names of Fishes

-33-

blenny 1	Istiblennius <u>edentulus</u>
"2	<u>Daulus</u>
butterfly 1	<u>Chaetodon</u> <u>collaris</u>
"2	<u>lunula</u>
damsel 1	Abudefduf sordidus
" 2	Dascyllus aruanus
" 3	Chromis caeruleus
" 4	Pomacentrus nigricans
" 5	vaiuli
flatfish	Bothus mancus
goatfish 1	Mulloidichthys auriflamma
"2	samoensis
grouper 1	Epinephalus elongatus
" 2	"fario
" 3	"hexagonatus
" 4	"merra
" 5	"spilotoceps
" 6.	Variola louti
halfbeak	Hyporhamphus laticeps
herring	Spratelloides delicatulus
jack	Caranx melampygus
lizard	Synodus variegatus
mullet	Neomyxus chaptalii
parrot 1	Scarus purpureus
"2	sp.
shark	Carcharhinus melanopterus
snapper 1	Lethrinus sp.
"2	Lutianus sp.
squirrel 1	Holocentrus sammara
"2	Myripristis multiradiatus
"3	sp.
surgeon 1	Acanthurus elongatus
2	Triostegus
tuna	Gymnosarda nuda
wrasse 1	<u>Gomphosus varius</u>
"2	<u>Halichoeres trimaculatus</u>

and the second			
		Weight Thomas and a state of the	
		the second se	ter Construction and the state of the
			the second state and second sectors of the
	1		
The second se	Y 112 - 12 - 12 - 12 - 12 - 12		
(b) A statistic filled of the second seco	The second se	and the second state of th	The second se
			A DECEMBER OF A

Corals Collected at Rongelap Atoll, 1954-55

Values expressed in thousands of d/m/g of wet tissue

	Date and Island	Organism	Muscle	Gut	Integ- ument	G111	Mantle	Gonad	Liver	Kidney	Misc.
	3/26/54				•			•			• .
	Kabelle	sea cucumber	251		227			877			
			592	3.170	684			416			
		5	166	8,700	531			1,440			
•.			394	8,500	537			1.140			
			509	5.900	635			811			
			112	950	291			510			
			590	940	1.080			1.300			e_{1}
	and the second	•	1.400	343	650		•				and a second second
	· · · · · · · · · · · · · · · · · · ·		530	760	500			3.000			
	An thui si shi shi shi shi shi s	giant clam		16		350	122	2,		190	
		Quinter annual a	47	740		840	116			780	$720^{\frac{2}{2}}$
				1.050		10	98			740	1,890 2/
		spider spail	140	3,600			1.1.0		13,000	1.40	7 500 2
		orab	182	2,800	1.600	3.000	*****		5,400		())00
	Labared i	hermit crab	260	2,500	1,500	1,400			9,100		
		coconut. crab	21	6 300	990	1 300			790	*	
				3,700	110				170		
	7/16/51									•	
	Kahelle	sea cucumban	רר	00	21.		÷	Ø 1.			~
		giant clam	20	62	~~##	25	6 5	004		120	20^{2}
		hermit crab	5.6	112	122	22	0.7		65	120	~~
			6.8	21.0	190	00			88		
			7.0	110	90	30			106		
	in a sub- transfer a sub- transfer a	coconut crab	2.6	58	61	22		Į.	51		
	na se		1.3	1.80	67	36			22		
			·+• J	400	. 01	20	,				
	12/8/54										
	Kabelle	sea cucumber	3.4	21	1.9			78		· .	
•			7.1	20	9.6		•	1,0			
11	an States and a second		1.2	25	. 63			10.5			•
	a di sherara sa sa sa	spider spail	14	66. 61	~•>		50		280		132/
		water a standard	 Q_Q	58.62			16		250		22
			21.	150.02			40 88	·	220		2,2/
			such a	±,70 j 72			00		Jac	1	2+4**

·34-

TV746N3(GIRINGES-

and the second	the out the set of the Addition of the second			a second s
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and a second state of the second state of the second	
	A DECEMBER OF	A THE REPORT OF A DATE OF	and the second	a the second
and the second	A STATE OF A	and the second se	AN 10 100 100 100 100 100 100 100 100 100	and the second of the second se

ц С

Date and Island	Organism 1/	Muscle	Gut	Integ- ument	Gill	Mantle	Gonad	Liver Kidney	Misc.
1/26-30/55			•				, •··		3/ 3/ 2/
Rongelap	snail								19; 25; 68
	ghost crab	.081	2.0	1.6	1.6	•		.50	
	redeye crab	•47	.87	.13	1.7	-		1.9	· · · · ·
·		•79	1.7	.21	1.6			.71	•45 [±]
	rock crab	.25	.43	.073	.85	1. The second		•61	
	1	.23	•55	.30	•79		the second	•59	
	hermit crab	.76	1.4	5.8	•93			•95	4
	coconut crab	•66							
		•53							
* * * * *		10	F 1			2 (07	2,2/
Labaredj	glant clam	•49	2+4		7.8	7*0		21	2.4
Kabelle	sea cucumbar	1.8	7.4	1.2			7.6	a	
1,00VV4,2V	coconut crab	.39	45.	9.2	3.8			4.7	
		1.0	15.	12.	4.9			5.0	-1
	OTROJE BOONDE		~ ~ ~ ~						65 2/
19-11-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	sea urchin								95 9
€C.	over at orman					•			
Geten	giant clam	.86	19.		6.1	6.1		38	12.4 2/
	octopus	1.4	12.			2.2		26.	3.9 5
	coconut crab	6.9	5.1	.90	3.2			3.3	
A	spiny lobster	1.2	2.0	.53	2.4			4+4	•
· · · · · ·					sa 🦨				5/
Eniaetok	yellow sponge		* ¹						1.74

1/ sea cucumber, Holothuria atra; giant clam -1, <u>Hippopus</u>; giant clam -2, <u>Tridacna crocea</u>; spider snail, <u>Pterocera</u>; crab, <u>Grapsus grapsus</u>; hermit crab, <u>Cenobita</u>; coconut crab, <u>Birgus</u>; snail, <u>Nerita</u>; ghost crab, <u>Ocypode ceratophthalma</u>; redeye crab, <u>Eriphia</u>; sea urchin, <u>Echinothrix</u>; octopus, <u>Polypus</u>; spiny lobster, <u>Panulirus</u>.

2/ shell

3/ soft parts

4/ egg

5/ entire

6/ spines

CONFIDENTIAL

Table III. Radioactivity of Coral

from Rongelap Atoll, 1954-55

Values expressed in thousands of d/m/g of wet tissue

pate and Island	Acro- pora	Fungia	Helio- pora	Lept- astrea	Milli- pora	Pocillo- pora	Porites
3/26/54 Kabelle	960.	140.	•			240.	39.
7/16/54 Kabelle	8.4 14.	3.0 3.6	33. 49.	• • • •	9.7 7.8		
1/29/55 Kabelle	.70 .50 3.5 4.1 .44		•				.22 3₊2
1/28/55 Labaredj	3.1 2.1			.88	1.3	1.9	2.6

ONFIDENCEL

Couve Tast Routh

Mart. Jo

LTPD

Long the Y

からいたかい

19⁹⁷ 1913

-36-

				A Marine and the second se	an and a start of the start of th			A TAN	
		ng sing sa badgaran T	an a san gana paganta	Rongel	ap Atoll,	1954-55			
		Value	s expre	ssed in t	housands	of d/m/g	of wet t:	issue	
	Date and Island	Milk	Meat	Skin	Husk	Shell	M	isc.	
	3/26/54 Kabelle	1.42 3.14 1.48 3.02	2.55	87.8 3.77	14.7 53.	3.13 1.73	215. 142. 34.4 393. 110.	primary old leaf "secondar; primary	leaf , external , internal y root
	.7/16/54 Kabelle	.101 .116	.251 .249 .310	1.96 11.3 "	.279 .306		.281 .201 .688 .466	entire fr " fr pedicel	ruit "
CON	12/8/54 Kabelle	.030 .066 .051	.070 .174 .166	.155 · 1.76 2.43	.094 .253 .285	.095 .137	.163 ,156	entire fl pedicel	lower
HER	12/18/54 Rongelap	.032 .033	.064 .051		.063 .043	n an			
	1/26/55 Rongelap	.035 .032 .025 .066 .034	.031 .031 .043 .058 .051				-1280		
	1/29/55 Kabelle Labaredj	.172 .120 .111 .131 .029 .062	.082 .109 .151 .099 .056 .046				.434	primary 1	e&f
		.035 .054	.057 .048		بر بر س	¢			
	1/30/55 Gejen	.125 .230 .154	.263		· . - -				2
	Lukuen	.107	120						

and the product generalized way and a second product and a second product of the second second second second se

с., А.

* weeks encode

-37-

RANDE JOD VICZII JAANGE

C A C C L

Table V.Radioactivity of Edible Plants other thanCoconuts from Rongelap Atoll, 1954-55

Values expressed in thousands of d/m/g of wet tissue

3/26/54 Labared j	Morinda					· · · ·	
			24.8			1,070	
12/18/54 Rongelap	squash papaya arrowroot <u>Morinda</u> Pandanus	.052; .04	.034 .044 .033 2; .052 .062 .059	.168 .174 .123 .093 .048	.070 .088 .105 .048 .071 .103	.182	.066 pulp
1/29/55 Kabelle Labaredj Lomuilal	arrowroot Pandanus arrowroot		.066 .124 .015 .362		.133		ه 19 م 19 م 19 م 19 م 19 م
Gejen Rongelap	Pandanus arrowroot papaya		.175 .110 .029 .190	.175 .141 .129	.189 .211	•	· .
 A. J. A. S. /li>	arrowroot "Pandanus squash	.117; .061 .018 .223	; .135 3; .022 .074 3; .012	.029			- 11 <u>0</u> - 14 - 15
**************************************	spinach "					.033 .040	

TVIAENAGIAINGA

Eaten from Rongelap Atoll, 1954-55

Values expressed in thousands of d/m/g of wet tissue

Date and	1/	Fruit		Leave	8			St	ams		Roote
Island	Name	Flower	Apical-Bud	01d Green	Mi	xed	Ent	ire	Debarked	Bark	1000ES
3/26/54 Labaredj	tree 1 tree 2 shrub 1 herb 1	62.7 800.		•	3,260;	2,070 1,080 1,030		1,630 1,240	41.9 14.0	1,630 302 440	2949-95, 204-20 3
3/26/54 Kabelle	herb 1 herb 2 grass 1	469. ^{2/}			153;	874 12,200 3,990	129 ;	782 154			336
7/16/54 Kabelle	tree 1 tree 2 shrub 1 shrub 2 herb 1 herb 2 grass 1		1.42 1.08; 2.04 1.55; 1.56	1.71 1.25 1.48	25.3 ; 3.53; 5.92; 14.1 ;	19.4 <u>3/</u> 3.66 <u>3/</u> 2.95 <u>7</u> 18.4 <u>3</u>	126. ; 2.35; 7.25;	32.4 7.71 3.15 4.87 3/ 2.78 3/ 1.41	₀968 ∙554 •365	72.3 12.3 ; 6.36 17.8	
12/8/54 Kabelle	tree 1 tree 2 shrub 1 herb 1 herb 2 herb 3 grass 1	•511 •164; •325 ^{2/} 2•68 ^{2/}	•943 •413 1.71	1.08 3.30 .496 2.60 .887 2.92		4.77		.634 1.85 .172 1.25 .944 .990	•405 •760 •164 •917 •494	.830 2.53 .266 4.59 1.60	1/ 0. 12 0
1/29/55 Kabelle	tree 1 tree 2 shrub 1 herb 1 herb 2 herb 3	.151	4.73 .338 .336	1.33 .318 .525 1.48		•499	•	1.42 2.60	2.07 .148		1400 J 1306
	grass 1					10.3					12.1

-39-

1/ tree 1, Messerschmidia argentea; tree 2, Guettarda speciosa; shrub 1, Scaevola frutescens; shrub 2, Suriana maritima; herb 1, Boerhaavia tetrandra; herb 2, Portulaca oleracea; herb 3, Truimfetta procumbens; grass 1, Lepturus repens.

2/ flower

3/ sample washed before counting

Table

VI.

Radioadui

Table VII. Radioactivity of Marine Algae

L.T.ST. OB.

St. 645763 8.

40

from Rongelap Atoll, 1954-55

Values expressed in thousands of d/m/g of wet sample

 Date and Island 3/26/54 Kabelle	<u>Udotea</u> indica 1,480	<u>Mic</u> dictyc 5,1	on spp.	<u>Halime</u> <u>spp</u> 735 450	<u>eda</u>	Caule spr 1,36	<u>erpa</u> 50	<u>Dictyo-</u> <u>sphaeria</u> <u>cavernosa</u>	<u>Gracilaria</u> <u>sp</u> .
7/16/54 Kabelle		43.4; 38.4; 61.5;	41.7 48.6 113.	8.02; 19.5;	10.7 10.0 15.0	53.4; 8.12; 7.10; 33.7;	15.3 13.7 6.08 82.2 45.4	· · · ·	
12/8/54 Kabelle	. · · ·			3.75;	3.52 4.90	2.31;	2.96 7.66		
<pre>1/27-30/55 Eniaetok lagoon off Rongelap, 150' lagoon off Kabelle, 60'</pre>	7.99	11.7;	5.22 9.69	.695 2.26	3.42 1.58 4.18 7.53 ; 1.52 2.12	.350; 1.53; 5372	11.1 .840 4.771/ 5.761	2.40 4.23	9.57
Gejen	3.78 9.09 8.61			.454 .849 1.63 .854	; 1.49	• 75 (=	2.48 5.58 3.63		

Table	VIII. Radio	pactivity of	Birds (Collecte	d at Rong	gelap A	toll, 19	54-55	and had a start of the start of
	Values	expressed in	n thousa	ands of	d/m/g of	wet ti	ssue		
Date Island	Namel	Skin	Muscle	Bone	Thyroid	Lung	Liver	Kidney	Ileum
3/26/54 Labaredj "Kabelle """	noddy tern " fairy tern " curlew	482. 51.0 555. 380. 4,970.	9.16 17.0 6.71 9.40 17.0	121. 68.7 61.4 110. 354.	39.0 298. 15.0	23.4 14.0 13.8 15.8 37.0	72.0 59.0 27.0 42.0 79.0	53.0 65.0 12.8 31.0 291.	65.0 643. 793. 73.0 66.0
7/16/54 Kabelle """"""""""""""""""""""""""""""""""	noddy tern """ fairy tern """ crested ter "" curlew	1.58 1.29 1.20 .621 m 6.78 5.84 1.57	.693 1.22 1.02 .573 3.15 1.81 .403	1.29 1.33 .823 1.57 2.39 2.53 3.72	9.00 20.0 14.0 3.70 20.0 24.0 14.7	4.38 11.0 8.34 3.88 150. 11.2 1.75	6.58 6.77 7.71 4.85 13.5 2.26	3.06 8.28 6.10 3.79 8.68 5.52 3.29	1.99 2.08 1.18 1.25 10.3 5.93 21.8
12/8/54 Kabelle """" """	noddy tern " fairy tern "	.789 1.88 .951 .384	.060 .074 .102 .111	.118 .140 .330 .266		.255 .351 .447 .435	.314 .508 .698 .349	.391 .435 .291 .394	.147 ± .124 + .132 .112
1/26/55 Rongelap """"""""""""""""""""""""""""""""""""	fairy tern """" turnstone plover noddy tern "fairy tern "noddy tern fairy tern	1.21 1.31 1.16 .556 2.19 .430 .331 .829 .776 .279 6.92 .150 .851	.591 .912 .334 .361 .623 .090 .045 .045 .045 .049 .054 .108	1.09 3.16 .357 1.56 1.04 .248 .552 .345 .740 .061 .125 .042 .078	1 1	2.07 4.11 1.58 2.05 2.27 .387 .157 .430 1.74 .258 .394 .317	2.52 2.54 1.51 .585 1.79 .558 .437 .213 .934 .243 .217 .196 .223	2.98 2.53 1.63 .585 1.91 .566 .490 .295 1.04 .182 .258 .240	.995 1.10 1.21 .652 1.40 .800 1.07 .085 .395 .154 .069
1/ Noddy tern, A Sterna bergi	nous stolic ; turnstone	lus; fairy to , Arenaria	ern, <u>Gyr</u> Interpre	<u>gis alba</u> es morine	; curlew, ella; plo	Nument	us sp.; urialis	crested dominic	tern, <u>a</u> .

 $= \frac{1}{2} \sum_{i=1}^{n} \frac{$

and the second

ана — П.

1

Addicactivity reinston, Gall-Sond and

Table IX. Radioactivity of Tern Eggs

from Rongelap Atoll, 1954-55

Ċ.,

RINGE COUTER.

... ن

バートマトロ ひたり

1.1.1.1.1

ieref x silsz r

3734.

Values expressed in thousands of d/m/g of wet sample

Date and Island	Eggshell	Yolk	White	Embryo
7/16/54 Kabelle	1.14 2.15 1.42 1.48 .956	.804 2.03 2.08 4.92 .409	.056	.508 .795 .905
12/8/54 Kabelle	•575 •581 •789	.421 .147	.018 .023	
1/29/55 Kabelle	.376 .272 .280	.065 .030 .045 .035		

ONFIDENTL

-43- Table X Radioactivity of Plankton, Soil-Sand, and
Water Samples from Rongelap, 1954-55
Plankton - Values expressed in thousands of d/m/g of wet sample
3/26/54 7/16/54 12/8/54 12/18/54 1/26-30/55
Off Lukuen3.39; 9.61"Kabelle4.73; 5.84"Labaredj306."Rongelap306.11.0; 8.542.04; 0.901.18; 2.10
Soil-Sand - Values expressed in thousands of d/m/g
Island Soil Beach Sand
3/26/54 7/16/54 12/8/54 1/25-30/55 12/8/54 1/25-30/55
Lomuilal 166 35.9 Gejen 830 . 6.16
Kabelle 2,000 312 315 106 20.5^{1} 13.7 " 421 596 5.04 3.04
Labaredj 17,000
Rongelap 2.34 1.16
Lagoon bottom, 1/29-30/55
0-4" 4-34" 34-14" 14-134" 134-214" 214-3"
Lomuilal, 55' 22.9 27.2 17.8 16.3 17.9 14.5
$0-1$ $1-2$ $2-3$ $3-4$ $4-5$ $5-6$ $0-7$ Kabelle 60° 19.2 16.9 16.2 20.0 7.47
" 40' 20.3 16.9 21.4 21.8 10.3 3.35 3.29 Labaredj, 150' 16.2
Water - Values expressed in $d/m/ml \pm 0.95$ counting error
Lagoon Water Fresh Water
7/16/54 1/26-30/55 12/18/54 1/26-30/55
Lomuilal 5.6 ± 3.0 Kabelle 3.3 ± 3.1 3.3 ± 2.7 $48 \pm 3.05/$
4.1 ± 3.4 4.8 ± 3.4
Labaredj $6.8 - 3.0$ $25. \pm 2.22/$ Eniaetok $17. \pm 2.24/$
Rongelap 5.6 ± 3.0 $3.4 \pm .202/4.2 \pm 1.82/$
$2.6 \pm .182$
" 1.8 ± .213
<pre>1/ at high tide line 2/ cistern water 3/ filtered well water 4/ standing water 5/ ground</pre>
-CONFIDENTIAL
-CONFIDENTIAL

and the second
.
Adaptation is		Tab	le XI	r. Data	for C	omput	ing Per	Cent A	ctivity	of Fission			alla di langan
	Products	and	Calc	ium in Ro	ongelap	Soil	Samples	Éased	on 1 Mi	lliliter R	eplicat	es	
		ŝ	Sampl	e Number:	7500			7501			7502		
		a =	c/m	b = % chemical yield	$\frac{a}{bc}x10^4$	= %	a	Ъ	$\frac{a}{bc}$ x10 ⁴	æ	Ъ	$\frac{a}{bc} \times 10^4$	
C	erium	21 27,	,005 ,154	40 48	44.		10,014 9,909	62 58	35.	16,719 17,946	83 83	30.	
t	rivalent rare earths	26) 3 25,	,297 535	75 ¹ / 75	28.		8,562 8,992	75 ¹ / 75	24.	13,507 12,353	7 5 1/ 75	25. m	
Z	irconium	19 18	,099 ,809	99 69	19.(D	9,337 9,532	73 72	27.	13,439 13,200	75 72	26.	
n	ilobium	7 7	,584 ,192	96 79	6.9	9	3,618 3,386	93 95	7.8	4,857 4,488	100 79	7.7	
r	Puthenium	10 9	,289 ,518	97 <u>2</u> / 97	8.:	2	3,019 3,321	87 <u>2</u> / 97	7.2	5,247 3,664	100 ^{2/} 97	6.6	-44
8	trontium	l l	,574 ,440	21 26	5.:	2	253 612	20 30	3.4	551	29	2.8	
b	arium	6 4	,192 ,971	85 62	6.:	2	2,158 1 372	83 85	4.4	3,019 3,494	64 74	6.9	
C	alcium		527 538	<u>3</u> /	0.4	4	278 221	<u>3</u> /	0.5	356 487	<u>3</u> /	.6	
t	otal				118.	a			109.			111.	
C 8 8	e = c/m, non separated liquot	123 123 124	,558 ,904 ,561				47.992 48,282 47,370	•	· · · ·	68,758 69,692 67,304			
8	verage	124	,008	•		•	47,882			68,585			
1/ from previous experiments; yields for these analyses greater than 100% 2/ spike yields; chemical yields greater than 100%													

1000

3/ no yield was determined

SOMEDENTIA

Table XII. Physical Decay Rates of Rongelap Samples

 $r = t^{-x}; t_0 = March 1. 1954$

-45-

No.					No of	· •	4
100 F	plate No.	Date and Island	Substance or Organism	Tissue	Times Counted	Decay Rate	•
「ないいないないないないない」というという	4032 4033 4034 4035 4036a 4036a	3/26/54 Kabelle	damsel fish """" """ squirrel fish	skin muscle bone liver gut skin	2 3 2 2 2 2 3	1.49 1.42 1.33 1.64 1.11 1.62	
	4045 4046 4047 4048 4049 4050		TS F1 17 F2 18 F2 11 11	muscle bone liver gut gill skin	4 2 3 2 2 2 2	1.59 1.53 1.86 1.61 1.28 1.30	
	4051 4052 4053 4054 4055 4055		n n n n n n parrot fish	muscle bone liver gut- gill skin	4 2 3 2 2 2 2	1.63 1.45 1.71 1.58 1.47 1.30	
	4057 4058 4059		18 17 19 19 19 19 19 19	muscle bone liver &	4 2	1.77 1.95	
	5000 5006 5008a		giant clam """	gut mantle muscle visceral	2 33 28	2.96 1.28 1.27	• •
	J0000			mass	18	1.14	
	5016 5017 5023		spider snail sea cucumber	mantle muscle	13 13 14	1.15 1.24 1.38	
	5057a		shore crab	gastric mill	46	(] -life	~80-d)
	5078		coconut crab	gastric mill	15	1.13	
	6009	• • •	Messerschmidia	stem	34	1.31	
	6018 7002 7003 7021 7030 7032	Labaredj Kabelle	Boerhaavia sooty tern """ fairy tern sooty tern	leaves bone liver " kidnęy	33 17 13 13 13 31	1.29 1.60 1.28 1.31 1.36 1.17,<9)0 days
	7040		curlew	17	15	1.83, >9)0 days

CONFIDENTIAL

(Table YIT)	cont)	-46-			
TICOLC VII		\sim		No. of	X,
N 7- - - W -	Date and	Substance or	Mian	Times	Decay
Place No.	Taraun	organism	TTAARA	counted	nale
7500a	3/26/54	soil	top inch	40	1.35
7501	Labaredj			38	1.34 .,
(glass)			en ti it	73	1 33
75020	Kehelle		a na	40	1.28
8203	Labaredi	plankton		8	1.28
8240	Kabelle	11		8	1.41
6844	7/16/54	Halimeda	entire	8	1.05
6859	Kabelle	3/4-inch coconut	·	6	0.54
12151		goatfish	skin	7	0.99
12152		an an H araharan ar an an	hone	7	1,14
12155		H AND	liver	7	1.75
12155			viscera	7	1.12
12186		herring	entire	7	1.30
12201		butterfly fish	skin	5	1.70
12202			muscle	8	1.42
12203		n (t	bone	5	1.39
12204			liver	4 E	1.(4)
12205	۰.		viscera akin	25	2·14
12231		Surgeon 11Sh	SKIII	7	1.22
12232		n n	hone	6	1.26
1003/1		11 17	liver	5	1.54
12235		ff	viscera	5	1.25
12236		damsel fish	skin	5	1.21
12237		11 11 11 11 11 11 11 11 11 11 11 11 11	muscle	7	1.44
12238	•	77 (2017) 78 (2017) 78 (2017)	bone	2	1.03
12239		n transformation	liver	5	2.00
12240			viscera	5	1.31
12241	•	mutter a	muscle	ź	1.55
12242			bone	5	1.34
10044		11	liver	5	1.79
12245	1	tt i strandisk for a strandisk for	viscera	5	1.25
12251		grouper	skin	6	1.26
12252			muscle	6	1.41
12253	-	er en	bone	D K	2.30
12254		11	Tiver	6	2.40
12255		tann	VISCOLO	40	1.76
71	10/8/51	uru soil	mid-islar	nd 10	1.36
9947	12/0/34 Kehalla	N	intertide	1 11	1.23
3343 10700	TGAGTTC	coconut	meat	12	0.96
10706		N	milk	11	0124
10745		Halimeda	entire	11	1.22
10748		Caulerpa	entire	11	1.33
19006		plankton		TO	T+ 20

CONTRIDENTIAL